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Introduction
The retina is the only place in the body where blood 

vessels can be viewed noninvasively in vivo. Technological 
evolution has been leading to the development of digital 
imaging systems over the last two decades, revolutionizing 
the ability to take images of the ocular fundus. Essentially, 
modern digital imaging systems provide images with 
sufficient resolution for most clinical scenarios.

We described the reliability of the digital assessment 
of perifoveal capillary networks as an indicator of macular 
perfusion (Faria et al., 2014). This knowledge can be 
applied to various retinal conditions, such as diabetic 
macular edema or ischemia and age-related macular 
degeneration. Moreover, the assessment of foveal perfusion 
map reflects the microcirculation status in the brain, 
heart, and kidney (Blonde, 2012; Flammer et al., 2013; 
Klein et al., 2006; McGeechan et al., 2009; Sun et al., 
2009; Taylor et al., 2007).

Foveal avascular zone (FAZ) is the central structure 
of the macula and it is important for the macular function. 
Many previous studies in 1970s correlated macular 
ischemia and loss of visual acuity based on the analysis 
of angiographies (Bresnick et al., 1975; 1976; Kohner and 
Henkind, 1970). More recent studies have demonstrated 
that, in diabetics, extensive ischemia of the macular 
region enlarges the FAZ and this is the main feature of 
maculopathy, in which profound and irreversible visual 
loss may occur (Arend et al., 1995; Sim et al., 2013). 
Particularly, in cases of diabetic maculopathy, the extent 
of ischemia is masked by coexisting macular edema. 
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A recent research described features of optical coherence 
tomography that also associated the macular ischemia 
with impaired visual function (Sim et al., 2014).

In 2015, we developed a new method for automatic 
segmentation of the FAZ using watershed transform 
(Silva et al., 2015) applied to the original image from 
two markers: the first defined by the global minimum 
contour of the alternating sequential filtering (ASF) 
image (filter to reduce the complexity of the original 
intensities), and the second defined by an inscribed circle 
of the first marker. The growing regions procedure derived 
from these two markers resulted in two areas precisely 
bounded by the FAZ, with an island of relatively darker 
tones around them. The aim of the present work was 
to demonstrate the reliability of this algorithm in the 
automatic segmentation of FAZ. In addition, we defined 
a descriptor for its characterization and classification in 
order to detect abnormality in macula image. For this 
task, we added a set of eye fundus images from diabetics 
to the database, and implemented a FAZ descriptor 
based on Hu’s moments. We established the distinction 
of non-diabetic or diabetic pattern (without retinopathy) 
after training performed by a classifier, highlighting 
extra-trees compared to tested k-nearest neighbourhood 
(KNN), random forests, support vector machines and 
neural networks.

Methods

Study population
We invited persons with type 1 diabetes at the 

hospital of the University of Campinas to participate in 
the study. The criteria for inclusion in the study were 
a history of sudden onset of severe hyperglycemia and 
weight loss, spontaneous sustained ketosis or ketonuria, 
age between 18 to 45 years, living with diabetes 
mellitus (to allow enough time for the development 
of diabetic retinal disease), and freedom from any 
other endocrine and metabolic disease, as well as non-
diabetic renal, liver and cardiac disease. In this study, we 
included 10 persons with diabetes for at least 10 years 
and without retinopathy, i.e., early treatment diabetic 
retinopathy study level 1 (Klein et al., 1984). This was 
confirmed by examination by indirect ophthalmoscopy 
and biomicroscopy. The exclusion criteria were 
pregnancy, high degree myopia, chorioretinitis scars, 
posterior uveitis, glaucoma, and previous ocular surgery, 
because such events may influence the development of 
diabetic retinopathy (Conrath et al., 2005). We invited 
10 staff members from the hospital of the University of 
Campinas to participate as control group, with a mean 
age of 30 years (range 25-35). All volunteers presented 
at the time of evaluation best corrected visual acuity 
of 20/20 in both eyes. Therefore, it is very likely that 

ischemic changes present in macular area were very 
mild. This was important because there is a strong 
correlation between visual acuity and macular ischemia 
(Samara  et  al., 2017). Our research was carried out 
in conformity with the tenets of the “Declaration of 
Helsinki” and approved by the local Ethics Committee 
(approval number 745/2011). The informed consent 
was obtained from participants prior to conducting the 
ophthalmic examination.

