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Introduction
In spite of their simplicity, phenomenological 

models of spiking neurons have proved particularly 
useful in elucidating the dynamics of single neurons, 
as well as their role within large-scale neural networks. 
For instance, it was found that integrate-and-fire models 
with adaptation could predict the response of cortical 
neurons to somatically injected currents with high 
accuracy in spike timing (Brette and Gerstner, 2005; 
Jolivet et al., 2004; Kobayashi et al., 2009). An innovative 
alternative known as Neuroid (Prada et al., 2012) was 
introduced at the 34th International Annual Conference of 
the IEEE Engineering in Medicine and Biology Society 

(EMBC’12). Since then, this neuron-model has been 
utilized to aid in understanding how functionally different 
neural populations (e.g., low-threshold vs. high-threshold 
afferent fibers; normally silent vs. tonically active neurons) 
interact each other and how those differences affect the 
way that visual (Prada et al., 2013) and tactile (Prada 
and Bustillos, 2013; Prada et al., 2015) information is 
processed.

The Neuroid is, indeed, one of the simplest neuron‑models 
that have ever been conceived. It was built under the 
assumption that some neurons, under certain conditions, 
fire at regular rates when stimulation amplitude is held 
constant. The similarities between the action potential 
generation process and pulse frequency modulation (PFM) 
that have been pointed out by several authors (Bayly, 
1968; Horch and Dhillon, 2004; Rieke et al., 1997) were 
also considered in building this neuron-model. It relies on 
a pair of heuristics that make possible to generate a spike 
train whose frequency is modulated by the amplitude 
of the stimulus (even though is widely known that the 
neuron firing rate may be affected by other factors, like 
the sub-threshold dynamics) and to demodulate the 
spike train in order to recover the modulating signal. 
But the real novelty of the Neuroid lies on what kind 
of experimental data is used to model different neural 
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populations. Instead of ionic conductances, equilibrium 
potentials and/or electrical membrane properties, the 
firing rate as a function of the stimulus intensity is the 
only requirement to build a Neuroid-based replica of the 
neuron under study. Essentially, the goal is to adjust the 
Neuroid’s parameters such that its frequency-intensity 
(F-I) curve resembles as much as possible the one that 
was built from experimental data. This novel approach, 
although simple in concept and application, may be little 
confusing for those who have already dealt with the 

issues involved in using conductance-based 
neuron‑models. Likewise, insights about whether this 
neuron-model could perform better than others or about 
when its utilization should be considered have not been 
provided so far.

Coordinated rhythmicity of neural populations may 
arise from the interaction of three aspects: the intrinsic 
properties of the cells composing the network, the 
synaptic properties of connections between neurons, 
and the topology of the network (Ermentrout and 
Terman, 2010). Specifically, the rhythm with which 
vertebrates and invertebrates walk, fly or swim, as well as 
communication based in stereotypically repeated visual 
or sound signals (e.g., the cricket song), is mostly driven 
by oscillatory patterns produced by neural networks of 
the central nervous system (Delcomyn, 1980). In order 
to study the mechanisms underlying this oscillatory 
activity, several authors (Friesen and Stent, 1977; Kling 
and Székely, 1968; Koch and Brunner, 1988) have 
used artificial neurons, also known as “neuromimes”, 
built from elementary electronic components and able 
to provide a biologically plausible description of the 
neuron’s membrane. Nevertheless, it is unclear whether 
that activity is due to one of the above aspects, or to 
their combined action. Moreover, it is unknown whether 
oscillatory patterns produced by low-scale networks 
composed of highly detailed neuron-models can be 
replicated by Neuroid-based replicas of those networks.

In this sense, the present study aims: 1) to study 
how different sizes of time step affect the accuracy 
of the Neuroid, 2) to compare its performance to the 
exhibited by the leaky-integrate-and-fire (LIF) model 
in terms of accuracy and computational cost, and 3) to 
assess the feasibility in using Neuroid-based networks 
to replicate biologically relevant firing patterns produced 
by low-scale networks composed of much more detailed 
neuron-models.

Methods

Theoretical background
It is widely accepted that stimulus information (e.g., 

the intensity) is encoded not in the magnitude of a single 
spike but in the number of spikes fired per unit time 

(firing rate). With that in mind, we think it would be 
appropriate to provide a mathematical representation of 
neural spike trains rather than investing time and effort 
in describing the action potential as an isolated event, 
as brilliantly done by Hodgkin and Huxley (Hodgkin 
and Huxley, 1952). Let us consider the triggering event 
s(t) given by:
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where x1, x2, …, xM are M normalized input signals and 
w1, w2, …, wM are their respective synaptic weights. 
Then, based on the fact that, under specific conditions, 
some neurons can fire at a regular rate when the stimulus 
amplitude remains constant, the signal travelling along 
the neuron’s axon y(t) can be modeled as:
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where δ(∙) represents a single spike, T denotes a 
constant with time units (necessary for dimensional 
consistency), ϑ is the relative threshold intensity and 
β is a proportionality constant that controls the slope 
of the Neuroid’s (F-I) curve. The Neuroid is also able 
to yield an amplitude-discrete version of s(t), named 
nt_out(t), by adjusting two additional parameters: Kr, 
a dimensionless constant which controls the output’s 
amplitude, and maxcount, a temporal parameter which 
allows to extend the output signal by several milliseconds 
after the last spike (Prada et al., 2012).

