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Abstract

Knowing the quantity and the quality of products and tailings generated by a 
beneficiation plant, even before ore processing, can make the mining operations more 
sustainable, more profitable, and safer. To forecast these values, it is necessary to sub-
mit samples to batch tests which mimic the processing workflow used on an industrial 
scale. Then, the results need to be analysed with the aim of finding a statistical model 
able to comprehend how Run of Mine (ROM) characteristics impact the performance 
at the beneficiation. After developing a model, it is possible to apply it to blocks where 
the ROM characteristics are known, but the metallurgical information is not, making 
it possible to estimate these. With this goal, a geometallurgical model was developed 
with a neural network technique using 37 samples collected at two Brazilian gold 
mines. The Au and S grades in ROM, and the mine from where the sample was col-
lected, were used as input variables. The model was able to forecast the following vari-
ables with a Pearson correlation coefficient on the cross validation test set equal to the 
value in parenthesis: mass (0.55) and metallurgical (0.54) recovery in the gravimetric 
concentrate, mass (0.80) and metallurgical (0.12) recovery in the flotation tailings, 
mass (0.77) and metallurgical (0.11) recovery in the leaching tailings, mass recovery 
(0.84) of gas sent to the sulphuric acid plant, and metallurgical recovery (0.65) in the 
leaching concentrate. The results obtained with neural networks were superior to the 
ones obtained when three alternative techniques were tested.
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1. Introduction

Geometallurgical models are 
frequently developed focussing on 
forecasting variables related to sale-
able products. Geometallurgy applied 
for tailings grades and mass are rarely 
explored, either for lack of investment to 
know variables which will not bring im-
mediate financial return or for ignoring 
the fact that by knowing the quantity 
and the quality of tailings, financial 
benefit can also be added. Knowing the 
tailings grade beforehand opens up the 
possibility of deciding where to send 
it: to the tailings dam, as usual, or to 
stockpile the tailings to make possible 
further use of it, if the observed grade is 
high enough to offset the process costs. 
Adopting the second option, it would 
be possible to recover a metal which 
initially would be lost, so improving the 
metallurgical recovery. Furthermore, by 

knowing the complete plant mass bal-
ance, including tailings mass, it would 
enable one to forecast when the tailings 
dam will reach its maximum storage 
capacity, making it possible to better 
plan its height or building a new one. 
In a critical scenario, a new solution 
would be to use dried tailings deposition 
in waste dumps, aiming at minimising 
the environmental impact.

The need to predict concentrate 
geometallurgical characteristics be-
forehand is mandatory at most mining 
operations. By doing that, it is possible 
to classify a block as ore or waste, not 
only by considering the cut-off grade in 
ROM, but also by considering the char-
acteristics that the material will present 
when processed. By adding this infor-
mation into mine planning, it would 
avoid feeding the plant with a material 

above the cut-off grade but with several 
contaminants which impact on the flo-
tation recovery, leading to a reduction 
in the metallurgical recovery and in 
the concentrate grade. Ultimately, this 
would avoid producing a concentrate 
which would not generate a revenue, 
as it was planned to do, so affecting 
the cash flow for that specific period of 
time. Following the same reasoning, it is 
possible to feed a material below the cut-
off, but with low contaminant grades, 
which can generate a product within the 
desirable specifications. Basically, ore 
and waste classification, supported by 
geometallurgical studies, goes beyond 
the simple cut-off grade definition. 
Additionally, geometallurgical models 
provide the information needed to ad-
just the plant as the ore characteristics 
change. Knowing beforehand that a 
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given ore can lead to a low metallurgi-
cal recovery, it would be possible to 
adjust the milling factors, or flotation 
circuit, to mitigate the expected loss in 
the metallurgical recovery.

Considering the benefits in pre-
dicting the products and tailings char-
acteristics, this study focussed on 
building a geometallurgical model able 
to forecast the mass and the metallurgi-
cal balance that will be obtained when 
the gold ore from two Brazilian mines 
is processed. The novelty of this work 
is the capability to forecast, at each 
part of the flowsheet where there is a 
material output, either concentrate or 
tailings, the mass and the metallurgi-
cal recoveries and, ultimately, the gold 
grade in such materials simultaneously 
respecting mass closure.

