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Abstract: Reinforced concrete beams are subjected to bending, torsion and shear simultaneously. The 
interaction of combined loading is complex and demands a unified model for analysis and design. Using the 
models from NBR 6118/2014 (variable angle truss model with parallel chords) and AASHTO LRFD Bridge 
Design Specifications 2014 (Modified Compression Field Theory), an algorithm was created, converting the 
resistance problem into a constrained optimization problem and generating an interaction surface that also 
displays the active constraints for each degree of interaction. Applying it to three beams previously tested, the 
experimental data was plotted against the surface obtained by the standards. The procedure and its 
optimization approach were efficient and effective in predicting the beams’ resistance. Comparison between 
the interaction surfaces, empirical data and existing literature showed the procedure and the standards were 
consistent and its application simple and practical. 

Keywords: reinforced concrete, bending, torsion, shear, interaction, optimization, NBR 6118, AASHTO 
LRFD. 

Resumo: Vigas de concreto armado estão sujeitas a esforços de flexão, torção e cortante, muitas vezes 
simultaneamente. A interação entre esses é um fenômeno complexo, que exige um modelo unificado de 
análise e dimensionamento. Seguindo os modelos da NBR 6118/2014 (treliça generalizada de banzos 
paralelos) e AASHTO LRFD Bridge Design Specifications 2014 (Teoria do Campo de Compressão 
Modificada), implementou-se um algoritmo que transforma o problema de resistência em um problema de 
otimização com restrições, gerando uma superfície de interação com indicações das restrições ativas em cada 
grau de interação. Aplicando o procedimento para três vigas ensaiadas anteriormente, plotaram-se os 
resultados experimentais sobre a superfície obtida pelas normas. O procedimento e sua abordagem de 
otimização foram eficientes e eficazes em prever a resistência das vigas analisadas. A comparação das 
superfícies de interação com dados experimentais e resultados da literatura mostrou a consistência do 
procedimento e das normas, e sua aplicação se mostrou prática e simples. 
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LRFD. 
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1 INTRODUCTION 
Reinforced concrete beams are subjected to bending, torsion and shear forces, with several mechanical and empirical 

models available for design and analysis considering each one of these separately. Most structural elements withstand 
a combined action, however. In order to analyze this interaction, many engineers resort to simplified procedures or 
completely ignore this phenomena, due to the complexity of standards procedures and the lack of unanimity around a 
straightforward mechanical and rational model [1]. 

While flexure theory has been around since the 17th century and is well established for reinforced concrete since the 
1960s, the most popular model for shear and torsion (truss/strut-and-tie model) is relatively new, developed by Ritter 
and Morsch in the beginning of the 20th century. Even the most modern and complete models still carry some empiricism 
and needs some validation for some situations [2], [3]. Other than generalized truss models using equilibrium or 
compatibility, recent research has suggested different models such as trusses with crack friction, disturbed stress fields, 
finite element applications, simplified model for combined stress resultants and shear friction [4], [5]. 

The sheer number of variables involved in the shear problem make it very difficult for experiments to be interpreted. 
Also, shear and interaction tests are hard to perform in a practical and reliable manner. These factors combined hinder 
the proposal of a simple and complete method for analysis and design [6]. Compared to the flexure procedure, standards 
still use too many equations, suggest overconservative simplifications, or require the use of iterative methods for shear. 
The goal of this paper is to show an automatic method with an optimization approach that allows the use of the complete 
procedures proposed by two standards: NBR 6118/2014 and AASHTO LRFD 2014. The proposed algorithm generates 
full shear-torsion- bending interaction surfaces, allowing the verification of the standards consistency with experimental 
data from the literature. 

2 PROPOSED METHOD 
Given: T, M and V (torsion moment, bending moment and shear force) acting on a beam; r an action multiplier (a 

non-dimensional variable between 0 and 1 - the “magnitude” of forces); and Fmax the maximum resistance of the force 
F acting alone; the geometric relationship shown in Figure 1 is obtained. 𝛼𝛼𝑟𝑟  𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽𝑟𝑟 control the interaction between the 
actions, obtained by Equations 1, 2 e 3. To obtain the resistance of the section for an interaction degree (𝛼𝛼𝑟𝑟  𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽𝑟𝑟), r 
must be maximized, increasing the actions until failure. This results in Problem 1 (Figure 2), where a constraint A 
(action) < R (resistance) represents a standard’s verification. 

𝑀𝑀 = 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝛽𝛽𝑟𝑟  (1) 

𝑇𝑇 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝛼𝛼𝑟𝑟  (2) 

𝑉𝑉 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝛼𝛼𝑟𝑟  (3) 

 
Figure 1: Relationship between torsion moment, bending moment and shear force. 
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Figure 2: Subroutine for Problem 1. 

This approach was taken from Obel [7], extended to 3D and solved using a SQP algorithm from commercial 
software MATLAB. The algorithms are available on SciELO Data [8]. 

3 STANDARDS’ PROCEDURES 

3.1 NBR 6118/2014 
NBR 6118/2014 uses load and resistance factored design, with statistical coefficients for each limit state to consider 

variability, uncertainty, precision, simultaneity and importance of the phenomena analyzed. Thus, in the ultimate limit 
state, design must ensure the design action 𝐹𝐹𝑆𝑆𝑆𝑆 is inferior to design resistance 𝐹𝐹𝑅𝑅𝑆𝑆. This section shows its prescriptions 
for shear, torsion, flexure and interaction in beams [9]. 

Shear 
The standard allows two calculation models based on the generalized truss with parallel chords, considering 

concrete struts inclined at 𝜃𝜃 and transverse steel ties inclined at 𝛼𝛼 with some concrete contribution in tension. 
Model II permits a variation of the inclination of the struts 𝜃𝜃 between 30º and 45º, while model I sets the angle 
of the diagonals at 45º, in a conservative simplification. Thus, this article will focus on the demonstration of 
Model II [9]. 

To check the inclined concrete struts between the diagonal cracks, vertical equilibrium is applied on the left section 
of Figure 3a and 3b, finding 𝑅𝑅𝑐𝑐𝑐𝑐, the force on the struts as a function of the shear force 𝑉𝑉𝑆𝑆𝑆𝑆 (Equation 4). The 
compression stress on the struts 𝜎𝜎𝑐𝑐𝑐𝑐 is shown in Figure 3c and is given by Equation 5, using the beam width b𝑐𝑐 and 
lever arm 𝑧𝑧. 

𝑅𝑅𝑐𝑐𝑐𝑐 = 𝑉𝑉𝑆𝑆𝑆𝑆/ 𝑟𝑟𝑟𝑟𝑎𝑎𝜃𝜃  (4) 

𝜎𝜎𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑐𝑐𝑐𝑐
𝑏𝑏𝑐𝑐×𝑧𝑧×(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)×𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐

  (5) 

Substituting Equation 4 in Equation 5, Equation 6 is obtained. At failure, the compression stress on the strut 
reaches concrete compression resistance, which is 70% of the usual maximum 0.85𝑓𝑓𝑐𝑐𝑆𝑆, due to the biaxial stress 
nature of the truss model. A reduction factor 𝛼𝛼𝑣𝑣2 is considered, to adapt the cylinder test result that originates 
𝑓𝑓𝑐𝑐𝑆𝑆 to the shape of the concrete struts (Equation 7). Assuming the lever arm z is 90% of the effective depth d, 
Equation 6 turns to Equation 8 (shear force. 𝑉𝑉𝑆𝑆𝑆𝑆 reaches the strut shear resistance VRd2). 

Maximize r = 𝑓𝑓(𝑟𝑟,𝛼𝛼𝑟𝑟 ,𝛽𝛽𝑟𝑟) 

r ∈ ℝ | 𝛼𝛼𝑟𝑟 ,𝛽𝛽𝑟𝑟  ∈ [0, π
2
] 

 

Subject to: 𝑆𝑆(𝑟𝑟,𝛼𝛼𝑟𝑟 ,𝛽𝛽𝑟𝑟) ≤ R(𝑟𝑟,𝛼𝛼𝑟𝑟 ,𝛽𝛽𝑟𝑟) 
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Figure 3: Generalized truss model with parallel chords [10]. 

𝜎𝜎𝑐𝑐𝑐𝑐 = 𝑉𝑉𝑆𝑆𝑆𝑆
𝑏𝑏𝑐𝑐×𝑧𝑧×(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)×𝑠𝑠𝑠𝑠𝑠𝑠2𝑐𝑐

  (6) 

𝛼𝛼𝑣𝑣2 = 1 − 𝑓𝑓𝑐𝑐𝑐𝑐
250

  (7) 

𝑉𝑉𝑆𝑆𝑆𝑆 = 𝑉𝑉𝑅𝑅𝑆𝑆2 = 0.54 × 𝛼𝛼𝑣𝑣2 × 𝑓𝑓𝑐𝑐𝑆𝑆 × 𝑏𝑏𝑐𝑐 × 𝑎𝑎 × 𝑟𝑟𝑟𝑟𝑎𝑎 𝜃𝜃2 × (𝑟𝑟𝑟𝑟𝑐𝑐 θ + 𝑟𝑟𝑟𝑟𝑐𝑐 𝛼𝛼)  (8) 

The ties resist shear though a steel contribution 𝑉𝑉𝑠𝑠𝑐𝑐 and a concrete contribution 𝑉𝑉𝑐𝑐𝑐𝑐. The force acting on the stirrups 
𝑅𝑅𝑠𝑠𝑐𝑐𝑐𝑐 is obtained by vertical equilibrium on the right section of Figure 3b e 3d, resulting in Equation 9. Being the number 
of stirrups (spaced at s distance) crossing a diagonal crack 𝑎𝑎𝑏𝑏𝑚𝑚𝑟𝑟𝑠𝑠 given by Equation 10 and considering them to yield at 
𝑓𝑓𝑦𝑦𝑆𝑆 stress, the maximum force developed by the vertical hoops is given by Equation 11. At failure, the force on the 
stirrups reaches the maximum possible force developed by the steel (Equation 12). 