Even though it is not evident from the present 
study, each parameter of the Neuroid is inspired by a 
biological property of real neurons. For instance, the 
term ϑ represents the minimum stimulus intensity at 
which the neuron fires, at least, one action potential, and 
it has been defined in this way in order to be consistent 
with different stimulus types (thermal, mechanical, etc). 
The parameter β is associated to the potassium current 
flowing through the membrane, so the greater its value, 
the lower the slope of the F-I curve (Alberts et al., 2002; 
Koch and Brunner, 1988). The term maxcount denotes 
the time during which the neurotransmitter concentration 
is such that it has a synaptic effect in the cleft (Scimemi 
and Beato, 2009). Finally, although the parameter 
Kr does not have an obvious biological counterpart, its 
value depends on the firing frequency at the maximum 
amplitude of stimulation, which is calculated from the 
experimental F-I curve.

To avoid the division by zero in Equation 1, it was 
arranged that spike trains were generated only if the 
amplitude of the triggering input signal s(t) exceeds the 
threshold intensity ϑ. However, this is not consistent 
with experimental observations, which underline that 
spikes are produced not only when neuron’s membrane 
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potential exceeds threshold, but also when the former 
reaches the latter (Matzner and Devor, 1992). To address 
this issue, the heuristic able to produce the signal y(t) 
(the Pulse Frequency Modulator in (Prada et al., 2012) 
was modified such that the case in which the membrane 
potential reaches threshold was considered. Figure 1 
shows a flowchart describing the new heuristic.

The accuracy of a neuron-model describes how reliable 
is the model in representing the behavior of biological 
neurons, in terms of the temporal resolution with which 
neural spikes can be produced (from miliseconds to 
fractions of miliseconds). Since simulating spiking 
neuron-models involves repeatedly solving the associated 
system of differential equations using analytical or 
numerical integration methods, the accuracy provided by 
such models may depends on, amongst other factors, the 
numerical method used to solve the system and the size 
of the time step Δt, an aspect that has not been explicitly 
mentioned and whose influence has not been studied in 
previous implementations of our neuron-model.

Modeling approach
For each I ∈ [Imin, Imax], where Imin and Imax denote, 

respectively, the minimum and the maximum amplitudes 
of stimulation, there is an x ∈ [0, 1] given by:
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which represents one of the multiple inputs that may 
contribute to create the triggering event s(t), as expressed 
in Equation 1. As can be seen from Figure 1, if s(t) > ϑ, 
a spike is fired whenever the variable count1 reaches 
the smallest integer greater than or equal to the quantity 

( )( )
β
+ ϑ ∆s t t

. Thus, the interspike interval (ISI) of the 

spike train yielded by the Neuroid for a given s(t), can 
be calculated by using Equation 4:

( )/ 1 , = β ∆ + ∆  ISI s t t t 	 (4)

where the operator ⋅   denotes the ceiling function, which 
is defined as follows:
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where r is a real number.
From Equation 5, it is clear that for all real number 

r we have:

. ≥  r r 	 (6)

Therefore, from Equations 4 and 6, the value of the 
parameter β can be expressed as:

( )1  .  β ≤ − ∆ ∆ 
ISI s t t

t
	 (7)

Figure 1. A novel heuristic, which, unlike the one originally proposed by Prada et al. (2012), considers the case in which membrane potential 
reaches threshold.
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Typically, the firing rate (f) of a single neuron is 
calculated by using Equation 8:

 , =
−
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last first

N
f

t t
	 (8)

where Nspikes is the total number of spikes fired within the 
observation period while tfirst and tlast are, respectively, 
the instants at which the first and the last spike occur.

Interestingly, Equation 8 can be rewritten as:
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where ISIavg represents the average interspike interval, 
which can be approximated to ISI when the neuron fires 
at a regular rate.