A challenge related to dealing with 
geometallurgical data is that most are 
non-additive (Richmond and Shaw, 2009). 
Carrasco et al., (2008) proved that mass 
recovery is an additive variable, but met-
allurgical recovery is not, and because of 
this, it needs to be studied with prudence. 
According to Coward et al., (2009), ad-
ditivity is the “property that allows the 
mean of some variables to be calculated 
by a simple linear average”. The non-
additivity of an attribute restricts the use 
of linear averages, since it would generate 
biased or inconsistent results according to 
the studied phenomenon.

One of the most applied tech-
niques to forecast geometallurgical 
variables is linear regression analysis, 
uni- or multivariate, which uses, as inde-
pendent variables, information about in 

situ ore characteristics including grade, 
grain size distribution, or lithology, to 
predict variables such as ore recovery 
at the processing plant. Examples in 
geometallurgical modelling are found 
in MacMillan et al., (2011), Montoya 
et al., (2011), Fernandes and Cabral 
(2016), and Vieira and Costa (2016), 
among others. Since regression analysis 
provides a linear estimation, its use to 
forecast non-additive variables can gen-
erate results that do not ideally represent 
the studied phenomenon.

In view of the increasing application 
of machine learning techniques in several 
fields, and their capacity to deal with non-
additive data, it was decided to compare 
the results obtained by using regression 
analysis with the ones obtained using 
machine learning techniques.

Application of machine learning techniques in the mineral industry

This section presents a brief review 
on the application of machine learning 
to forecast variables in mining context.

Singh and Rao (2005) used a RBF 
neural networks to classify particles as 
manganese enriched, iron enriched or 
alumina enriched, using as input vari-
ables the red, green and blue in the RBG 
color space and four Harlic’s textural 
parameters (energy, entropy, contrast 
and homogeneity). The overall accuracy 
of the model was 88.71%.

Lucay et al. (2020) developed 
a methodology to use a RBF neural 
network and a multi-layer perceptron 
to better model the design of the ex-
periment’s (DoE) data. First, the authors 
created a DoE using the frother con-
centration, the collector concentration 
and the water conductivity as input 
variables to forecast the froth stability. 
After the results of the experiment were 
processed, they decided to estimate (us-
ing variography and kriging) the froth 
stability at unsampled points which 
were after sampled using the Monte 
Carlo method. Then, the created sam-
ples using kriging were used to train a 
RBF neural networks and a multi-layer 
perceptron and the real values from the 
DoE were used as test set samples. Other 
applications of this methodology were 
presented by the authors to forecast the 
ash recovery in coal flotation and gold 
recovery at a plant, using other input 
variables. In all cases, the methodol-
ogy proposed overcame the classical 
response surface methodology.

Lishchuk, Lund and Ghorbani 
(2019) tested random forest, SMO (a 
variation of SVR), linear regression, 
M5 and M5P (variation of decision 
tree), among other machine learning 
techniques to forecast six geometal-
lurgical variables at the Leveäniemi 
iron ore mine. Included among them 
the iron metallurgical recovery. The 
authors concluded that the best forecast 
was found when techniques which used 
decision trees were applied to forecast 
non-additive variables.

Prades and Deutsch (2016) evalu-
ated the results obtained to forecast 
the acid consumption, the recovery and 
the impurity in a copper ore processing 
plant, using linear and quadratic re-
gression, ACE (alternating conditional 
expectations), ridge regression, random 
forest and gradient boosted models 
(GBM). According to the authors, ran-
dom forest and GBM presented the best 
results based on R² values.

Drumond (2019) applied logistic 
regression, discriminant analysis, support 
vector machine, random forest, neural net-
works, k-nearest neighbors, decision tree 
and naïve bayes techiniques to forecast 
mineral particles of ore and waste in an 
ore-sorting equipment, using X-ray sensor 
readings as independent variables. The 
author considered that the support vector 
machine, k-nearest neighbors, random 
forest and the neural networks showed 
the best results.