𝑅𝑅𝑠𝑠𝑐𝑐𝑐𝑐 × 𝑟𝑟𝑟𝑟𝑎𝑎𝛼𝛼 = 𝑉𝑉𝑠𝑠𝑐𝑐  (9) 

𝑎𝑎𝑏𝑏𝑚𝑚𝑟𝑟𝑠𝑠 = 𝑧𝑧×(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑠𝑠

  (10) 

𝑅𝑅𝑠𝑠𝑐𝑐𝑐𝑐 = 𝐴𝐴𝑠𝑠𝑐𝑐×𝑓𝑓𝑦𝑦𝑆𝑆×0.9𝑆𝑆×(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑠𝑠
  (11) 
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𝑉𝑉𝑠𝑠𝑐𝑐 = 𝐴𝐴𝑠𝑠𝑐𝑐×𝑓𝑓𝑦𝑦𝑆𝑆×0.9𝑆𝑆×(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)×𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐

𝑠𝑠
  (12) 

Using a similar procedure on the sections from Figure 4, the concrete contribution 𝑉𝑉𝑐𝑐𝑐𝑐, is given by Equation 13, as 
a function of the concrete tension design resistance 𝑓𝑓𝑐𝑐𝑐𝑐𝑆𝑆. This must be diminished, however, to account for the cracking 
of the section depending on the bending moment and relative shear force, according to Equations 14, 15 and 16. At 
failure, shear design force equals the shear resistance of the ties VRd3 given by Equation 17, adding steel and concrete 
contribution. 

 
Figure 4: Concrete contribution to the ties [10]. 

𝑉𝑉𝑐𝑐𝑐𝑐 = 𝑏𝑏𝑐𝑐 × 0.9𝑎𝑎 × 𝑓𝑓𝑐𝑐𝑐𝑐𝑆𝑆 × 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐

  (13) 

𝑉𝑉𝑐𝑐0 = 0.6 × 𝑓𝑓𝑐𝑐𝑐𝑐𝑆𝑆 × 𝑏𝑏𝑐𝑐 × 𝑎𝑎  (14) 

𝑉𝑉𝑐𝑐1 = 𝑉𝑉𝑐𝑐0 × (𝑉𝑉𝑆𝑆𝑆𝑆−𝑉𝑉𝑅𝑅𝑆𝑆2)
(𝑉𝑉𝑐𝑐0−𝑉𝑉𝑅𝑅𝑆𝑆2)

  (15) 

𝑉𝑉𝑐𝑐 = �

0, 𝑓𝑓𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑡𝑡𝑎𝑎 𝑟𝑟𝑡𝑡𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟 𝑓𝑓𝑎𝑎𝑎𝑎𝑡𝑡𝑟𝑟 𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑟𝑟𝑡𝑡 − 𝑐𝑐𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎
𝑉𝑉𝑐𝑐1, 𝑓𝑓𝑟𝑟𝑟𝑟 𝑝𝑝𝑎𝑎𝑟𝑟𝑐𝑐𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑡𝑡𝑎𝑎 𝑟𝑟𝑡𝑡𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟 𝑓𝑓𝑎𝑎𝑎𝑎𝑡𝑡𝑟𝑟 𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑟𝑟𝑡𝑡 − 𝑐𝑐𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎

𝑉𝑉𝑐𝑐1 + �1 + 𝑀𝑀0
𝑀𝑀𝑆𝑆𝑆𝑆

� , 𝑓𝑓𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑟𝑟𝑡𝑡 − 𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎, 𝑏𝑏𝑡𝑡𝑟𝑟𝑎𝑎𝑏𝑏 𝑀𝑀0 𝑐𝑐ℎ𝑡𝑡 𝑎𝑎𝑡𝑡𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎 𝑏𝑏𝑡𝑡𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑏𝑏
  (16) 

𝑉𝑉𝑆𝑆𝑆𝑆 = 𝑉𝑉𝑅𝑅𝑆𝑆3 = 𝑉𝑉𝑠𝑠𝑐𝑐 + 𝑉𝑉𝑐𝑐  (17) 

To verify the parallel chords, horizontal equilibrium is observed in Figure 3b, finding the force on the tensioned 
chord 𝑅𝑅𝑠𝑠𝑐𝑐,𝑣𝑣 in Equation 18, which generates Equation 19 using previous equations. Also, the bending moment induces 
a tension force on the bottom chord, given by Equation 20. Thus, the bottom chord is tensioned by a force given by 
Equation 21. This force must be inferior to the yielding force of the bottom steel area 𝐴𝐴𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓 (Equation 22). 



V. B. Almeida and B. Horowitz 

Rev. IBRACON Estrut. Mater., vol. 16, no. 1, e16102, 2023 6/24 

2𝑅𝑅𝑠𝑠𝑐𝑐,𝑣𝑣 = 𝑅𝑅𝑐𝑐𝑐𝑐 × 𝑟𝑟𝑟𝑟𝑟𝑟θ − 𝑅𝑅𝑠𝑠𝑐𝑐 × 𝑟𝑟𝑟𝑟𝑟𝑟𝛼𝛼  (18) 

𝑅𝑅𝑠𝑠𝑐𝑐,𝑣𝑣 = 𝑉𝑉𝑆𝑆𝑆𝑆(𝑟𝑟𝑟𝑟𝑐𝑐 𝜃𝜃 − 𝑟𝑟𝑟𝑟𝑐𝑐 𝛼𝛼)/2  (19) 

𝑅𝑅𝑠𝑠𝑐𝑐,𝑚𝑚 = 𝑀𝑀𝑆𝑆𝑆𝑆
𝑧𝑧

  (20) 

𝑅𝑅𝑠𝑠𝑐𝑐 = 𝑀𝑀𝑆𝑆𝑆𝑆
𝑧𝑧

+ 𝑉𝑉𝑆𝑆𝑆𝑆(𝑟𝑟𝑟𝑟𝑐𝑐 θ − 𝑟𝑟𝑟𝑟𝑐𝑐 𝛼𝛼 )/2  (21) 

𝑀𝑀𝑆𝑆𝑆𝑆
𝑧𝑧

+ 0.5𝑉𝑉𝑆𝑆𝑆𝑆(𝑟𝑟𝑟𝑟𝑐𝑐 θ − 𝑟𝑟𝑟𝑟𝑐𝑐 𝛼𝛼 ) < 𝑓𝑓𝑦𝑦𝑆𝑆 × 𝐴𝐴𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓  (22) 

Torsion 
For torsion, NBR 6118/2014 considers a similar model: generalized space truss with parallel chords, considering 

inclined concrete struts and transverse steel ties without concrete contribution. The space truss geometry is obtained 
using the thin-walled tube analogy (Figure 5). The struts inclination must be compatible with the one assumed for shear, 
using either Model I or Model II, but the latter will be the focus of this article, for generalization [9]. 

The equivalent section is comprised of four perpendicular walls, comprised of connected plane trusses with diagonal 
struts, transverse steel ties and longitudinal steel parallel chords. Considering spalling of the section under torsion, the 
equivalent section is a function of the original dimensions, section perimeter u and the distance from the corner steel 
centroid to the lateral face (𝑟𝑟1). Its thickness ℎ𝑒𝑒 spans between values from Equation 23 and Equation 24. Its middle 
line perimeter 𝑓𝑓𝑒𝑒 is given by Equation 25 and its enclosed area 𝐴𝐴𝑒𝑒 is obtained from Equation 26. 

ℎ𝑒𝑒,𝑚𝑚𝑠𝑠𝑠𝑠 = �𝑐𝑐𝑟𝑟𝑎𝑎 �
𝐴𝐴𝑐𝑐
𝑢𝑢

, 𝑏𝑏𝑐𝑐 − 2𝑟𝑟1� , 𝑟𝑟𝑓𝑓 𝐴𝐴𝑐𝑐
𝑢𝑢

< 2𝑟𝑟1
2𝑟𝑟1, 𝑟𝑟𝑐𝑐ℎ𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑡𝑡

  (23) 

ℎ𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 = �
ℎ𝑒𝑒,𝑚𝑚𝑠𝑠𝑠𝑠, 𝑟𝑟𝑓𝑓 𝐴𝐴𝑐𝑐

𝑢𝑢
< 2𝑟𝑟1

𝐴𝐴𝑐𝑐
𝑢𝑢

, 𝑟𝑟𝑐𝑐ℎ𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑡𝑡
  (24) 

𝑓𝑓𝑒𝑒 = �𝑓𝑓 − 8𝑟𝑟1, 𝑟𝑟𝑓𝑓 𝐴𝐴𝑐𝑐
𝑢𝑢

< 2𝑟𝑟1
𝑓𝑓 − 4ℎ𝑒𝑒 , 𝑟𝑟𝑐𝑐ℎ𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑡𝑡

  (25) 

𝐴𝐴𝑒𝑒 = �
(𝑏𝑏𝑐𝑐 − 2𝑟𝑟1) × (ℎ − 2𝑟𝑟1), 𝑟𝑟𝑓𝑓 𝐴𝐴𝑐𝑐

𝑢𝑢
< 2𝑟𝑟1

(𝑏𝑏𝑐𝑐 − ℎ𝑒𝑒) × (ℎ − ℎ𝑒𝑒), 𝑟𝑟𝑐𝑐ℎ𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑡𝑡
  (26) 
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Considering the shear flow on the wall q is the ratio of the shear stress over the wall thickness t and applying moment 
equilibrium, Equation 27 gives the relation between torsion and shear flow. The shear force is the product between the 
shear flow and its length, which leads to Equation 28 giving the shear force on the walls due to torsion. 

