Acessibilidade / Reportar erro

Stabilized mortar with air incorporator agent and plasticizer set retarder: performance measurement

Desempenho de argamassa estabilizada com aditivo incorporador de ar e plastificante retardador de pega

Abstract

This study aims to develop three stabilized mortars to masonry using air entraining agents and settling retardant plasticizer to compare with a conventional mortar with lime. It was analyzed consistency index, specific gravity, air entrained content, water retentivity, setting time through the heat of hydration, mortar shrinkage/expansion, compressive strength, resistance to sulphate and tensile strength in bonding. The results exhibited that the presence of the settling retardant plasticizer affected the consistency index making the mortar more workable for a longer time. The presence of additives made the stabilized mortars lighter with lower mass density and higher incorporated air content. The presence of lime provided high water retentivity in the conventional mortar while the setting retardant plasticizer improved the water retentivity in the stabilized mortars. The initial setting time of the stabilized mortars occurred after approximately 50 hours. Conventional mortar lost its workability quickly after 2 hours. In conventional mortar, shrinkage occurred, while stabilized mortars had expansion. The conventional mortar exhibited better compressive strength, while the excess of additives can affected negatively this property in the stabilized mortars. Conventional mortar proved to be less resistant to sulphate attack. Tensile strength in bonding was better in a stabilized commercial mortar tested.

Keywords:
stabilized mortar; brickwork and masonry; materials technology; sustainability

IBRACON - Instituto Brasileiro do Concreto Instituto Brasileiro do Concreto (IBRACON), Av. Queiroz Filho, nº 1700 sala 407/408 Torre D, Villa Lobos Office Park, CEP 05319-000, São Paulo, SP - Brasil, Tel. (55 11) 3735-0202, Fax: (55 11) 3733-2190 - São Paulo - SP - Brazil
E-mail: arlene@ibracon.org.br