Panda and Tripathy (2014) ad-
justed a neural network to forecast the 

grade and the metallurgical recovery 
of chromite in a processing plant with 
a gravity concentrator using the wash 
water flow rate, the deck tilt angle and 
the slurry feed rate as input variables. 
The network built used only one hidden 
layer with eleven hidden nodes and the 
two output variables were forecasted 
simultaneously. The R² obtained in the 
test set was 0.96 to forecast the grade 
and 0.99 to forecast the recovery.

Other studies related to machine 
learning applied to problems in ore pro-
cessing, excluding geometallurgy articles, 
can be read in McCoy and Auret (2018). 
Examples of the neural networks ap-
plication to forecast variables related to 
transportation and blasting can be seen 
in Franco-Sepúlveda, Del Rio-Cuervo and 
Pachón-Hernández (2018).

According to the authors knowledge, 
no geometallurgical model has been elabo-
rated so far to forecast simultaneously the 
grades and the mass and metallurgical 
recoveries of all outputs in a plant, either 
concentrates or tailings. To achieve this 
goal, it was necessary to build several 
models using different machine learning 
techniques aiming at identifying the one 
which would lead to the most precise and 
accurate forecast and to recognize the 
one able to better honor the mass and 
the metallurgical closure of the predic-
tions. Among all techniques described 
in this section, three were chosen as the 
most promising to be evaluated: neural 
networks (NN), support vector regression 
(SVR), and random forest (RF).
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2. Material and methods

The software used to build all 
models was developed in Python®. The 
scikit-learn library was used to build the 
SVR and the random forest models, to 
standardize the variables in the prepro-
cessing step and to calculate the mean 
absolute error and the mean squared 
error. The keras library was used to 
build the neural network model and the 
statsmodels package was used to build 
the linear regression model. To calculate 
the correlations between the true values 
and the forecasts made, the scipy library 

was used.
To better comprehend the vari-

ables involved in this problem, a brief 
explanation of the process flowsheet 
will be presented. The ROM is processed 
initially at Plant 1, which has crush-
ing and milling circuits, followed by a 
gravimetric separation and a flotation 
circuit. Next, the flotation concentrate 
is sent to Plant 2, in which the material 
is submitted to a calcination followed 
by a leaching circuit. Figure 1 illustrates 
the simplified flowsheet with all mass 

and metal output points. The variables 
studied are the ones represented in the 
green and blue boxes. The gas metal-
lurgical recovery box is shaded as no 
metal is lost in the gas generated by the 
calcination process, so its value is zero. 
The leaching concentrate mass recovery 
is also shaded as the mass related to this 
part of the process is irrelevant compared 
to the others, and consequently, this mass 
recovery is rounded to zero. Finally, the 
shaded variables will not be modelled, 
leaving the remaining eight to be studied. 

Planning to mimic the perfor-
mance of the processing plant, bench 
scale tests were run using samples 
with different chemical and geological 
features. Each sample passed through 
each of the concentrator steps: first, the 
samples entered a gravimetric concen-
trator and its tailings were fed to the flo-
tation. Next, the flotation concentrate 
was fed into the calcination process and 
the material remaining was sent to the 
leaching. In total, 37 lab tests were made 
allowing building a statistical model 
able to relate the ROM grades to the 
quantity and quality of the concentrate 
and tailings generated at the plant.

Table 1 presents the descriptive 
statistics for the 37 samples regarding 
Au (g/t) and S (%) grades at ROM, 
and the eight metallurgical variables, 
divided between the two mines under 
study. Note that the mean gold grade 
at Mine A is higher than that at Mine 
B (11.42 against 2.38 g/t). The same 
applies for the S mean grade, the Mine 
A mean is higher (8.55 against 7.53%).