Using a section of the vertical wall like Figure 6, and considering that the 𝑎𝑎𝑏𝑏𝑚𝑚𝑟𝑟𝑠𝑠 ties crossing a diagonal crack 
(Equation 29) yield at 𝑓𝑓𝑦𝑦𝑐𝑐𝑆𝑆, vertical equilibrium gives the maximum shear force resisted by each vertical wall 
(Equation 30). Applying Equation 28, the maximum torsion resisted by each leg 𝐴𝐴𝑐𝑐 of the stirrups is given by 
Equation 31. The shear path enclosed area is taken as 𝐴𝐴e. Concrete under tension doesn’t contribute, due to cracking 
caused by torsion [11]. 

 
Figure 5: Thin-walled tube analogy and generalized space truss [12]. 

𝑇𝑇 = 2𝑞𝑞𝐴𝐴0  (27) 

𝑉𝑉1 = 𝑉𝑉3 = 𝑇𝑇
2𝐴𝐴𝑜𝑜

× 𝑓𝑓𝑐𝑐 𝑡𝑡 𝑉𝑉2 = 𝑉𝑉4 = 𝑇𝑇
2𝐴𝐴𝑜𝑜

× 𝑓𝑓𝑐𝑐  (28) 

 
Figure 6: Section of the vertical wall detailing the stirrups force [12]. 
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𝑎𝑎𝑏𝑏𝑚𝑚𝑟𝑟𝑠𝑠 = 𝑦𝑦𝑜𝑜
𝑠𝑠

× 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃  (29) 

𝑉𝑉2 = 𝐴𝐴𝑡𝑡𝑓𝑓𝑦𝑦𝑐𝑐𝑆𝑆𝑦𝑦𝑜𝑜
𝑠𝑠

× 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃  (30) 

𝑇𝑇𝑅𝑅𝑆𝑆3 = 2𝐴𝐴𝑒𝑒𝐴𝐴𝑡𝑡𝑓𝑓𝑦𝑦𝑐𝑐𝑆𝑆
𝑠𝑠

× 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃  (31) 

Using a different section of the vertical walls (Figure 7), and using vertical and horizontal equilibrium, it is possible 
to obtain the compression force on struts 𝐷𝐷2 (Equation 32) and the tension force on the chords N (Equation 33). Using 
Equation 28, these actions can be related to the torsion, resulting in (Equation 34) and (Equation 35). At failure, total 
steel area 𝐴𝐴𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 of the parallel chords yield, giving the maximum torsion resisted by them 𝑇𝑇𝑅𝑅𝑆𝑆4 (Equation 36). 
Assuming the same as for shear, at failure the concrete struts reach its strength, which gives its torsion resistance 𝑇𝑇𝑅𝑅𝑆𝑆2 
(Equation 37) [13]. 

 
Figure 7: Section of a vertical wall of the truss detailing the chords and struts forces [12]. 

𝐷𝐷2 = 𝑉𝑉2
𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐

  (32) 

𝑁𝑁 = 2(𝑉𝑉1 𝑟𝑟𝑟𝑟𝑐𝑐 𝜃𝜃 + 𝑉𝑉2 𝑟𝑟𝑟𝑟𝑐𝑐 𝜃𝜃)  (33) 

𝑁𝑁 = 𝑇𝑇
2𝐴𝐴0

2(𝑓𝑓0 + 𝑓𝑓0) 𝑟𝑟𝑟𝑟𝑐𝑐 𝜃𝜃 = 𝑇𝑇
2𝐴𝐴0

𝑝𝑝𝑐𝑐 𝑟𝑟𝑟𝑟𝑐𝑐 𝜃𝜃  (34) 

𝜎𝜎𝑐𝑐𝑐𝑐 = 𝑉𝑉2
𝑐𝑐𝑦𝑦0 𝑐𝑐𝑐𝑐𝑠𝑠 𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐

=
𝑇𝑇

2𝐴𝐴𝑜𝑜
×𝑦𝑦𝑜𝑜

𝑐𝑐𝑦𝑦0 𝑐𝑐𝑐𝑐𝑠𝑠 𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐
= 𝑇𝑇

2𝑐𝑐𝐴𝐴0 𝑐𝑐𝑐𝑐𝑠𝑠 𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐
  (35) 

𝑇𝑇𝑅𝑅𝑆𝑆4 = 2𝐴𝐴𝑒𝑒𝐴𝐴𝑠𝑠,𝑡𝑡𝑜𝑜𝑡𝑡𝑓𝑓𝑦𝑦𝑆𝑆 𝑐𝑐𝑚𝑚𝑠𝑠𝑐𝑐

𝑢𝑢𝑒𝑒
  (36) 
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𝑇𝑇𝑅𝑅𝑆𝑆2 = 0.5 × 𝛼𝛼𝑣𝑣2 × 𝑓𝑓𝑐𝑐𝑆𝑆 × 𝑐𝑐 × 𝐴𝐴𝑒𝑒 × 𝑟𝑟𝑟𝑟𝑎𝑎 2𝜃𝜃  (37) 

In summary, torsion design according to NBR 6118/2014 aims to ensure that torsion design load 𝑇𝑇𝑆𝑆𝑆𝑆 is inferior to 
the struts, ties and chords resistance TRd2, TRd3 and TRd4. 

Bending moment and interaction 
The Brazilian standard uses flexure basic assumptions: plane sections remain plane, perfect steel-concrete bond and 

constitutive relationships for concrete and steel, neglecting the cracked concrete under tension. Failure is considered to 
happen under certain domains, where concrete maybe crushed, steel may yield or a combination of both (Figure 8) [9]. 

 
Figure 8: Failure domains for flexure [9]. 

In this article, domains 2 and 3 will be used to obtain bending resistance, where compressed concrete is crushed, 
and steel is beyond yielding strain. Maximum compression stress is approximated by a stress block and its height a is 
a fraction of the neutral line height c. The acting design bending moment MSd must be inferior to the bending developed 
by the compression-tension couple that act on the lever arm z. This may be considered 90% of the effective height d or 
a function of the stress block height, which gives the design bending resistance MRd (Equation 38). This process is 
illustrated by Figure 9 [14] 

𝑀𝑀𝑅𝑅𝑆𝑆 = 𝑧𝑧 × 𝑓𝑓𝑦𝑦𝑆𝑆𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓 = 0.9𝑎𝑎 × 𝑓𝑓𝑦𝑦𝑆𝑆𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓 𝑟𝑟𝑟𝑟 (𝑎𝑎 − 𝑚𝑚
2
) × 𝑓𝑓𝑦𝑦𝑆𝑆𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓  (38) 

 
Figure 9: RC concrete cross section under flexure [12]. 
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Due to the interaction of combined action, a triaxial stress state arises, with different levels of cracking, softening 
and strength for each region of the section, which would require a complex 3D model for an exact analysis. The model 
used by the Brazilian standard, however, is able to capture the phenomenon with a reasonable accuracy, combining the 
generalized space truss with parallel chords for shear and torsion with the flexure theory [13]. 

In the diagonal concrete struts, flexure influences only the inclination and the cracking level, reducing rigidity and 
strength. Torsion induces circulatory shear stress around the section, whereas shear force causes shear stress distributed 
on the web. In hollow sections, only the most critical wall is verified, where shear and torsion effects are added Figure 
10a. In solid sections, this separation is impossible, and the real interaction is quite complex (Figure 10b). 
NBR 6118/2014 considers a linear interaction, as shown in Equation 39 [13]. 

Only shear and torsion induce stresses on the ties. These effects are added on one leg of the hoops and this linear 
superposition is accounted by Equation 40 simply adding the portion of the steel used by torsion (first term) and by 
shear (𝐴𝐴𝑠𝑠𝑣𝑣, where an relieve of the effect is considered in Equation 41, due to the concrete contribution to shear 
resistance) [7]. 