Finally, by identifying the firing rate of the neuron 
under study at the maximum amplitude of stimulation 
(fI_max), the interspike interval at that amplitude (ISII_max) 
is given by:
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which in turn allows us to rewrite Equation 7 to calculate 
the value of β required to model that neuron (note that 
s(t) = 1 at the maximum amplitude of stimulation):
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Evaluating the Neuroid’s performance: firing 
pattern and F-I curve

To evaluate the performance of a neuron-model, 
a benchmark solution (i.e., another model capable of 
providing a fairly good representation of neuronal 
behavior) is required. In our case, the benchmark solution 
was built by implementing the LIF model (Jolivet et al., 
2004), which is commonly described by Equation 12:

( ) ( ) ( ) ( ) ( ),     τ = − + ≥ →m rest m th r
dV t

E V t R I t if V t V thenV t V
dt

	(12)

where V(t) is the membrane potential, I(t) is the input 
current, Erest is the resting membrane potential, Vth is the 
firing threshold, Vr is the after-spike membrane potential, 
Rm is the membrane resistance and τm is the membrane time 
constant. The LIF model was chosen as the benchmark 
solution because it has only a small number of parameters 
and it is one of the most computationally efficient spiking 
neuron-models, as reported in previous work (Long and 
Fang, 2010; Skocik and Long, 2014). In order to compute 
the parameters required to build a Neuroid-based replica 
of this “neuron”, Equation 12 was numerically solved 
by adopting the fourth-order Runge‑Kutta method 
(RK4) with a time step Δt = 10-4 ms. The benchmark 
solution was implemented under MatLab 2013a using 

Erest = 0 mV, Vth = 30 mV, Vr = -50 mV, Vspike = 70 mV, 
Rm = 8.22 MΩ, τm = 23.5 ms, and its F-I curve was built 
by increasing the amplitude of a rectangular current 
pulse I(t) applied during 1000  ms (the total time of 
run of each trial, denoted as tspan), from 0 to 20 nA 
(increments of 0.1 nA). The frequency was calculated 
by using Equation 8.

Once the F-I curve of the benchmark solution was built, 
the threshold intensity (Ith = 3.7 nA) and the firing rate at 
the maximum amplitude of stimulation (fI_max = 92.11 Hz) 
were identified. Then, to build a Neuroid-based replica 
of that “neuron”, we found β from Equation 11 whereas 
ϑ was calculated by using Equation 13:
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where Ith is the threshold intensity.
Both the Neuroid (Δt = 10-4 ms) and the benchmark 

solution were run in MatLab 2013a for I = 3.7 nA (the 
threshold intensity) and I = 6 nA to compare their firing 
patterns at this two stimulation amplitudes. The same 
method used to calculate the firing rate of the LIF model, 
was used to calculate the firing rate achieved by the 
Neuroid. With time steps ranging from 10-4 to 1 ms, 
the F-I curve of the Neuroid was compared to the one 
previously built for the benchmark solution.

Accuracy and computational cost
Several methods have been used recently to evaluate 

the accuracy of a neuron-model. Wang and coworkers 
(Wang et al., 2014) totalized the number of false negatives 
(missed spikes) and false positives (additional or accidental 
spikes) with respect to the spike train generated by the 
HH neuron-model solved by the RK4 method, and then 
they divided each total by the number of matched spikes 
pairs to obtain two different indicators of accuracy. 
Skocik and Long (2014) estimated the accuracy of the 
LIF model, the HH model and the Izhikevich’s model 
(Izhikevich, 2003) by quantifying the absolute difference 
between the frequency of the model being tested (fmodel) 
and the frequency of its respective benchmark solution 
(fBM), which was taken to be the solution provided by 
the RK4 method with a time step of 10-4 ms, and then 
dividing the difference by the latter, as expressed in 
Equation 14:

( )  % 100. 
−

= ×model BM

BM

f f
Frequency Error

f
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Such estimation was performed for three different 
frequency values (70, 90 and 120 Hz), which were 
considered as falling into the low-, medium-, and 
high‑frequency range. Since these ranges may vary 
between different neuronal populations, we estimated 
the accuracy of the Neuroid by calculating the frequency 
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error defined by Skocik and Long (2014), except 
that this time the estimation was performed for three 
different stimulation amplitudes, taking into account 
the relative location of these amplitudes with respect 
to the dynamic range of the benchmark solution (i.e., 
the range of amplitudes for which it is able to fire, from 
Ith to Imax). Thus, three values were chosen: one slightly 
greater than the threshold intensity (I = 5 nA), one at 
the middle of the dynamic range (I = 12 nA), and one 
close to the maximum stimulation amplitude (I = 19 nA). 
For each, with a total time of run tspan = 1000 ms and with 
time steps ranging from 10-4 to 1 ms, we quantified the 
frequency error produced by both the Neuroid and the 
LIF model solved by the Forward Euler (FE) method.