The metal flow for Mine A ore 
shows that (on average) 60.49% of the 
gold fed to the plant goes to the gravi-
metric concentrate, 7.36% to the flota-
tion tailings, 30.42% to the leaching 
concentrate, and 1.73% to the leaching 

tailings. For the Mine B ore, the average 
numbers are: 70.67% of the gold goes 
to the gravimetric concentrate, 4.95% 
lost to the flotation tailings, 22.51% to 
the leaching concentrate, and 1.88% 
lost to the leaching tailings. Analyzing 
the mass fed from Mine A, on average, 
5.57% goes to the gravimetric concen-
trate, 78.70% to the flotation tailings, 
11.01% to the leaching tailings, and 
2.75% to the sulphuric acid gas. For 
Mine B, these numbers are: 5.16% of all 
mass fed goes to the gravimetric concen-
trate, 87.32% to the flotation tailings, 
6.06% to the leaching tailings, and 
1.53% goes to the sulphuric acid gas.

Figure 1 – Simplified flowsheet from Plant 1 and 2.
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Table 1 – Descriptive statistic by mine.

From Table 1, it can be seen that each 
mine has different ROM grades with met-
allurgical variables showing different be-

haviors. Thus, a categorical variable (D1) 
was created representing the mine from 
where the sample was collected, making it 

possible to introduce this information into 
the models. Equation 1 illustrates how this 
variable was built:

Thus, Au (g/t) and S (%) grades, 
and the variable D1 were used as inde-
pendent (input) variables in this study.

To build a forecast model an 
isotopic database is necessary, which 
is not the case, since only 22 of the 
37 samples have information about 
the sample mass after the calcination 
process. The lack of this information 
prevents the calculation of the gas mass 
recovery and the leaching tailings mass 
recovery. To complete the database, 
it was decided to use the maximum 
likelihood technique (Enders, 2010), 
which is the imputation state of the 
art for missing at random (Rubin,  
1976) information.

After the imputation, the next 
step was to transform the Au and S 
grades into values within the 0 to 1 
range (the same used for the D1 vari-
able), to ensure that, in the models cre-
ated, a variable does not impact more 
than the others due to its magnitude.

Finished the preprocessing step, 
the imputed and standardized dataset 
was used to create the geometallurgical 
models. Four different techniques were 
investigated: regression analysis (Hair 

et al., 2009), random forest (Hastie, 
Tibshirani and Friedman, 2009), 
support vector regression (Izenman, 
2008), and artificial neural networks 
(Haykin, 1999). Basics on these meth-
ods are presented herein.

The models made with regression 
analysis were evaluated according to 
the significance t-tests (Triola, 2008) 
and the residual analysis (Hair et al., 
2009) was run. The models developed 
for the flotation and leaching tailings 
metallurgical recovery presented co-
efficients statistically equal to zero, 
indicating that their use for prediction 
purposes is discouraged. The leaching 
tailings mass recovery and the flotation 
tailings metallurgical recovery models 
violated the normality assumptions of 
the residuals, which can affect the t-test 
results to such a point as to invalidate 
them. Thus, three of the eight models 
developed using regression analysis are 
not statistically valid, and the results 
obtained by using this technique will 
not be further discussed.

The random forest algorithm us-
ing 1000 trees was used to model the 
eight metallurgical variables under 

study. To determine the minimum 
number of samples by leaves in the 
trees, values were tested ranging from 
2 to 15. The correlation coefficient 
obtained in the out-of-bag (Hastie, 
Tibshirani and Friedman, 2009) was 
calculated for each minimum number 
of samples in the leaves tested, and 
the value which presented the higher 
correlation value was chosen.

The models using support vector 
regression were divided into two parts: 
first, the models were adjusted using a 
linear kernel and then, adjusted using 
a non-linear kernel (Radial Basis Func-
tion). For both cases an epsilon (∈) 
value equal to 0.0001 was used. The 
determination of the best C parameter 
value, in the linear case, and of the 
best C and gamma (Izenman, 2008) 
values, for the non-linear case, was 
made using a grid search with values 
ranging from 0.001 and 100 for both 
parameters. For each dependent vari-
able the parameter (linear SVR), or the 
combination of parameters (non-linear 
SVR), which returned the lower mean 
absolute error (MAE) in the test set 
was chosen.