The top chord steel 𝐴𝐴𝑠𝑠,𝑠𝑠𝑢𝑢𝑠𝑠 is tensioned by shear and torsion and compressed by flexure (Equation 42), whereas the 
bottom chord steel 𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓 is tensioned by all actions (Equation 43) [12]. In highly compressed hollow sections, the 
principal stresses induced by the torsion shear stress and flexure compression becomes relevant and needs to be 
checked. Using Mohr’s circle, the maximum principal stress 𝜎𝜎𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 is given by Equation 44, as a function of the average 
normal stress caused by bending 𝜎𝜎𝑐𝑐𝑚𝑚𝑒𝑒𝑆𝑆 (Equation 45) and shear stress due to torsion 𝜏𝜏𝑐𝑐 (Equation 46). The compression 
strength 𝑓𝑓�̅�𝑐𝑆𝑆12 can be taken as an average between strut-and-tie resistances 𝑓𝑓𝑐𝑐𝑆𝑆1 (only struts node) e 𝑓𝑓𝑐𝑐𝑆𝑆2 (strut and ties 
node), resulting in Equation 47. At failure, the principal stress must be smaller than the strength Equation 48. 

 
Figure 10: Shear and torsion stresses on a hollow and solid section [12]. 

𝑇𝑇𝑆𝑆𝑆𝑆
𝑇𝑇𝑅𝑅𝑆𝑆2

+ 𝑉𝑉𝑆𝑆𝑆𝑆
𝑉𝑉𝑅𝑅𝑆𝑆2

< 1  (39) 

𝑇𝑇𝑆𝑆𝑆𝑆
𝑓𝑓𝑦𝑦𝑐𝑐𝑆𝑆×𝐴𝐴𝑒𝑒×𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐

+ 𝐴𝐴𝑠𝑠𝑣𝑣 < 𝐴𝐴𝑠𝑠𝑐𝑐/𝑟𝑟  (40) 

𝐴𝐴𝑠𝑠𝑣𝑣 = 𝑐𝑐𝑎𝑎𝑓𝑓(𝑉𝑉𝑆𝑆𝑆𝑆 − 𝑉𝑉𝑐𝑐 , 0)/(𝑓𝑓𝑦𝑦𝑐𝑐𝑆𝑆 × 𝑧𝑧 × 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃)  (41) 

−𝑀𝑀𝑆𝑆𝑆𝑆
0.9𝑆𝑆

+ (0.5𝑉𝑉𝑆𝑆𝑆𝑆 + 𝑇𝑇𝑆𝑆𝑆𝑆 × 𝑓𝑓𝑒𝑒/4𝐴𝐴𝑒𝑒) 𝑟𝑟𝑟𝑟𝑐𝑐 θ < 𝑓𝑓𝑦𝑦𝑆𝑆 × 𝐴𝐴𝑠𝑠,𝑠𝑠𝑢𝑢𝑠𝑠  (42) 
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𝑀𝑀𝑆𝑆𝑆𝑆
0.9𝑆𝑆

+ (0.5𝑉𝑉𝑆𝑆𝑆𝑆 + 𝑇𝑇𝑆𝑆𝑆𝑆 × 𝑓𝑓𝑒𝑒/4𝐴𝐴𝑒𝑒) 𝑟𝑟𝑟𝑟𝑐𝑐 θ < 𝑓𝑓𝑦𝑦𝑆𝑆 × 𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓  (43) 

𝜎𝜎𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜎𝜎𝑐𝑐𝑐𝑐𝑒𝑒𝑆𝑆
2

+ ��𝜎𝜎𝑐𝑐𝑐𝑐𝑒𝑒𝑆𝑆
2

�
2

+ 𝜏𝜏𝑐𝑐2  (44) 

𝜎𝜎𝑐𝑐𝑚𝑚𝑒𝑒𝑆𝑆 = 𝑀𝑀𝑆𝑆𝑆𝑆
0.9𝑆𝑆×𝑏𝑏𝑐𝑐×2(𝑆𝑆−0.9𝑆𝑆)

  (45) 

𝜏𝜏𝑐𝑐 = 𝑇𝑇𝑆𝑆𝑆𝑆
2×𝑐𝑐×𝐴𝐴0

  (46) 

𝑓𝑓�̅�𝑐𝑆𝑆12 = 𝜆𝜆𝑓𝑓𝑐𝑐𝑆𝑆1 + (1 − 𝜆𝜆)𝑓𝑓𝑐𝑐𝑆𝑆2,𝑒𝑒ℎ𝑡𝑡𝑟𝑟𝑡𝑡 𝜆𝜆 = 𝑟𝑟𝑟𝑟𝑟𝑟 𝛾𝛾  𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 = 𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑎𝑎𝑎𝑎 �
𝑇𝑇𝑆𝑆𝑆𝑆

𝑇𝑇𝑐𝑐𝑚𝑚𝑚𝑚
�

𝑀𝑀𝑆𝑆𝑆𝑆
𝑀𝑀𝑐𝑐𝑚𝑚𝑚𝑚
�

�  (47) 

𝜎𝜎𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑓𝑓�̅�𝑐𝑆𝑆12  (48) 

3.2 AASHTO LRFD Bridge Design Specifications 2014 
The AASHTO LRFD 2014 standard uses a similar design approach to the Brazilian standard, with statistical 

coefficients that major loads and reduces resistance, aiming to ensure factored action 𝐹𝐹𝑢𝑢 is inferior to the nominal 
resistance 𝐹𝐹𝑠𝑠. This section shows its prescriptions for shear, torsion, flexure and interaction, taken from the standard’s 
chapters 5.7 e 5.8 [15]. 

Shear 
The standard’s model for shear is based on the Modified Compression Field Theory (MCFT), which is a set of 

equilibrium, compatibility and constitutive relations created to give the complete response of cracked concrete under 
shear in the generalized truss. It considers parallel chords, tensioned ties and a continuous field of diagonal compression. 
Assuming the direction of principal stresses is the same of the strains and using both average and local stresses and 
strain, it achieves the set of equations in Figure 11. AASHTO uses a simplified version of MCFT, assuming the stresses 
in the cracked region are critical to failure and steel must yield to ensure ductility at failure. Shear resistance is then 
given by Equation 49, which accounts for a stirrup’s contribution and a concrete contribution (using the 𝛽𝛽 parameter 
for “aggregate interlock” and compression field inclination 𝜃𝜃). Due to the nature of the “aggregate interlock” 
mechanism, this equation is restricted to 𝑓𝑓′𝑐𝑐< 64 MPa and a lightweight-aggregate reduction factor 𝜆𝜆 is considered. The 
lever arm may be taken as the maximum between 0.9d e 0.72h. To ensure stirrups yield before crushing of struts, an 
upper bound of 25% of the concrete compression resistance 𝑓𝑓′𝑐𝑐 is set for shear stress [16]. These simplifications allow 
the equation to emulate the empirical “concrete and steel” contribution formula (𝑉𝑉𝑐𝑐 + 𝑉𝑉𝑠𝑠), traditional in the American 
standards and practice [1]. 
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Figure 11: MCFT equilibrium, compatibility and constitutive relationships [16]. 

𝑉𝑉𝑢𝑢
𝑏𝑏𝑐𝑐𝑧𝑧

< 𝑉𝑉𝑛𝑛
𝑏𝑏𝑐𝑐𝑧𝑧

= 𝑉𝑉𝑐𝑐+𝑉𝑉𝑠𝑠
𝑏𝑏𝑐𝑐𝑧𝑧

= 𝜆𝜆𝛽𝛽�𝑓𝑓′𝑐𝑐 + 𝐴𝐴𝑠𝑠𝑐𝑐𝑓𝑓𝑦𝑦𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑏𝑏𝑐𝑐𝑠𝑠
< 0.25𝑓𝑓′𝑐𝑐  (49) 

The 𝛽𝛽 parameter accounts for several effects. Steel longitudinal strain 𝜀𝜀𝑠𝑠 accounts for the “strain effect”, section’s 
reinforcement ratio, level of shear, compression and bending action and rigidity 𝐸𝐸𝑠𝑠. It is obtained by Equation 50 using 
horizontal equilibrium (Figure 12), considering the compressed concrete to be uncracked and taking, conservatively, 
0.5𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃 as 1. Spacing between diagonal cracks 𝑟𝑟𝑚𝑚 increases the crack width 𝑒𝑒 and reduces the “aggregate interlock”. 
This is called “size effect” and is given by Equation 51. Considering an aggregate size correction factor, 𝑟𝑟𝑚𝑚𝑒𝑒 is obtained, 
as shown in Equation 52. For high strength concrete, another correction is necessary, as the cracks tend to form through 
the aggregate. Based on empirical evidence for a diagonally cracked standard beam, the crack width is given as a 
function of longitudinal strain in Equation 53. To avoid negative values in this equation, a lower bound is set to 
Equation 50. Correcting Equation 53 to consider “size effect” and using it into the shear stress on crack considered my 
MCFT, Equation 54 is obtained [17]. 

 
Figure 12: Acting and resisting forces and strains on a section [16]. 