The interest in calculating the computational cost 
of a neuron-model arises from the assumption that the 
less computational power is required to simulate a single 
neuron, the easier it is to implement it into a large-scale 
neural network. According to several authors (Izhikevich, 
2004; Long and Fang, 2010; Skocik and Long, 2014), a 
good indicator of how fast a neuron-model will perform 
its calculations is the number of floating point operations 
(FLOPs) required by the model. For a given time of run 
(tspan), the total of FLOPs required by a neuron-model 
can be estimated as follows:

( )( ) # # , =Total FLOPs FLOPs iterations 	 (15)

where #FLOPs denotes the number of FLOPs per 
iteration and #iterations represents the total number of 
iterations for the given time of run:

# . =
∆
spant

iterations
t
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The number of FLOPs per iteration depends mostly 
on the method used to determine if a spike can or cannot 
be fired. For instance, when the FE method is used to 
solve the LIF model (see Equation 12), the membrane 
potential is updated as follows:
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which takes only 5 FLOPs by assuming that addition, 
multiplication, subtraction and division costs only one 
FLOP each, as done in previous studies (Izhikevich, 
2004; Long and Fang, 2010; Skocik and Long, 2014). 
However, from Figure 1, it can be seen that, depending 
on whether the triggering input signal s(t) is less than, 
equal to or greater than the relative threshold intensity 
ϑ, the number of FLOPs per iteration may vary, as 
expressed in Equation 18:
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This suggests that the total of FLOPs required 
by the Neuroid for a given time of run may decrease 
1) when no stimulus is present, and 2) when firing rate 
increases. To test this hypothesis, we run both the Neuroid 
and the LIF model solved by the FE method under 
Dev-C++ 4.9.9.2, an integrated development environment 
for the C/C++ programming language, with time steps 
ranging from 10-4 to 1 ms. We used the FE method instead 
of the RK4 method because, even though the former is 
not the most accurate, it is one of the simplest numerical 
methods (Skocik and Long, 2014), which allowed us to 
perform a much more fair comparison. Wang et al. (2014) 
introduced a generalized exponential moving average 
method to solve a modified version of the LIF model. 
Such method required a computation time lower than the 
required by the original LIF model and the HH model 
when they were solved by adopting the RK4 method. 
On the other hand, the utilization of the RK4 method for 
benchmarking clearly favored the method proposed by 
the group of Wang because the former is computationally 
expensive. Instead, we used a numerical method more 
affordable from a computational point of view in order 
to make a more fair comparison. The C++ programming 
language was used in calculating the computation time 
required by the Neuroid and the LIF model because it is 
possible to speed-up simulations up to several hundreds 
of times compared to MatLab (Andrews, 2012).

With time steps ranging from 10-4 to 1 ms, the LIF 
model and the Neuroid were run for three different 
simulation amplitudes (I = 5, 12 and 19 nA) and for three 
different stimulation periods (T = 200, 500 and 800 ms). 
The computation time required by each model was measured 
by using the QueryPerformanceCounter() function, 
and measurements were averaged over 10 repetitions. 
A  factorial design was adopted by considering the 
neuron‑model (LIF and Neuroid), the time step size, 
the stimulus amplitude and the stimulation duration as 
factors, each with 2, 5, 3 and 3 possible values or levels, 
respectively. Even though the analysis of the effects of 
interactions between factors on the computation time 
achieved by each model is beyond the scope of the present 
study, a multi-factor analysis of variance (ANOVA) was 
used to identify significant effects of each factor on the 
computation time (Montgomery, 2017). Values of p < 0.05 
were considered statistically significant. Microsoft Excel 
2010 (Microsoft Corporation, USA) and STATGRAPHICS 
Centurion XVI.I (version 16.1.18, Statistical Graphics 
Corporation) and Minitab 18 (ver 18.1, Minitab, Inc.) 
were used to perform the analysis.

Low-scale neural networks
To assess whether Neuroid-based networks are able 

to preserve oscillatory patterns produced by networks 
composed of those artificial units, we replicated the 
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topology of the three-neuron oscillator and the “cricket 
song generator”, previously built by Koch and Brunner 
(1988) to test the neuron-model they developed. 
Neuroid‑based replicas of the neurons modeled by 
Koch and Brunner were implemented under MatLab 
2013a using ϑ = 0.2, β = 2.5, Kr = 3, maxcount = 24 and 
Δt = 0.1 ms for the three-neuron oscillator, and ϑ = 0.2, 
β = 2.5, Kr = 3, maxcount = 24 and Δt = 0.1 ms for the 
“cricket song generator”. As done in previous studies 
(Prada and Bustillos, 2013; Prada et al., 2012; 2013; 
2015), synaptic coupling factors were taken to be equal 
to 1 or -1 in order to simulate, respectively, postsynaptic 
facilitation or inhibition. However, in the “cricket 
song generator”, neuron 4 strongly activates neuron 5, 
which in turn strongly inhibits neuron 1 (see section 
3.2.4 in (Koch and Brunner, 1988)), so we empirically 
increased the coupling factors between these two pairs 
of neurons until the firing patterns of our Neuroid-based 
replica were as similar as possible to those obtained by 
Koch and Brunner. An Acer TravelMate B113, with an 
Intel Core i3-3217U and 4 GB of memory, was used to 
perform all simulations.