Image acquisition
We described the image acquisition in previous 

work (Faria  et  al., 2014). Briefly, we acquired retinal 
images using a Retinal Function Imager (RFI) that 
applies fundus illumination with predominantly green 
component to highlight blood vessels (Grinvald et al., 2004; 
Izhaky et al., 2009). We acquired each image using a 
20-degree aperture camera, focused on the fovea and with 
a resolution of 4.27 micron/pixel. After image recording, 
we can create “differential images” by dividing each single 
retinal image by the average of the entire series in order 
to extract the motion signal from the stationary retinal 
background. In the present work, four to five image series 
of 1024×1024 pixels per frame were used from each 
volunteer to get a capillary perfusion map (CPM) by RFI.

Automatic segmentation of foveal avascular zone
After acquisition of the retinal images via RFI, we 

can apply a sequence of image processing operators, 
based on dilation and erosion (Dougherty and Lotufo, 
2003; Silva  et  al., 2015). Dilation and erosion of 
a pixel (p) are, respectively, the maximum and the 
minimum intensities determined on its neighborhood. 
Morphological opening of p is achieved by erosion 
followed by dilation to eliminate small noises as narrow 
isthmuses or thin protrusions. In contrast, we can achieve 
morphological closing by dilation followed by erosion 
(dual of opening) to fill crevices in the borders, thus 
joining the adjacent regions. ASF consists in an iterative 
morphological openings and closings applied on an 
increasing neighborhood (disk-shaped in our case) for 
each p (Dougherty and Lotufo, 2003; Silva et al., 2015). 
These authors used ASF typically as a restoration procedure 
to eliminate noise and mixed granularity. In this work, 
we applied ASF to simplify the images, enhancing the 
separation of regions where the intensities are slightly 
greater compared to surrounding areas, i.e., with high 
probability of occurrence of FAZ. For segmentation, they 
applied ASFs for n iterations on a combined CPM series. 
Increasing disks around each pixel p for 1, 4, we can 
consider 10 iterations for analyses as shown in Figure 1.

Figure  2 shows each step of FAZ segmentation. 
Figure  2a represents the result of 10 ASF iterations 
from Figure 1a. Figure 2b represents the FAZ region 
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Figure 1. Example of n iterations of alternating sequential filtering (ASF) applied to a combined capillary perfusion map (CPM) series using 
disk-shaped neighborhood on each pixel p. (a) Original image after application of the CPM tool; (b) Only one iteration (n=1) of ASF on the previous 
image; (c) Four sequential iterations (n=4) of ASF on the same initial image generating a simpler image, but still several catchment basins remained; 
(d) More iterations (n=10) resulted in a very simple image with only one global minimum in the center.

Figure 2. Foveal avascular zone (FAZ) localization and segmentation. (a) Alternating sequential filtering (ASF) image (n=10); (b) 3D representation 
of topographical surface of this image in greyscale as a relief altitude; (c) Region determined from the global minima of the image in (b), used as 
automatic internal marker of FAZ; (d) Circle with 75% of the maximum inscribed circle radius, and contour of Figure 2c; (e) FAZ segmentation 
after watershed transform applied on the original capillary perfusion map (CPM) image of Figure 1a using connected components of Figure 2d as 
markers; (f) The segmentation border was drawn on the original CPM image.

by a 3D graph of Figure  2a with the intensity of a 
pixel representing an altitude on the topographic 
surface. The aim is to approximate the intensities of 
the darker regions of lower values or even to remove 
them, defining the global minima or regions completely 

surrounded by the other lighter regions (dark islands). 
The binary image generated in Figure  2c represents 
this lower region and works as a marker over the FAZ. 
FAZ segmentation was refined using the watershed 
transform (Silva et al., 2015), which corresponds to the 
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boundaries of adjacent catchment basins formed by the 
accumulation of water over regional minima or regions 
with markers. For automatic FAZ segmentation, we 
define inner and outer markers (seeds labeled as internal 
or external for growth of regions) as a binary image 
(Figure 2d) and we obtain the area between both limits 
(Figure 2e) by watershed transform. As a result, the 
automatic FAZ segmentation can be obtained (Figure 2f) 
from a combined CPM series of high-resolution retinal 
image. The segmentation obtained from the proposed 
algorithm achieved an accuracy of 99% compared to an 
average of three manual segmentations. We described 
details of this implementation in recent publication 
(Silva et al., 2015).