−4 × 10−4 < 𝜀𝜀𝑠𝑠 =
𝑀𝑀𝑢𝑢
𝑧𝑧 +0.5𝑉𝑉𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+0.5𝑁𝑁𝑢𝑢

𝐴𝐴𝑠𝑠,𝑖𝑖𝑛𝑛𝑖𝑖×𝐸𝐸𝑠𝑠
=

𝑀𝑀𝑢𝑢
𝑧𝑧 +𝑉𝑉𝑢𝑢+0.5𝑁𝑁𝑢𝑢
𝐴𝐴𝑠𝑠,𝑖𝑖𝑛𝑛𝑖𝑖×𝐸𝐸𝑠𝑠

< 6 × 10−3  (50) 
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𝑟𝑟𝑚𝑚 = �𝑧𝑧,𝑒𝑒𝑟𝑟𝑐𝑐ℎ𝑟𝑟𝑓𝑓𝑐𝑐 𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑝𝑝𝑟𝑟
0.3𝑐𝑐,𝑒𝑒𝑟𝑟𝑐𝑐ℎ 𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑝𝑝𝑟𝑟  (51) 

𝑟𝑟𝑚𝑚𝑒𝑒 = 𝑟𝑟𝑚𝑚 × 0.035
0.016+𝑚𝑚𝑔𝑔

> 0.85𝑟𝑟𝑚𝑚  (52) 

𝑒𝑒 = 0.2 + 2000𝜀𝜀𝑠𝑠  (53) 

𝛽𝛽 = 4.8
(1+750𝜀𝜀𝑠𝑠)

× 1.3
1+𝑠𝑠𝑚𝑚𝑒𝑒

  (54) 

The compression field inclination 𝜃𝜃 defines the truss’ capacity to redistribute forces to the ties and chords. For the 
steel to yield before the concrete crushes at failure, this angle must be within the limits shown in Figure 13. The 
inclination is assumed a linear function of the longitudinal strain, as in Equation 55. To control this redistribution in the 
truss, an upper bound is set to the angle, though the maximum limit on Equation 50. 

 
Figure 13: Inclination of the compression field as a function of longitudinal deformation [17]. 

𝜃𝜃 = 29° + 3500𝜀𝜀𝑠𝑠  (55) 

The bottom chord of the truss must also be checked, ensuring tension due to shear and flexure aren’t higher than 
the reinforcement’s yield, which leads to Equation 56 [16]. 

𝑓𝑓𝑦𝑦𝑆𝑆 × 𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓 > 𝑀𝑀𝑢𝑢
𝑧𝑧

+ (𝑉𝑉𝑢𝑢 − 0.5𝑉𝑉𝑠𝑠)𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃 + 0.5𝑁𝑁𝑢𝑢  (56) 

Torsion 
Simplified MCFT also accounts for torsion, aided by the thin-walled tube analogy. Its geometry considers spalling 

of the concrete cover and is a function of the original dimensions and the distance from the stirrups to the lateral face 
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of the section (𝑟𝑟2). Based on that, the enclosed area 𝐴𝐴0 and perimeter 𝑝𝑝0 of the shear flow middle line are taken 
respectively as 85% and 90% of the enclosed area 𝐴𝐴oh and perimeter 𝑝𝑝h of the hoops. AASHTO [15] uses the 
equilibrium of the generalized space truss to check for tension on the ties and chords (Equations 57 and 58). Crushing 
of the concrete struts is verified using a factored equivalent shear 𝑉𝑉𝑢𝑢,𝑒𝑒𝑒𝑒, considering a quadratic interaction between 
torsion and shear, that must be lower than 0.25𝑓𝑓′𝑐𝑐𝑏𝑏𝑐𝑐𝑧𝑧 (Equation 59). Since MCFT doesn’t consider a concrete 
contribution to torsion resistance, only the parameters 𝜀𝜀𝑠𝑠 e 𝜃𝜃 are needed, calculated as previously shown for shear [18]. 

𝑇𝑇𝑠𝑠 = 2𝐴𝐴𝑜𝑜𝐴𝐴𝑡𝑡𝑓𝑓𝑦𝑦𝑡𝑡
𝑠𝑠

× 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃  (57) 

𝑀𝑀𝑢𝑢
𝑧𝑧

+ 0.45𝑇𝑇𝑢𝑢𝑠𝑠ℎ
2𝐴𝐴𝑜𝑜

× 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃 < 𝑓𝑓𝑦𝑦𝑆𝑆 × 𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓  (58) 

𝑉𝑉𝑢𝑢,𝑒𝑒𝑒𝑒 = �𝑉𝑉𝑢𝑢2 + �0.9𝑇𝑇𝑢𝑢𝑠𝑠ℎ
2𝐴𝐴𝑜𝑜

�
2

< 0.25 × 𝑓𝑓′𝑐𝑐 × 𝑏𝑏𝑐𝑐 × 𝑧𝑧  (59) 

Flexure and interaction 
Flexure is checked similarly to the Brazilian standard, resulting in Equation 60 [15]. 

𝑀𝑀𝑠𝑠 = 𝑧𝑧 × 𝑓𝑓𝑦𝑦𝑆𝑆𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓 = 0.9𝑎𝑎 × 𝑓𝑓𝑦𝑦𝑆𝑆𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓 𝑟𝑟𝑟𝑟 0.72ℎ × 𝑓𝑓𝑦𝑦𝑆𝑆𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓  (60) 

Interaction on AASHTO affects the equilibrium verifications and β and θ, through the longitudinal strain. However, 
it uses a simplified version of MCFT. Spalling is rarely observed in sections with smaller cover, which leads to 
overestimated torsional stresses. The shear stress limit on the struts is also overconservative for beams with lower 
longitudinal strains [19]. 

Crushing of the struts in interaction is already verified in Equation 59. Tension on the ties is checked by 
superposition of shear and torsion in Equations 61 e 62. On the chords, a quadratic interaction is considered between 
shear and torsion, added to the compression or the tension caused by bending, as in Equations 63 e 64 [18]. Principal 
stresses are not checked on the top chord for solid sections, leaving such verification for a specific hollow section topic. 

𝑇𝑇𝑢𝑢
𝑓𝑓𝑦𝑦𝑐𝑐𝑆𝑆×𝐴𝐴𝑜𝑜×𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐

+ 𝐴𝐴𝑠𝑠𝑣𝑣 < 𝐴𝐴𝑠𝑠𝑐𝑐/𝑟𝑟  (61) 

𝐴𝐴𝑠𝑠𝑣𝑣 = 𝑐𝑐𝑎𝑎𝑓𝑓(𝑉𝑉𝑢𝑢 − 𝑉𝑉𝑐𝑐 , 0)/(𝑓𝑓𝑦𝑦𝑐𝑐𝑆𝑆 × 𝑧𝑧 × 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃)  (62) 

𝑀𝑀𝑢𝑢
𝑧𝑧

+ (�(0.45𝑇𝑇𝑢𝑢𝑠𝑠ℎ
2𝐴𝐴𝑜𝑜

)2 + (𝑉𝑉𝑢𝑢 − 0.5 × 𝑉𝑉𝑠𝑠)2) × 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃 < 𝑓𝑓𝑦𝑦𝑆𝑆 × 𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓  (63) 

−𝑀𝑀𝑢𝑢
𝑧𝑧

+ (�(0.45𝑇𝑇𝑢𝑢𝑠𝑠ℎ
2𝐴𝐴𝑜𝑜

)2 + (𝑉𝑉𝑢𝑢 − 0.5 × 𝑉𝑉𝑠𝑠)2) × 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃 < 𝑓𝑓𝑦𝑦𝑆𝑆 × 𝐴𝐴𝑠𝑠,𝑠𝑠𝑢𝑢𝑠𝑠  (64) 
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3.3 Optimization problem for each standard 

NBR 6118/2014 
For an interaction degree 𝛼𝛼𝑟𝑟 and 𝛽𝛽𝑟𝑟, with unity values for resistance and load factors: 
1) Given a RC beam with the following parameters: 

a. Longitudinal and transverse reinforcement yield stresses: 𝑓𝑓𝑦𝑦𝑆𝑆 ,𝑓𝑓𝑦𝑦𝑐𝑐𝑆𝑆 
b. Concrete compressive strength: 𝑓𝑓𝑐𝑐𝑆𝑆 = 𝑓𝑓𝑐𝑐𝑐𝑐 
c. Cross section dimensions: 𝑏𝑏𝑐𝑐 , h,𝑎𝑎, 𝑟𝑟1 
d. Longitudinal and transverse reinforcement detailing 𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓,𝐴𝐴𝑠𝑠,𝑠𝑠𝑢𝑢𝑠𝑠,𝐴𝐴𝑠𝑠𝑐𝑐, 𝑟𝑟 

2) Auxiliary parameters are calculated: 
a. Concrete average tensile strength (Equation 65): 

𝑓𝑓𝑐𝑐𝑐𝑐,𝑚𝑚 = � 0.3 × 𝑓𝑓𝑐𝑐𝑐𝑐
2/3, 𝑟𝑟𝑓𝑓 𝑓𝑓𝑐𝑐𝑐𝑐 ≤ 50𝑀𝑀𝑀𝑀𝑎𝑎

2.12 × 𝑓𝑓𝑎𝑎(1 + 0.11𝑓𝑓𝑐𝑐𝑐𝑐) , 𝑟𝑟𝑐𝑐ℎ𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑡𝑡
  (65) 

b. Concrete minimum tensile strength (Equation 66): 

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑓𝑓 = 0.7𝑓𝑓𝑐𝑐𝑐𝑐,𝑚𝑚  (66) 

c. Concrete struts strength reduction factor 𝛼𝛼𝑣𝑣2 - Equation 7 
d. Cross section’s area 𝐴𝐴𝑐𝑐, moment of inertia 𝐼𝐼𝑐𝑐 and perimeter 𝑓𝑓 
e. Thin-walled tube thicknesses (ℎ𝑒𝑒,𝑚𝑚𝑠𝑠𝑠𝑠) and (ℎ𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚) - Equations 23 and 24 