Results

The Neuroid can now fire at the threshold 
intensity

As shown in Figure 2, the Neuroid fired one single 
spike when the stimulation amplitude reached the 
threshold intensity (I = 3.7 nA), while the benchmark 
solution fired several spikes for the same stimulus. Both 
neuron-models showed a tonic response for I = 6 nA 

and the total number of spikes produced by them were 
very similar.

The accuracy of the Neuroid improved when a 
time step of 10-2 ms or lower was used

A comparison of the F-I curves for the Neuroid and 
the benchmark solution is shown in Figure 3. With a time 
step of 1 ms, discrepancies were observed between the 
responses produced by the Neuroid and the benchmark 
solution over the whole range of stimulation amplitudes. 
On the other hand, with a time step of 10-2  ms, the 
response of the Neuroid was in good agreement with that 
provided by the benchmark solution, except for a short 
range of amplitudes slightly greater than the threshold 
intensity (from 3.7 to 7 nA). It is worth noting that, as 
with many neuron-models, the firing frequency calculated 
by the Neuroid “jumped” to a non-zero value instead 
of increasing continuously at the threshold intensity. 
In fact, at this value, the Neuroid yielded f = 0 Hz and 
only for stimulation amplitudes greater than threshold 
our neuron-model yielded non-zero frequency values. 
This is because, to calculate the firing frequency, at 
least two spikes were required (see Methods). Since 
at the threshold intensity, only one spike was fired, 
the condition was not fulfilled and the frequency was 
taken to be zero.

As it can be seen from Table 1, the Neuroid produced 
a firing frequency that approximates the one produced 
by the benchmark solution with an error less than 1%, 
using a time step less than or equal to 10-2 ms, except 
for I = 5 nA. Better results were obtained for the whole 
range of stimulation amplitudes by using the LIF model 
solved by adopting the FE method with a time step less 
than or equal to 10-1 ms.

Figure 2. The firing pattern of the Neuroid (Δt = 10-4 ms) and the benchmark solution (the LIF model solved by the fourth order Runge-Kutta method 
with Δt = 10-4 ms) for two different stimulation amplitudes: 3.7 nA (threshold intensity) and 6 nA. (a) When the stimulation amplitude reached 
threshold, the Neuroid (blue dotted line) fired only one spike, while the benchmark solution (red solid line) fired several spikes. (b) For I = 6 nA 
both models showed a tonic response, although the Neuroid added one more spike to the total produced by the benchmark solution.
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The neuroid is significantly faster than the LIF 
model solved by the FE method

From Figure 4 and Table 2, it can be seen that the 
mean computation time required by the Neuroid was 
significantly lower (Multifactorial ANOVA, p < 0.05) 
than the required by the LIF model when it was solved 
by using one of the simplest methods for approximating 
solutions to differential equations (i.e., the FE method). 
On the other hand, no significant differences were 
found in the computation time achieved by each model 
when different stimulation amplitudes and different 
stimulation periods were used (see Table 3).

Figure 5 shows, in the form of a Pareto chart, the 
absolute values of the standardized effects of each 
factor and all their possible combinations on the 
computation time required to calculate several hundreds 
of milliseconds of neural response. As can be seen, 
only the model (A) has a significantly and markedly 
effect on the computation time.

Neuroid-based networks can replicate the 
firing patterns produced by short-scale 
networks composed of more detailed units

Figures  6  and  7 show, respectively, the firing 
patterns produced by Neuroid-based replicas of both a 
three‑neuron oscillator and the “cricket song generator”. 

Figure 3. A comparison between the F-I curve of the Neuroid (blue dotted line) for two different time steps and the F-I curve of the benchmark 
solution (red solid line). (a) When a time step of 1 ms was used, the Neuroid showed a poor agreement with the benchmark solution. (b) When a 
time step of 10-2 ms (or lower) was used, the Neuroid showed a good agreement with the benchmark solution, except for a short range of amplitudes 
slightly greater than the threshold intensity.

Table 1. Frequency errors for the LIF model (solved by the Forward Euler method) and the Neuroid at three different stimulation amplitudes 
(I = 5, 12 and 19 nA) with time steps ranging from 10-4 to 1 ms. Values are expressed in percentages.

Time step Δt 
(ms)

Stimulation amplitude (nA)

5 12 19

LIF Neuroid LIF Neuroid LIF Neuroid
100 0.94 9.16 0.84 9.09 3.80 11.10
10-1 0.14 11.65 0.25 1.34 0.51 1.36
10-2 0.00 11.89 0.02 0.78 0.01 0.26
10-3 0.00 11.94 0.00 0.73 0.01 0.11
10-4 0.00 11.94 0.02 0.73 0.00 0.10

Table 2. Summary of multiple range tests for computation time (the response 
variable) by model. A multiple comparison procedure (the Fisher’s least 
significant difference (LSD) procedure) was applied to determine which 
means are significantly different from which others. The bottom half of 
the table shows the estimated difference between means. An asterisk has 
been placed next to the pair showing a statistically significant difference at 
the 95% confidence level (LIF: leaky-integrate-and-fire; NEU: Neuroid).