Automatic classification of retinal images
Next, we processed each FAZ segmented region for 

extraction of features. Specifically, Hu’s moments are 
interesting by the invariance to translation, rotation and 
scale. Seven invariant moments are described using the 
normalized central moments of second-order and third 
order (Hu, 1962). Firstly, an object represented by a 
binary digital image f(x,y) is considered. Then, f(x,y)=1 
is associated to a coordinate (x,y) belonging to the object 
and f(x,y)=0 to a background pixel (x and y are line and 
column values, respectively). Thus, x  and y  are the 
averages of the lines and columns, respectively, of all 
pixels belonging to the object, ( ),x y  is the centroid 
or mass center. We compute the spatial moments by 
Equation 1 and use Equation 2 to calculate the invariant 
central moments with respect to translations.

( ),i j
ij

x y
M x y f x y= ∑∑ 	 (1)

( ) ( ) ( ),p q
pq

x y
x x y y f x yµ = − −∑∑ 	 (2)

Invariants ηij with respect to both translation and 
scale can be defined from central moments (Equation 2) 
by dividing through a properly scaled zero-th central 
moment, according to Equation 3, considering i + j ≥ 2.
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Finally, Equations 4 to 10 describe the seven Hu’s 
moments, invariants with respect to translation, scale 
and rotation.
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We calculated and depicted these seven values for the 
FAZ region of non-diabetic and diabetic persons in the 
multidimensional space (up to seven dimensions) for machine 
training algorithms. After tests using several classifier 
algorithms, we chose extra-trees (Geurts et al., 2006) for 
presenting one of the best accuracies and area under the 
receiver operating characteristic (ROC) curve (according 
to Table 2). The idea is to use all of Hu’s moments to 
compose a descriptor in a multidimensional space and 
to automatically separate the samples into two classes. 
We evaluate the descriptor of an unclassified FAZ based 
on the determination of the smallest distances in relation 
to all points already labeled in this space. From the set 
of Hu’s moment invariants as descriptor, the classifier 
provides the automatic distinction of an unknown FAZ 
in two possible classes: non-diabetic and diabetic.

We partitioned the dataset randomly into kf mutually 
exclusive subsets (folds) that contained a representative 
number of each class. We retained of the kf parts, a single 
subset as the validation data for testing the model, and 
used the remaining kf -1 as training data. We expressed the 
evaluation statistics of the kf -fold-cross-validation results, 
with each of the kf subsets used exactly once as the validation 
data (Kohavi, 1995), as ‘mean’ ± ‘standard deviation’. 
In other words, we obtained a single estimation from the 
average and standard deviation of kf results for each subject 
(non-diabetic or diabetic). We adopted two values for 
kf: kf =38 (total of samples) or leave-one-out-validation, 
and kf =5 or 5-fold-cross-validation.

Results

We chose for the automatic classification 38 images 
from all the 20 individuals. We calculated Hu’s 
moment invariants from 10 non-diabetic (20 images) 
and 10 diabetic (18 images) volunteers for all pixels 
of FAZ region and alternatively for pixels belonging 
only to the contour of FAZ region. We estimated the 
quality of the detection of abnormality in the FAZ 
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through the accuracy (sum of true positive and true 
negative, divided by the sum of true positive, true 
negative, false positive and false negative classifications) 
from leave-one-out and 5-fold-cross-validation. We 
also considered the area under the ROC curve (AUC) 
from 5-fold-cross-validation. In addition, we took into 
account the results of the multidimensional classifier 
expressed as the average and standard deviation for 
each volunteer (non-diabetic or diabetic).

Tables 1 and 2 show the performance of the tested 
classifiers at detecting the abnormality of each FAZ 
segmentation. We compared the following classifiers: 
k-nearest neighbourhood (Shakhnarovich et al., 2006) 
with two odd values of parameter k, random forests 
(Breiman, 2001), extra-trees (Geurts  et  al., 2006), 
linear support vector machines (Wu  et  al., 2004), 

and multi-layer perceptron neural network (MLP) 
(Kingma and Ba, 2015). We used all seven moments 
of Hu as descriptor in Table 1. In Table 2, we use 
only the moments I2, I4, and I7 because they are the 
most representative to serve as descriptor, reaching 
the best accuracy from all combinations of reduction 
of the moment invariants. We obtained the most 
outstanding set of results with extra-trees, in which 
the automatic classification of a new fundus image 
classification was correct with about 81% accuracy 
(using both leave-one-out and 5-fold-cross validations) 
and 89% AUC, considering only moments I2, I4 and I7 
as descriptors of FAZ contours (Figure 3). This result 
is quite significant considering the relatively small 
number of segmented images in the database and the 
great difficulty of distinguishing such classes even 
by an expert.