3) Max resistance 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 e 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 are calculated as VRd2 (Equation 8), TRd2 (Equation 37) and MRd (Equation 
38) 
4) Objective function is defined as the action multiplier r (Equation 67): 

𝑓𝑓(𝑟𝑟,𝛼𝛼𝑟𝑟 ,𝛽𝛽𝑟𝑟 , ℎ𝑒𝑒 ,𝜃𝜃) = 𝑟𝑟  (67) 

5) The following variables are defined: 
a. Actions MSd, T𝑆𝑆𝑆𝑆  𝑡𝑡 V𝑆𝑆𝑆𝑆 according to Equations 1, 2 and 3 
b. Average strut-and-tie compressive resistance 𝑓𝑓�̅�𝑐𝑆𝑆12 as in Equation 47 
c. Thin-walled tube’s middle line perimeter (𝑓𝑓𝑒𝑒) and enclosed area (𝐴𝐴𝑒𝑒) according to Equations 25 and 26 

6) Constraints on the optimization variables are defined (Equations 68 and 69): 

30° ≤ 𝜃𝜃 ≤ 45°  (68) 

ℎ𝑒𝑒,𝑚𝑚𝑠𝑠𝑠𝑠 ≤ ℎ𝑒𝑒 ≤ ℎ𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚  (69) 

7) Resistance constraints are defined: 
a. 𝑇𝑇𝑆𝑆𝑆𝑆 < 𝑇𝑇𝑅𝑅𝑆𝑆2, 𝑇𝑇𝑅𝑅𝑆𝑆3, 𝑇𝑇𝑅𝑅𝑆𝑆4 according to Equation 31, Equation 35 and Equation 37 
b. 𝑉𝑉𝑆𝑆𝑆𝑆 < 𝑉𝑉𝑅𝑅𝑆𝑆2,𝑉𝑉𝑅𝑅𝑆𝑆3 according to Equation 8 and Equation 17 
c. Flexure and interaction check on the chords according to Equation 42 and Equation 43 
d. Verification of struts and ties according to Equation 39 and Equation 40 
e. Principal compressive stress check (Equation 48) 

8) The objective function is maximized subject to constraints, using actions normalized by the maximum resistance. 
This procedure is shown on Problem 2 (Figure 14) and its MATLAB algorithm is available on SciELO Data RIEM 
repository as Otim_R_NBR [8]. 
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𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆: 𝒇𝒇𝒚𝒚𝑎𝑎 ,𝒇𝒇𝒚𝒚𝒚𝒚𝑎𝑎 ,𝒇𝒇𝒄𝒄𝑎𝑎 ,𝒃𝒃𝒚𝒚, h, 𝑟𝑟1,𝐴𝐴𝑟𝑟,𝑟𝑟𝑎𝑎𝑓𝑓 ,𝐴𝐴𝑟𝑟,𝑟𝑟𝑓𝑓𝑝𝑝 ,𝐴𝐴𝑟𝑟𝑒𝑒 , 𝒔𝒔 

Considering: 

𝑉𝑉𝑅𝑅𝑎𝑎2 = 0.54 × 𝛼𝛼𝑣𝑣2 × 𝑓𝑓𝑟𝑟𝑎𝑎 × 𝑏𝑏𝑒𝑒 × 𝑎𝑎 × sin 𝜃𝜃2 × (cot θ + cot𝛼𝛼) 

𝑉𝑉𝑅𝑅𝑎𝑎3 = 𝑉𝑉𝑟𝑟𝑒𝑒+ 𝑉𝑉𝑟𝑟 =
𝐴𝐴𝑣𝑣𝑓𝑓𝑓𝑓𝑐𝑐0.9𝑎𝑎

𝑟𝑟
× 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃 + 0.6 × 𝑓𝑓𝑟𝑟𝑐𝑐 × 𝑏𝑏𝑒𝑒 × 𝑎𝑎 

ℎ𝑡𝑡 ,𝑐𝑐𝑟𝑟𝑎𝑎 = �min �
𝐴𝐴𝑟𝑟
𝑓𝑓

, 𝑏𝑏𝑒𝑒 − 2𝑟𝑟1� , 𝑟𝑟𝑓𝑓 
𝐴𝐴𝑟𝑟
𝑓𝑓

< 2𝑟𝑟1

2𝑟𝑟1,  𝑟𝑟𝑐𝑐ℎ𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑡𝑡
 

ℎ𝑡𝑡 ,𝑐𝑐𝑎𝑎𝑓𝑓 = �
ℎ𝑡𝑡 ,𝑐𝑐𝑟𝑟𝑎𝑎 , 𝑟𝑟𝑓𝑓 

𝐴𝐴𝑟𝑟
𝑓𝑓

< 2𝑟𝑟1

𝐴𝐴𝑟𝑟
𝑓𝑓

,  𝑟𝑟𝑐𝑐ℎ𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑡𝑡
 

𝑇𝑇𝑅𝑅𝑎𝑎2 = 0.5 × 𝛼𝛼𝑣𝑣2 × 𝑓𝑓𝑟𝑟𝑎𝑎 × 𝐴𝐴𝑡𝑡 × ℎ𝑡𝑡 × sin 2𝜃𝜃 

𝑇𝑇𝑅𝑅𝑎𝑎3 = 𝐴𝐴𝑟𝑟𝑒𝑒 × 𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎 × 𝐴𝐴𝑡𝑡 × cot𝜃𝜃 /𝑟𝑟 

𝑇𝑇𝑅𝑅𝑎𝑎4 = 4 × 𝐴𝐴𝑟𝑟 × 𝑓𝑓𝑓𝑓𝑎𝑎 × 𝐴𝐴𝑡𝑡 ×
tan θ
𝑓𝑓𝑡𝑡

 

𝜎𝜎𝑟𝑟𝑐𝑐𝑎𝑎𝑓𝑓 =
𝜎𝜎𝑟𝑟𝑐𝑐𝑡𝑡𝑎𝑎

2
+ ��

𝜎𝜎𝑟𝑟𝑐𝑐𝑡𝑡𝑎𝑎
2

�
2

+ 𝜏𝜏𝑐𝑐2 

𝑓𝑓�̅�𝑟𝑎𝑎12 = 𝜆𝜆𝑓𝑓𝑟𝑟𝑎𝑎1 + (1 − 𝜆𝜆)𝑓𝑓𝑟𝑟𝑎𝑎2,𝑒𝑒ℎ𝑡𝑡𝑟𝑟𝑡𝑡 𝜆𝜆 = 𝑟𝑟𝑟𝑟𝑟𝑟 𝛾𝛾  𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 = 𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑏𝑏 �
𝑇𝑇𝑆𝑆𝑎𝑎

𝑇𝑇𝑐𝑐𝑎𝑎𝑓𝑓�
𝑀𝑀𝑆𝑆𝑎𝑎

𝑀𝑀𝑐𝑐𝑎𝑎𝑓𝑓
�

� 

𝐴𝐴𝑟𝑟𝑣𝑣 = max(𝑉𝑉𝑆𝑆𝑎𝑎 − 𝑉𝑉𝑟𝑟 , 0)/(𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎 × 𝑧𝑧 × 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃) 

Maximize 𝑓𝑓(r,𝛼𝛼𝑟𝑟 ,𝛽𝛽𝑟𝑟 ,ℎ𝑡𝑡 ,𝜃𝜃) = r  

r,ℎ𝑡𝑡 ,𝜃𝜃 ∈ ℝ  
𝛼𝛼𝑟𝑟 ,𝛽𝛽𝑟𝑟  ∈ [0,π/2] 

𝑀𝑀𝑆𝑆𝑎𝑎 = 𝑀𝑀𝑐𝑐𝑎𝑎𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝛽𝛽𝑟𝑟 ;𝑇𝑇𝑆𝑆𝑎𝑎 = 𝑇𝑇𝑐𝑐𝑎𝑎𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝛼𝛼𝑟𝑟 ; 𝑉𝑉𝑆𝑆𝑎𝑎 = 𝑉𝑉𝑐𝑐𝑎𝑎𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝛼𝛼𝑟𝑟  

Subject to: 30° ≤ 𝜃𝜃 ≤ 45° 
 

ℎ𝑡𝑡 ,𝑐𝑐𝑟𝑟𝑎𝑎 ≤ ℎ𝑡𝑡 ≤ ℎ𝑡𝑡 ,𝑐𝑐𝑎𝑎𝑓𝑓  
 

𝑇𝑇𝑆𝑆𝑎𝑎 < 𝑇𝑇𝑅𝑅𝑎𝑎2, 𝑇𝑇𝑅𝑅𝑎𝑎3, 𝑇𝑇𝑅𝑅𝑎𝑎4 
 

𝑉𝑉𝑆𝑆𝑎𝑎 < 𝑉𝑉𝑅𝑅𝑎𝑎2,𝑉𝑉𝑅𝑅𝑎𝑎3 
 

−𝑀𝑀𝑆𝑆𝑎𝑎/0.9𝑎𝑎 + (0.5𝑉𝑉𝑆𝑆𝑎𝑎 + 𝑇𝑇𝑆𝑆𝑎𝑎 × 𝑓𝑓𝑡𝑡/4𝐴𝐴𝑡𝑡) cot θ < 𝑓𝑓𝑓𝑓𝑎𝑎 × 𝐴𝐴𝑟𝑟, 𝑟𝑟𝑓𝑓𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
 

𝑀𝑀𝑆𝑆𝑎𝑎/0.9𝑎𝑎 + (0.5𝑉𝑉𝑆𝑆𝑎𝑎 + 𝑇𝑇𝑆𝑆𝑎𝑎 × 𝑓𝑓𝑡𝑡/4𝐴𝐴𝑡𝑡) cot θ < 𝑓𝑓𝑓𝑓𝑎𝑎 × 𝐴𝐴𝑟𝑟 𝑟𝑟𝑎𝑎𝑓𝑓𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
 

𝑇𝑇𝑆𝑆𝑎𝑎
𝑇𝑇𝑅𝑅𝑎𝑎2

+
𝑉𝑉𝑆𝑆𝑎𝑎
𝑉𝑉𝑅𝑅𝑎𝑎2

< 1 

 
𝜎𝜎𝑟𝑟𝑐𝑐𝑎𝑎𝑓𝑓 < 𝑓𝑓𝑟𝑟𝑎𝑎1−2 

 
𝑇𝑇𝑆𝑆𝑎𝑎

𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎 × 𝐴𝐴𝑡𝑡 × cot𝜃𝜃
+ 𝐴𝐴𝑟𝑟𝑣𝑣 < 𝐴𝐴𝑟𝑟𝑒𝑒/𝑟𝑟 

 
 

Figure 14: Subroutine for Problem 2. 

AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS 2014 
For an interaction degree 𝛼𝛼𝑟𝑟 and 𝛽𝛽𝑟𝑟, with unity values for resistance and load factors: 
1) Given a RC beam with the following parameters: 

a. Longitudinal and transverse reinforcement yield stresses and Young’s Modulus: 𝑓𝑓𝑦𝑦, 𝑓𝑓𝑦𝑦𝑐𝑐 ,𝐸𝐸𝑠𝑠(≅ 210𝐺𝐺𝑀𝑀𝑎𝑎) 
b. Concrete compressive strength: 𝑓𝑓′𝑐𝑐 
c. Cross section dimensions: 𝑏𝑏𝑐𝑐 , h,𝑎𝑎, 𝑟𝑟2 
d. Longitudinal and transverse reinforcement detailing 𝐴𝐴𝑠𝑠,𝑠𝑠𝑠𝑠𝑓𝑓,𝐴𝐴𝑠𝑠,𝑠𝑠𝑢𝑢𝑠𝑠,𝐴𝐴𝑠𝑠𝑐𝑐, 𝑟𝑟 
e. Max aggregate size 𝑎𝑎𝑔𝑔 (linearly reduced if 60MPa < 𝑓𝑓′𝑐𝑐 < 70MPa) 

2) Auxiliar parameters are calculated: 
a. Stirrup’s enclosed area 𝐴𝐴𝑐𝑐ℎ and perimeter 𝑝𝑝ℎ 
b. Thin-walled tube’s middle line enclosed area 𝐴𝐴𝑐𝑐 and perimeter 𝑝𝑝𝑐𝑐 taken respectively as 85% of 𝐴𝐴𝑐𝑐ℎ and 90% 
of 𝑝𝑝ℎ 
c. Lever arm z taken as max between 90% of d and 72% of h 
d. Effective diagonal cracks spacing 𝑟𝑟x𝑒𝑒 according to Equation 52 
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3) Max resistance 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 e 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 are taken as the upper bound of (Equation 49) for shear and torsion and 
maximum of (Equation 38) for the bending moment 
4) Objective function is defined as the action multiplier r (Equation 70): 

𝑓𝑓(𝑟𝑟,𝛼𝛼𝑟𝑟 ,𝛽𝛽𝑟𝑟) = 𝑟𝑟  (70) 

5) The following variables are defined: 
a. Factored actions Mu, T𝑢𝑢 𝑡𝑡 V𝑢𝑢 according to Equations 1, 2 and 3 
b. Factored equivalent shear force Vu,eq according to Equation 59 
c. Longitudinal reinforcement strain 𝜀𝜀𝑠𝑠 (Equation 50), struts inclination 𝜃𝜃 (Equation 55) and “aggregate 
interlock” parameter β (Equation 54) 

6) Resistance constraints are defined: 
a. Flexure and interaction check on the chords according to Equation 63 and Equation 64 
b. Shear, torsion and interaction verifications on the ties and the struts according to Equations 59 and 61 

7) The objective function is maximized subject to constraints, using actions normalized by the maximum resistance. 
This procedure is shown on Problem 3 (Figure 15) and its implementation on MATLAB is available on the SciELO 
Data RIEM repository as Otim_R_AASHTO [8]. 

𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆: 𝑓𝑓𝑓𝑓𝑎𝑎 ,𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎 ,𝑓𝑓𝑟𝑟𝑎𝑎 , 𝑏𝑏𝑒𝑒 ,ℎ, 𝑟𝑟2,𝐴𝐴𝑟𝑟,𝑟𝑟𝑎𝑎𝑓𝑓 ,𝐴𝐴𝑟𝑟,𝑟𝑟𝑓𝑓𝑝𝑝 ,𝐴𝐴𝑟𝑟𝑒𝑒 , 𝑟𝑟, 𝑎𝑎𝑏𝑏 

Consider ing: 

𝐴𝐴𝑟𝑟=0.85𝐴𝐴𝑟𝑟ℎ  and 𝑝𝑝𝑟𝑟=0.9𝑝𝑝ℎ  

𝐴𝐴𝑟𝑟𝑣𝑣 ,𝑐𝑐𝑟𝑟𝑎𝑎 = 0.083 × �𝑓𝑓′𝑟𝑟 × 𝑏𝑏𝑒𝑒 × 𝑟𝑟/𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎  

𝑟𝑟𝑓𝑓 = �
𝑧𝑧,  if 𝐴𝐴𝑟𝑟𝑒𝑒 ≥ 𝐴𝐴𝑟𝑟𝑣𝑣 ,𝑐𝑐𝑟𝑟𝑎𝑎

0.3𝑐𝑐, if 𝐴𝐴𝑟𝑟𝑒𝑒 < 𝐴𝐴𝑟𝑟𝑣𝑣 ,𝑐𝑐𝑟𝑟𝑎𝑎
 

𝑟𝑟x𝑡𝑡 = 𝑟𝑟𝑓𝑓 ×
0.035

0.016 + 𝑎𝑎𝑏𝑏
> 0.85𝑟𝑟𝑓𝑓  

𝑉𝑉𝑓𝑓 ,𝑡𝑡𝑞𝑞 = �𝑉𝑉𝑓𝑓2 + �
0.9𝑇𝑇𝑓𝑓𝑝𝑝ℎ

2𝐴𝐴𝑟𝑟
�

2

 

−4 × 10−4 ≤ 𝜀𝜀𝑟𝑟 =
Mu
𝑧𝑧 + 𝑉𝑉u,eq

𝐴𝐴𝑟𝑟,𝑟𝑟𝑎𝑎𝑓𝑓 × 𝐸𝐸𝑟𝑟
≤ 6 × 10−3 

𝛽𝛽 =
4.8

(1 + 750𝜀𝜀𝑟𝑟) ×
1.3

1 + 𝑟𝑟x𝑡𝑡
 

𝜃𝜃 = 29° + 3500𝜀𝜀𝑟𝑟 

𝑉𝑉𝑟𝑟 = 0.083 × 𝛽𝛽 × �𝑓𝑓′𝑟𝑟 × 𝑏𝑏𝑒𝑒 × 𝑧𝑧|𝑉𝑉𝑟𝑟 = 𝐴𝐴𝑟𝑟𝑒𝑒 𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃
𝑏𝑏𝑒𝑒 𝑟𝑟

 

𝐴𝐴𝑟𝑟𝑣𝑣 = max(𝑉𝑉𝑓𝑓 − 𝑉𝑉𝑟𝑟 , 0)/(𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎 × 𝑧𝑧 × 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃) 

Maximize 𝑓𝑓(r,𝛼𝛼𝑟𝑟 ,𝛽𝛽𝑟𝑟) = r  

r ∈ ℝ | 𝛼𝛼𝑟𝑟 ,𝛽𝛽𝑟𝑟  ∈ [0,π/2] 𝑀𝑀𝑓𝑓 = 𝑀𝑀𝑐𝑐𝑎𝑎𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝛽𝛽𝑟𝑟 ;𝑇𝑇𝑓𝑓 = 𝑇𝑇𝑐𝑐𝑎𝑎𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝛼𝛼𝑟𝑟 ; 𝑉𝑉𝑓𝑓 = 𝑉𝑉𝑐𝑐𝑎𝑎𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝛼𝛼𝑟𝑟  

Subject to: 𝑇𝑇𝑓𝑓
𝐴𝐴𝑟𝑟𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃

+ 𝐴𝐴𝑟𝑟𝑣𝑣 <
𝐴𝐴𝑣𝑣
𝑟𝑟

 

 
𝑉𝑉u,eq < 0.25 × 𝑓𝑓′𝑟𝑟 × 𝑏𝑏𝑒𝑒 × 𝑧𝑧 

 
𝑀𝑀𝑓𝑓

𝑧𝑧
+ (�(

0.45𝑇𝑇𝑓𝑓𝑝𝑝ℎ
2𝐴𝐴𝑟𝑟

)2 + (𝑉𝑉𝑓𝑓 − 0.5 × 𝑉𝑉𝑟𝑟)2) × 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃 < 𝑓𝑓𝑓𝑓𝑎𝑎 × 𝐴𝐴𝑟𝑟, 𝑟𝑟𝑎𝑎𝑓𝑓  