Models Count LS Mean LS 
Sigma

Homogeneous
groups

NEU 450 31.4092 1.50113 X
LIF 450 420.689 1.50113 X

Contrast Sig. Difference +/- Limits
LIF - NEU * 389.28 4.16085
*This pair shows significant differences at the 95% confidence level.
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In general, results are in good agreement with those 
obtained by earlier studies, in which more detailed 
neuron-models were used (Friesen and Stent, 1977; 
Kling and Székely, 1968; Koch and Brunner, 1988). 
Different oscillation frequencies can be achieved by the 
Neuroid-based replica of the three neuron oscillator by 
varying the stimulation amplitude (see Figure 6b), and 
the order in which neurons start firing is also preserved 
(N3 → N2 → N1 → N3). Although the Neuroid-based 
replica of the “cricket song generator” required a transition 
period of more than 400 ms in order to produce a firing 
pattern consistent with previous results (see Figure 7b), 
Neuroids 2, 3 and 4 start firing shortly after the second 
spike of the previous unit occurs, and the burst of spikes 

generated by N5 produces a long-term pause in N1, in 
consistency with previous results (see Figure 10 in Koch 
and Brunner, 1988).

Discussion

Figure 2a shows that, unlike the benchmark solution, 
the Neuroid was able to fire a single spike when the 
stimulus amplitude reached the threshold intensity 
(I = 3.7 nA), which is consistent with the differences 

Table 3. Least-Squares Means for computation time with 95% confidence interval. Means, standard errors, lower and upper limits are expressed 
in milliseconds. An asterisk has been placed next to the factor showing a statistically significant difference between means at the 95% confidence 
level (LIF: leaky-integrate-and-fire; NEU: Neuroid).

Level Count Mean Std. error Lower limit Upper limit
Grand mean 900 226.049

Model*
LIF 450 420.689 1.50113 417.747 423.632

NEU 450 31.4092 1.50113 28.467 34.3513
Time step (ms)*

0.0001 180 974.001 2.37349 969.349 978.653
0.001 180 133.477 2.37349 128.825 138.129
0.01 180 19.5924 2.37349 14.9405 24.2444
0.1 180 2.59033 2.37349 -2.06164 7.2423
1 180 0.58583 2.37349 -4.06614 5.2378

Stimulation period (ms)
200 300 236.824 1.8385 233.221 240.427
500 300 220.859 1.8385 217.256 224.463
800 300 220.465 1.8385 216.861 224.068

Stimulation amplitude (nA)
5 300 203.933 1.8385 200.33 207.536
12 300 205.758 1.8385 202.154 209.361
19 300 268.457 1.8385 264.854 272.061

*This factor shows significant differences at the 95% confidence level.

Figure 4. Least-Squares means of the computation times achieved by 
the LIF model (FE method) and the Neuroid. Both models were run for 
three different simulation amplitudes (I = 5, 12 and 19 nA) and for three 
different stimulation periods (T = 200, 500 and 800 ms), with time steps 
ranging from 10-4 to 1 ms.

Figure 5. Absolute values of the standardized effects of each factor and 
all their possible combinations on the computation time. Only the model 
(A) has a significative and markedly effect on the computation time 
required to calculate several hundreds of milliseconds of neural response.
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between the conditions required for the propagation of 
single spikes and those required for spike train generation 
(when sustained depolarizing pulses are applied at 
progressive increasing intensities, a “threshold intensity” 
is reached at which one single spike is fired... only when 
the stimulus intensity becomes higher, a spike train is 
produced) (Matzner and Devor, 1992). However, the 
response shown in Figure 2a cannot be assumed to be a 
phasic response, which include not only those exhibiting 
one single spike at the onset of the stimulus, but also 
those showing brief spike trains starting during the 
beginning of the stimulation period (Madrid et al., 2003; 
Mitra and Miller, 2007; Ruscheweyh and Sandkühler, 
2002). In fact, the absence of a delay in spike firing 
at different stimulus intensities shows a fundamental 
limitation of our neuron-model and the assumption on 
which the model relies is, indeed, an oversimplification 
of the neural behavior because only some neurons fire 
at a regular frequency when stimulation amplitude is 
held constant and they do only under certain conditions. 

Figure 6. A three-Neuroid oscillator. (a) The oscillator consists of three 
neurons simultaneously receiving a constant excitatory input (●), while 
they are cyclically connected through inhibitory synapses (○). (b) Firing 
patterns obtained by the authors for three different simulation intensities 
(Input = 5, 3 and 2.7 μA) after implementing a Neuroid-based replica 
of the three-neuron oscillator.