D1 = {0, if the sample belongs to Mine B
1, if the sample belongs to Mine A (1)
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Table 2 - 5-fold cross validation results.
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Table 3 – Closure analysis for all techniques applied.

Using the developed models, it is 
possible to predict not only the mass and 

metallurgical recoveries of each product or 
tailings, but also their grades, according to:

Consequently, the gravimetric 
concentrate, flotation tailings, and 
leaching tailings grades were calcu-
lated using the mass and metallurgical 
recoveries related to them. However, it 

is not possible to calculate the leach-
ing concentrate grade, since it was 
assumed that the leaching concentrate 
mass recovery is zero. It was possible to 
estimate the mentioned grades and to 

compare them to the real ones. Table 4 
summarises the results obtained when 
the 5-fold cross validation was applied 
to the data along with the 5-fold mean 
for the three studied variables. 

Grade (Concentrate or Tailings) = 
Metallurgical Recovery (Concentrate or Tailings)

Mass Recovery (Concentrate or Tailings)

Feed Grade* (2)

The first step to create a neural 
network is to determine the optimisa-
tion algorithm used in its construction. 
The gradient descent (Bishop, 1995) 
and the Adam (Kingma and Ba, 2015) 
algorithms were tested, with the latter 
producing the best results. Next, the 
learning rate (Haykin, 1999) needs 
to be determined. Values between 
0.00001 and 0.5 were tested and 
the best results were obtained with a 
learning rate of 0.00003. Then, the 
number of hidden layers and hidden 
nodes needed to be defined. Bear-
ing in mind the reduced number of 
samples available, and the possibility 
of overfitting, it was decided to use 
no more than three hidden layers and 
six hidden nodes in each hidden layer. 
Considering all possible combinations 
of hidden layers and hidden nodes, the 
best results were found when two hid-
den layers with four nodes in the first 
layer and five nodes in the second layer 
were used. Finally, it was necessary 
to determine which activation func-
tion will be used in each hidden layer 
and in the output layer. The following 
functions were tested: linear, sigmoid, 
ReLU, hyperbolic tangent, and soft-
plus. The best results were obtained 
when the linear function was chosen 
in all the layers.

The results obtained using the 
techniques described earlier were 

compared. The k-fold cross validation 
technique (Hastie, Tibshirani and 
Friedman, 2009), using k = 5, was used 
to check each model’s forecast capac-
ity, in data not used to build them. The 
techniques were evaluated considering 
the mean absolute error (MAE), the 
square root of the mean squared error 
(RMSE), and the Pearson correlation 
coefficient between the predicted and 
the real values. Table 2 consolidates 
the results presenting the mean and 
the standard error of the built 5-folds. 
To make the comparison easier, the 
mean of the 5-fold mean for the eight 
dependent variables was calculated 
and presented.

Analysing the mean values for 
each metric calculated for all variables 
in the test set, leads to the result that 
the best correlation value was obtained 
when random forest was used, and 
the best MAE and RMSE values were 
obtained when the neural networks 
technique was applied.

The good correlation values 
found for the gas mass recovery and 
leaching tailings mass recovery were 
not impacted by the imputation meth-
od used, once when correlations were 
recalculated considering only the real 
samples, the test set mean ± standard 
error found was 0.8113±0.038 for the 
gas mass recovery and 0.7594±0.1568 
for leaching tailings mass recovery, 

values close to the ones obtained when 
all data (real + imputed) were used.

Considering the neural networks 
results and thinking that the flotation 
and leaching tailings, and the gas mass 
recoveries, together, represent on aver-
age 93% of all mass from Mine A, al-
lows one to conclude that correlations 
above 0.80 for these variables indicates 
that the models are good to forecast the 
mass balance. For Mine B, this percent 
is even higher, 95%. Considering that, 
on average for Mine A, 90% of all 
metal goes to the gravimetric and the 
leaching concentrates, it is possible to 
consider that the variables with the 
highest impact on the metallurgical 
balance, presented models with good 
results. For Mine B this percentage is 
94%. Thus, the leaching and flotation 
tailings metallurgical recoveries, which 
are related to models with a poor pre-
dictive capacity, are the variables with 
the smallest metal outputs.