 

−
𝑀𝑀𝑓𝑓

𝑧𝑧
+ (�(

0.45𝑇𝑇𝑓𝑓𝑝𝑝ℎ
2𝐴𝐴𝑟𝑟

)2 + (𝑉𝑉𝑓𝑓 − 0.5 × 𝑉𝑉𝑟𝑟)2) × 𝑟𝑟𝑟𝑟𝑐𝑐𝜃𝜃 < 𝑓𝑓𝑓𝑓𝑎𝑎 × 𝐴𝐴𝑟𝑟,𝑟𝑟𝑓𝑓𝑝𝑝  

 
 

Figure 15: Subroutine for Problem 3. 
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3.4 Post-processing 
Based on the optimization’s solution point and previous equations, the trio of resistance values for each interaction 

degree 𝛼𝛼𝑟𝑟 and 𝛽𝛽𝑟𝑟 is obtained. These values are then divided by the maximum resistance found for each kind. For each 
beam, several 𝛼𝛼𝑟𝑟 and 𝛽𝛽𝑟𝑟 are evaluated, ranging from 0º to 90º in 6º steps, obtaining enough points to plot a smooth 
interaction surface using interpolation. For comparison, experimental data points from the analyzed tests are plotted 
along with hidden lines starting from the origin. These were normalized using the maximum predicted resistance based 
on the tested beam’s parameters, which may differ from nominal values. The scaling values were obtained by the 
programs MVTmax_NBR e MVTmax_AASHTO, available in [8]. Also, the algorithm calculates the value of the 
constraints at the solution, indicating the active one on the plot using a color code. 

This post-processing procedure was also implemented in MATLAB and is available on the author’s SciELO Data 
RIEM repository as Pos_OtimR_NBR_AASHTO [8]. 

4 COMPARISON WITH EXPERIMENTS 

4.1 Analyzed tests 
The first analyzed experiment was done by Badawy et al. [20], in which seven straight beams (S1 to S7) were tested 

under combined action until failure, as shown in Figure 16. The test region of the beams had the cross section shown 
in Figure 17. Other parameters are summarized on Table 1 and test results are shown in Table 2. 

 
Figure 16: Test setup for combined action on beams S1 to S7 (dimensions in mm) [20]. 

 
Figure 17: S1 to S7 beams cross section (dimensions in cm and bars diameter in mm). 

The second analyzed experiment was done by McMullen and Warwaruk [21], in which 34 beams were tested under combined 
action until failure, comprising 7 groups with different reinforcement. Groups 5, 6 and 7, hereby called M5, M6 and M7 were the 
only tested under torsion, shear and bending. They were setup as shown in Figure 18 and had cross sections like those of Figure 19. 
As top and bottom reinforcement had different steel grades, the top reinforcement area will be multiplied by 

𝑓𝑓𝑦𝑦,𝑠𝑠𝑢𝑢𝑠𝑠

𝑓𝑓𝑦𝑦,𝑖𝑖𝑛𝑛𝑖𝑖
 and bottom 

reinforcement strength will be used. Other parameters are summarized on Table 1 and test results are shown in Table 2. 
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Figure 18: Test setup for combined action on beams M5 a M7 [21]. 

 
Figure 19: M5 to M7 beams cross section (dimensions in cm and bars diameter in mm). 

Table 1: Other beams’ parameters [20], [21]. *Areas multiplied by 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑓𝑓𝑝𝑝
𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑎𝑎𝑓𝑓

 

Beams S1 a S7 M5 M6 M7 

fyd,inf (MPa) 475 323.4 323.4 302.0 

fyd,sup (MPa) 475 365.4 365.4 365.4 

fywd (MPa) 300.3 370.25 370.25 370.25 

fcd (MPa) 30 34.47 34.47 34.47 

bw (cm) 15.2 15.24 15.24 15.24 

h (cm) 30.5 30.48 30.48 30.48 

d (cm) 26.7 26.03 26.03 25.72 

c1 (mm) 38 44.75 44.75 47.63 

c2 (mm) 24.95 30.16 30.16 30.16 

As,inf (cm2) 5.73 5.73 5.73 10.13 

As,sup (cm2) 5.73 1.61* 1.61* 1.73* 

Asw (cm2) 0.79 1.43 1.43 1.43 

s (cm) 10.2 8.255 8.255 12.7 

Ag (mm) 19 19 19 19 
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Table 2: Test results [20], [21]. 

Beams 
Mexp Texp 

Vexp (kN) bw,exp (cm) hexp (cm) fccexp (MPa) 
(kN · m) (kN · m) 

S1 76.82 0.00 0.00 15.2 30.5 30 

S2 0.00 13.56 0.00 15.2 30.5 30 

S3 18.81 12.42 23.13 15.2 30.5 30 

S4 51.51 10.73 50.71 15.2 30.5 30 

S5 0.00 0.00 151.20 15.2 30.5 30 

S6 0.00 8.93 93.41 15.2 30.5 30 

S7 0.00 11.65 48.93 15.2 30.5 30 

M5-1 7.34 14.46 3.38 15.88 30.81 39.37 

M5-2 16.16 15.93 8.41 16.21 30.81 43.92 

M5-3 31.41 14.69 17.21 15.24 30.81 41.78 

M5-4 43.95 11.19 24.51 15.88 30.81 39.99 

M6-1 7.34 14.57 8.05 15.88 30.81 40.40 

M6-2 16.83 16.38 18.99 15.09 30.81 40.89 

M6-3 29.83 14.91 34.12 15.88 30.81 39.30 

M6-4 48.24 12.09 55.38 16.21 30.81 39.44 

M7-1 6.33 12.65 6.94 15.09 30.81 41.92 

M7-2 12.99 12.99 14.77 15.88 30.81 35.92 

M7-3 31.07 14.91 36.07 16.21 30.81 39.30 

M7-4 57.06 14.12 66.59 15.09 30.81 36.82 

4.2 Results and discussion 

S1 to S7 beams 
Running the optimization and post-processing algorithms for the beams from Badawy et al. [20], the 

interaction surfaces were obtained for both standards (Figure 20). These were compared with the AASHTO 
interaction diagram for the same beams taken from Rahal [19] for validity, shown in Figure 21. The shape and 
magnitude of the surface is similar, although the drawing projection and the scaling factors were different from 
the ones used in this article. Due to some inconsistencies between Rahal’s interaction surface and Badawy’s 
experimental results, results S5, S6 and S7 were omitted from Rahal’s interaction surface when used for 
validation. 

Most of the surface is limited by yielding of ties, with an almost “conical” interaction (circular shear-torsion 
interaction, with decreasing radius following bending increase). Only with high flexure levels, chord resistance 
is critical. On AASHTO surface, the active constraint is yielding on the bottom chord. On the NBR diagram, 
the principal compressive stress check on the top chord was critical. This “extra” constraint prescribed by 
NBR 6118 chops the tip of the interaction surface when compared to the AASHTO’s surface. 
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Figure 20: Interaction surface according to NBR and AASHTO for beams S1-S7. 

 
Figure 21: Adapted from Rahal’s AASHTO surface for beams S1-S4 [19].M5 to M7 beams. 

Running the optimization and post-processing algorithms for the beams from McMullen and Warwaruk [21], the interaction 
surfaces were obtained for both standards (Figure 22 for groups M5 and M6 and Figure 23 for group M7). On these beams, it 
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was observed a region on the surface (for low levels of flexure) which was limited by the yielding of the top chord, due to a weak 
top reinforcement. At this area, small increments on the bending moment led to an increase in torsion resistance, as the flexure 
compression alleviates the tension on the chord. This had been observed in similar situations by Onsongo [22]. 

For medium levels of flexure, resistance is limited by yielding of ties according to both standards. Beams M5 and M6, with 
weaker longitudinal reinforcement, show yielding of the bottom chord as critical even on this region, whereas beams M7 have 
this constraint as critical only in high levels of flexure. On either case, this interaction rapidly escalates for higher bending 
moments, causing a drastic reduction in shear and torsion resistance. For beams M7, the verification of compressive principal 
stresses on the top chord is once again critical according to NBR, predicting lower flexure resistance than AASHTO. 

 
Figure 22: Interaction surface according to NBR and AASHTO for beams M5 e M6. 

 
Figure 23: Interaction surface according to NBR and AASHTO for beams M7. 
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5 CONCLUSIONS 
The proposed optimization method development and application for tested beams using prescriptions from NBR 

6118/2014 and AASHTO LRFD 2014 allowed to demonstrate its practicality and validity against results from the 
literature: 
• The procedure was efficient and effective in predicting RC beams resistance under combined action for torsion, 

flexure and shear. 
• The program also illustrated the critical resistance mechanism under interaction, aiding the engineer’s decision 

making. 
• The performance of both standards on predicting the interaction response of the RC beams was satisfactory when 

confronted against experimental data. 
• NBR 6118/2014 has a much bigger number of equations, which makes its use more complex and may lead to the 

application of simplified methods. 
• AASHTO LRFD 2014, on the other hand, shows a simple and direct general procedure, that analyzes not only 

failure but the action-strain response. 
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