Figure 7. Using the Neuroid to build the “cricket song generator”. 
(a) Neuron 1 receives a constant excitatory input, which is transmitted 
to neurons 2, 3, 4 and 5 through excitatory synapses (●), while neuron 
5 provides neuron 1 with strong inhibition (○). (b) Firing patterns 
obtained by the authors after implementing a Neuroid-based replica of 
the “cricket song generator”.
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The Neuroid does not account for the dynamics of the 
voltage-dependent membrane conductances that are 
responsible for the generation of action potentials, which 
is why spike trains show no clear threshold dependence 
or temporal behavior consistent with the latencies of 
ionic channels (see Figure 2b). Small differences in the 
membrane voltage are a great concern for several neural 
phenomena, such as spike-timing-dependent plasticity 
(STDP) (Dan and Mu-ming, 2004; Shulz and Feldman, 
2013), so the use and value of our neuron-model might 
be limited to a narrow band of applications.

While the Neuroid is now able to produce more accurate 
results when a time step of 10-2 ms or lower is used, its 
accuracy is considerably lower than the achieved with 
the LIF model solved by the FE method (see Table 1). 
The latter is consistent with the result obtained during a 
previous study (Skocik and Long, 2014), in which it was 
shown that the LIF model provides fairly accurate results 
when the FE method with a time step of 0.1 ms or lower 
is used. On the other hand, that comparison was carried 
out not between models but between numerical methods 
because, by definition, the firing frequency produced by 
one model is different from the firing frequency produced 
by the others. More reliable results could be obtained 
if the firing rate of the model is compared to the firing 
rate of a biological neuron. Still, this comparison would 
be a bit more complicated since the neural response 
varies between different populations. A previous study 
(Prada et al., 2015) found that the Neuroid might be used 
to predict the firing frequency of nociceptive primary 
afferent A- and C-fibers, but it could be insufficient to 
model spinal dorsal horn neurons. All this suggests that, 
in the absence of a quantitative index for the evaluation 
of the accuracy achieved by several neuron-models, the 
results obtained by previous (Izhikevich, 2004; Long and 
Fang, 2010; Skocik and Long, 2014; Wang et al., 2014) 
and the current study may not be absolutely conclusive.

From Figures 4 and 5, and Tables 2 and 3, it is clear 
that the computation time required by the Neuroid is 
significantly lower (Multifactorial ANOVA, p < 0.05) 
than the required by the LIF model when it is solved 
by using the FE method, which is one of the simplest 
methods for approximating solutions to differential 
equations (Izhikevich, 2004; Skocik and Long, 2014). 
In general, the Neuroid performs its calculations in an 
amount of time significantly lower than the required by 
the LIF model, under the same conditions. Surprisingly, 
such differences do not increase significantly either when 
the stimulation amplitude increases or the stimulation 
period decreases (see Table  3). Even so, it is worth 
noting that the FLOPs per iteration required by the 
Neuroid decreases by one whenever a spike is fired, 
since the variable count1 is reset instead of increasing 
by one when its value reaches or exceeds the quantity 

( )( )
β
+ ϑ ∆s t t

 (see  Figure  1). Thus, as the stimulation 

amplitude increases and, therefore, the firing frequency, 
the total of FLOPs required for a given time of run 
decreases. Additionally, no operation is executed in the 
absence of stimulus because the Neuroid first compares 
the triggering event to the activation threshold and only 
if the former reaches or exceeds the latter, the model 
performs its calculations. On the contrary, classic 
neuron‑models first update the membrane potential in 
terms of their parameters and the stimulus amplitude 
(even in the absence of stimulus), and then compare 
the resulting potential to the activation threshold, after 
which a spike can or cannot be fired (Gerstner et al., 
2014). The ideas above are summarized in Figure 8.

This “compare first, calculate later” feature makes 
the Neuroid an attractive option for those who want 
to model the behavior of large-scale neural networks 
through which the information is transmitted in the form 
of short-duration pulses (e.g., Spiking Neural Networks), 
especially when computational resources are limited, 
since its computational cost is significantly lower than the 
one required by the legendary LIF model. For instance, 
about one third to 40% of the cortical neuron population 
is composed by neurons capable of firing extremely 
narrow spikes at a very high frequency (300-400 Hz) 
with a very low adaptation rate (Wang et  al., 2016), 
precisely the kind of behavior that the Neuroid is able 
to reproduce. However, it must be taken into account 
that the computational cost of a neuron-model tends to 
increase with its accuracy, which in turn depends on, 
among other factors, the size of the time step. Nowadays, 
it is possible to implement some alternatives, like the one 
proposed by Wang et al. (2014), whose accuracy is not 
significantly affected by the time step size. Yet, and as 
we previously pointed out, results reported by that and 
other studies should be analyzed in the light of a common 
quantitative index of a neuron-model’s accuracy, which 
may lead to a more objective comparison.