For each of the built 5-folds, 
the percentage of samples in which 
the closure error was below +/- 1% 
was also evaluated. Next, the aver-
age percentage for all 5 folds was 
calculated. The closure results are in 
Table 3. Note that the neural networks 
presented the highest percentage for 
mass and metallurgical closures. All 
other techniques presented poor met-
allurgical closure results.
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3. Discussion

4. Conclusions

The forecasts obtained by the geomet-
allurgical models presented herein can be 
used in several ways. The grade information 
of the flotation or leaching tailings makes 
it possible for the plant operators to decide 
the tailings destination. If the tailings grade 
is above the cut-off grade adopted to feed 
the plant, it is possible, for example, to 
store it in piles ready to re-feed it, opening 
up the possibility to better use the metal 
content and increase the operation profit. If 
the grade is below the cut-off, the material 
must be sent to the dam with the conviction 
that it will not contain a metal quantity 
that should belong to the saleable product.

Additionally, this study also provides 
the means to more precisely sizing the tail-
ings mass sent to the pond (dam) by using 
the flotation and leaching tailings mass 
recoveries information. The environmen-
tal impact generated by the tailings can 

be determined even before the tailings are 
generated, making it possible to better plan 
its disposal. Moreover, it is possible to know 
the percentage of all metal feeds such that 
their destination to the flotation and leach-
ing tailings, and to the concentrate, make 
it possible to study alternative processing 
routes and different dosing reagents, aimed 
at increasing the metallurgical recovery.

Another gain is related to the gas 
mass that is sent to the sulphuric acid plant. 
Knowing that this gas is sold to other com-
panies, it is important to know beforehand 
the profit that will be generated by selling 
this material. When the gravimetric concen-
trate grade and mass recovery are known, 
it is also possible to predict the operating 
profit, making the predicted cashflow more 
adherent to the reality.

After presenting all model benefits, 
it is necessary to discuss their limitations. 

The first one is related to the model bound-
ary conditions. It is important to apply the 
model in blocks (or piles) which kept the 
same grade range and the same lithologies 
used to build the neural networks. The 
second limitation is associated to the rela-
tion between the bench lab tests and the 
plant results. The bench tests led to higher 
metallurgical recovery than the plant, a 
fact related to the higher selectivity of the 
equipment used at laboratory scale. But the 
company was not able to quantify this dif-
ference at the moment. It is known the need 
to find an up-scaling factor to make the 
lab results comparable to the plant actual 
response. The last limitation is related to the 
number of samples used to build the model. 
Collecting and inserting more samples in 
the study will reduce the MAE and RMSE 
values found, making the model’s predici-
tions more adherent to the reality.

The results indicated that, in terms 
of MAE and RMSE, the neural networks 
technique stood out when compared with 
the other techniques applied. The mass and 
metallurgical closure results also indicate 
that this technique presents adequate re-

sults to be used in actual situations. Even 
though, it is important to note that this 
superiority is related to the specific data 
studied, being necessary to check its valid-
ity when data from other deposits are used.

The developed neural network model 

can be used to build 3D geometallurgical 
block models using the Au and S predicted 
at each block, and the mine which the ore 
came from. The same applies to piles built 
to feed the plant, making it possible to fore-
cast the metallurgical ore behaviour before 

Table 4 – 5-fold cross validation results for grades forecast.

Note that all metrics analysed presented the best results for the neural networks prediction models.
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the material actually feeds the process, 
bringing several benefits to the operation.

Analysing all the presented infor-

mation, it is possible to conclude that the 
development of geometallurgical models 
capable of predicting products and tail-

ings characteristics can bring financial and 
environmental benefits, becoming a good 
practice to be used at mines.