Table 1. Accuracy and area under the receiver operating characteristic curve (AUC) of multidimensional classifiers for automatic identification of 
the type of subject (non-diabetic or diabetic), using all seven moments of Hu as descriptor of the segmented regions of each foveal avascular zone 
or contours of these regions. In this table, k is the number of nearest neighbors of k-nearest neighborhood (KNN) algorithm. MLP is the multi-layer 
perceptron neural network. SVM means support vector machine network. The best results by type of experiment and validation are highlighted in bold.

Classifier

Region Contour

Accuracy
leave-one-out 

validation

Accuracy
5-fold-cross 
validation

AUC
5-fold-cross 
validation

Accuracy
leave-one-out 

validation

Accuracy
5-fold-cross 
validation

AUC
5-fold-cross 
validation

KNN
k=3 0.7105 ± 0.4535 0.7500 ± 0.2140 0.7708 ± 0.2266 0.7368 ± 0.4403 0.7143 ± 0.2210 0.7500 ± 0.2539

KNN
k=7 0.7632 ± 0.4251 0.7750 ± 0.2335 0.7812 ± 0.2381 0.6053 ± 0.4888 0.5321 ± 0.2028 0.6854 ± 0.2763

Random 
Forests 0.6842 ± 0.4648 0.7821 ± 0.1457 0.7500 ± 0.1630 0.6842 ± 0.4648 0.6821 ± 0.1329 0.6667 ± 0.1878

Extra-Trees 0.7105 ± 0.4535 0.7286 ± 0.1575 0.6708 ± 0.2245 0.8421 ± 0.3646 0.6000 ± 0.1305 0.8646 ± 0.1385
SVM (Linear) 0.5263 ± 0.4993 0.5286 ± 0.0350 0.7583 ± 0.2614 0.6579 ± 0.4744 0.6821 ± 0.1843 0.6500 ± 0.2643

Neural 
Network 
(MLP)

0.7895 ± 0.4077 0.7250 ± 0.2050 0.7583 ± 0.2614 0.6842 ± 0.4648 0.6536 ± 0.2275 0.6542 ± 0.3032

Table 2. Accuracy and area under the receiver operating characteristic curve (AUC) of multidimensional classifiers for automatic identification of 
the type of subject (non-diabetic or diabetic), using moments I2, I4 and I7 as descriptor of the segmented regions of each foveal avascular zone or 
contours of these regions. The best result by type of experiment and validation is highlighted in bold. In this table, k is the number of nearest neighbors 
of k-nearest neighborhood (KNN) algorithm. MLP is the multi-layer perceptron neural network. SVM means support vector machine network.

Classifier

Region Contour

Accuracy
leave-one-out 

validation

Accuracy
5-fold-cross 
validation

AUC
5-fold-cross 
validation

Accuracy
leave-one-out 

validation

Accuracy
5-fold-cross 
validation

AUC
5-fold-cross 
validation

KNN
k=3 0.6316 ± 0.4824 0.6786 ± 0.1179 0.7125 ± 0.1503 0.7368 ± 0.4403 0.6321 ± 0.0915 0.8562 ± 0.1420

KNN
k=7 0.7632 ± 0.4251 0.7536 ± 0.1684 0.7812 ± 0.2320 0.7105 ± 0.4535 0.6964 ± 0.2292 0.7604 ± 0.2133

Random 
Forests 0.7895 ± 0.4077 0.7821 ± 0.1457 0.8042 ± 0.1488 0.7895 ± 0.4077 0.7607 ± 0.1339 0.8021 ± 0.1461

Extra-Trees 0.7105 ± 0.4535 0.8107 ± 0.1436 0.8042 ± 0.1814 0.8158 ± 0.3877 0.8143 ± 0.1449 0.8874 ± 0.1098
SVM (Linear) 0.6316 ± 0.4824 0.6786 ± 0.1179 0.7125 ± 0.1503 0.7368 ± 0.4403 0.7143 ± 0.2210 0.7750 ± 0.1705

Neural 
Network 
(MLP)

0.7632 ± 0.4251 0.7536 ± 0.1684 0.7812 ± 0.2320 0.7105 ± 0.4535 0.6500 ± 0.1526 0.7688 ± 0.1672



Predicting macular dysfunction 349Res. Biomed. Eng. 2017 December; 33(4): 344-351