Figures  6  and  7 show that it is feasible to use 
Neuroid‑based networks to replicate biologically relevant 
firing patterns produced by low-scale networks composed 
of much more detailed units, as those used in earlier 
studies (Friesen and Stent, 1977; Kling and Székely, 1968; 
Koch and Brunner, 1988). Moreover, it was possible to 
generate periodic bursts of spikes by using a heuristic 
that was originally conceived to respond tonically. No 
matter which values are chosen for the parameters of 
the Neuroid, it is not able to produce by itself bursts of 
spikes, unlike other spiking neuron‑models (e.g., the 
Izhikevich’s model). This suggests that, even though spike 
bursts are known to be caused by intrinsic mechanisms 
of cells (Izhikevich, 2007; Krahe and Gabbiani, 2004), 
they can also be attributed to the synaptic properties of 
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Figure 8. Effects of the stimulus amplitude and duration on the estimated computational cost of the Neuroid and the LIF model solved by the 
FE method. The band between dashed lines denotes the stimulation period and an encircled number indicates that a spike was fired. It was assumed 
that both models fire synchronously. (a) The total of FLOPs required by the Neuroid to perform its calculations is, in general, less than that for 
the LIF model when it is solved by using the FE method because no operations are executed by the Neuroid in the absence of stimulus; (b) As the 
stimulus amplitude increases, the FLOPs per iteration required by the Neuroid decreases by one per each “elicited” spike and the FLOPs required 
for the given total of iterations decreases slightly; (c) As the stimulus duration decreases, the FLOPs required by the Neuroid for the given total of 
iterations decreases considerably because the FLOPs per iteration drops to zero in the absence of stimulus. On the contrary, the LIF model (like 
other classic neuron-models) is constantly performing calculations regardless the amplitude and duration of the stimulus, so the FLOPs per iteration 
required by the model and the FLOPs for the given total of iterations remains unaffected, even in the absence of stimulus.
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neuron connectivity and/or the topology of the network. 
Therefore, it would be possible to use Neuroids in analyzing 
to what extent emergent properties derived from mutual 
connectivity between neurons contribute to the generation 
of bursting oscillatory patterns. Neuroid-based replicas 
of some biological neural networks, whose architecture 
is well known, might be built and studied before using 
much more detailed simulation tools or packages. This, 
in turn, demands an accurate identification of the cells 
composing those networks as well as a wiring diagram 
describing how they are connected, which may lead 
to new research opportunities. Lastly, a result like this 
could be viewed as a small extension of the Hopfield’s 
work (Hopfield, 1984; 1982), in which it was found that 
the computational properties of networks composed of 
binary unrealistic units, like the McCulloch and Pitts 
model (McCulloch and Pitts, 1943), are often preserved 
in networks composed of units having continuous 
input‑output relationships and integrative time delays.

Like any heuristic, the Neuroid does not guarantee 
an optimal solution for a wide range of problems. 
Our neuron-model is, indeed, far from being a biologically 
meaningful model, since the conditions and assumptions 
upon which the model was formulated are very specific. 
It is widely known that the firing rate of real neurons 
depends not only on the stimulation intensity, but also 
on several other factors like subthreshold dynamics, a 
feature which our neuron-model fails to exhibit. On the 
other hand, and according with results presented before, 
the Neuroid requires a smaller amount of computational 
resources than those required by the LIF model to simulate 
several hundreds of milliseconds of neuronal response 
under the same conditions. This suggests that the Neuroid 
may be an interesting option for the implementation of 
networks through which the information is transmitted 
in the form of short-duration pulses (e.g., Spiking Neural 
Networks), especially when computational resources 
are limited. Furthermore, the low computational cost 
required by the Neuroid, as well as its flexibility to be 
adapted to any type of programming language (C ++, 
MATLAB, HPVEE, LabVIEW) make it suitable for the 
development of free and open computational tools based 
on Neuroids, as the one developed in the University 
of Guayaquil (Silva Muñoz, 2015). Future work may 
include considering the noise influence by adding a 
probabilistic component to the Neuroid without altering 
its low computational requirement.

The fact that our neuron-model is able to reproduce 
only a few neuro-computational properties could make it a 
useful tool for determining if the firing patterns exhibited 
by neurons composing certain networks are due to the 
intrinsic properties of these cells, or to the topology of 
the network. In other words, if a Neuroid-based replica 
is able to reproduce the firing patterns observed in a 

biological network, then these patterns are likely to be 
produced by the interactions between different cells or 
nodes. This indeed underlines the importance of neural 
connection for the generation of specific firing patterns, 
and also demands an accurate identification of the cells 
composing those networks as well as a wiring diagram 
describing how they are connected, which may lead to 
new research opportunities.

As a concluding remark, beyond a simple comparison 
between different average firing rates or coincident spikes, 
researchers and modelers still lack a standardized set of 
tests to quantify and compare the accuracy of distinct 
neuron-models, so further work is needed to provide 
these communities with a common framework that can 
be used as a reference for this purpose.
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