Discussion

There are few works found in the literature on retina 
classification in diabetes based on FAZ shape analysis. 
According to Table 3, all related studies (Alipour et al., 2012; 
Ballerini, 1999a; 1999b; Hani et al., 2010) used subjects 
with diabetic retinopathy. Alipour  et  al. (2012) and 
Ballerini (1999a; 1999b) used images obtained by an 
invasive method of contrast injection. In relation to 
the segmentation, selections of initial point or image 
cropping were carried out in some cases (Ballerini, 1999a; 
1999b; Hani et al., 2010). Area (Alipour et al., 2012; 
Hani et al., 2010) or distinct formulation of moments 
(Ballerini, 1999a; 1999b) were used as features of each 

FAZ. As there is no similarity in the image databases 
used, it is not possible to compare the results objectively. 
However, we added notes about validation in the last 
column of Table 3.

In this study, we propose a new method for automatic 
FAZ classification using the CPM tool of an RFI apparatus 
based on an algorithm of morphological operator. Using 
a high-resolution retinal image CPM tool, we initiated 
the segmentation with ASF, followed by the definition 
of global minima and watershed, thus generating a 
simpler image. This process enabled us to automatically 
determine the statistics of each FAZ. The algorithm 
applied in this technology is able to automatically 
identify correctly in 81% of the cases whether a certain 
FAZ is or is not abnormal, with confirmation of the 
diagnosis of diabetes from the clinical chart. To the best 
of our knowledge, the main contributions of this work 
are: simple and direct automatic segmentation of FAZ 
without vessel identification, initial selection of point 
or cropping of image; use of a subset of Hu’s moment 
invariants as descriptor and multiple classifiers (especially 
extra-trees) that allowed satisfactory results (>70%) in 
almost all tests. The proposed technique may be useful 
in the early prognosis of retinopathy, and may signal de 
need of ophtalmological care by telemedicine systems, 
especially in regions with insufficient medical care.

Overall, in this paper, we described a novel 
computational algorithm to automatically evaluate the 
retina macular region. Future works can be conducted 
with a larger diabetic population to improve the training 
database of this work. The predictive results of this 

Table 3. Comparison of related works found in the literature for retina classification, with or without diabetic retinopathy (DR), based on foveal 
avascular zone (FAZ) segmentation, characterization and classification.

Work Image source Segmentation Features Classifier Validation notes

(H
an

i e
t a

l.,
 

20
10

) Color fundus imaging, 315 
images, subjects with DR

Center is chosen to crop 
the FAZ (600x600 pixels), 
Otsu’s thresholding, end 
points of vessels

Area Gaussian Bayes Not applicable 
(only for DR grading)

(A
lip

ou
r e

t a
l.,

 
20

12
) Color fundus imaging and 

fluorescein angiography, 
45 non-diabetics and 30 
diabetics with DR

Digital Curvelet 
Transform, optic disc 
localization, end points of 
vessels around FAZ

Area and 
variance

Linear 
regression

Accuracy is not mentioned.
Specificity of 86% for 
distinguishing normal and 
abnormal

(B
al

le
rin

i, 
19

99
a;

 1
99

9b
)

SLO (25 fps), injection 
of a bolus of fluorescein, 
512x512, 14 non-diabetics 
and 12 diabetics with DR

Center is chosen to crop 
the FAZ, active contours, 
genetic optimization

Central 
moments 
(Equation 2)

Back-propagation 
neural networks

Accuracy of 84.6% (region 
moments), and 92.3% 
(boundary moments) 
using leave-one-out for 
distinguishing diabetic and 
non-diabetic

Pr
op

os
ed

HFI (no need for contrast 
injection), 1024x1024, 10 
non-diabetics (20 images) 
and 10 diabetics (18 
images) without DR

Fully automatic FAZ 
segmentation,
morphology filtering, 
watershed

Hu’s moment 
invariants
(Equations 
4 to 10)

Extra-trees 
(and others)

Accuracy of 81,6% 
(leave-one-out) and
81,4% (5-fold-cross), and 
AUC of 88,7% for distinguish 
diabetic and non-diabetic

Figure 3. Receiver operating characteristic with area under the curve 
(AUC) of 0.89±0.11 from extra-trees classifier for 5-fold-cross-validation, 
using moments I2, I4 and I7 as descriptor of each automatically segmented 
foveal avascular zone (FAZ) contour.
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algorithm can also be applied to track the progression 
of retinopathy in diabetic patients.
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