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Abstract: Corrosion is one of the main phenomena that lead to pathological manifestations in reinforced concrete 
structures under aggressive environments. with the chloride ion being the most responsible for its occurrence. In this 
way, understanding the transport mechanisms of this ion through the microstructure of the concrete is of fundamental 
importance to prevent or delay the penetration of these aggressive agents to guarantee a durable structure. In the 
literature, there are extensive studies concerning the diffusion of chlorides in concrete and the influence of pozzolanic 
additions in this mechanism. However, only a few correlate the different methods of analysis. This work aims to 
determine the chloride ion diffusion coefficients in concrete containing various levels of silica fume (5%, 10%, and 
15%) or varying the mortar content (54%, 80%, and 100%), and compares the results obtained through column tests 
and chloride migration tests. It was observed that, although the techniques used were quite distinct, the diffusion 
values obtained were similar, contributing to the validation of both techniques. Furthermore, the variation in the 
mortar ratio causes a reduction in the interfacial transition zone of coarse aggregate/mortars and an increase in the 
content of aluminates, which promotes a similar effect to the use of silica fume. 

Keywords: Diffusion coefficient, concrete, mortar, chloride penetration, corrosion. 

Resumo: A corrosão é um dos principais fenômenos que geram manifestações patológicas nas estruturas de concreto 
armado em ambientes agressivos, sendo o íon cloro o maior responsável por sua ocorrência. Desta forma, entender os 
mecanismos de transporte deste íon através da microestrutura do concreto é de fundamental importância para impedir ou 
retardar a penetração destes agentes agressivos, visando garantir uma estrutura durável. Na literatura são vastos os estudos 
referentes à difusão de cloretos em concreto e a influência das adições pozolânicas neste mecanismo, entretanto, poucos 
correlacionam os diferentes métodos de análise. Assim, este trabalho visa determinar os coeficientes de difusão do íon 
cloro em concretos contendo diversos teores de adição de sílica ativa (5%, 10% e 15%) ou com variação do teor de 
argamassa (54%, 80% e 100%), comparando os resultados obtidos por meio dos ensaios de migração iônica e de coluna. 
Observou-se que, apesar das técnicas utilizadas serem bastante distintas, os valores de coeficientes de difusão obtidos 
foram semelhantes, colaborando para a validação de ambas as técnicas. Além disso, a variação no teor de argamassa 
acarreta uma redução na zona de transição interfacial agregado graúdo/argamassas e um aumento no teor de aluminatos, 
o que promove efeito semelhante ao uso de sílica ativa. 
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1 INTRODUCTION 
Concrete is a durable material when well dosed and executed, however, concrete structures can deteriorate because 

of a series of deleterious mechanisms/reactions, bringing risks to the safety of users, besides the high costs of repairs. 
The addition of supplementary materials with pozzolanic characteristics has been proving to be a good alternative 

for improve the concrete properties while also reducing cement consumption. The addition of silica fume (a byproduct 
with a high SiO2 content) to concrete allows the formation of secondary calcium silicate hydrates (C-S-H), which 
promote the pore sealing and discontinuity, making the passage of chloride ions more difficult and increasing their 
adsorption on the surface of the formed C-S-H [1]–[3]. 

According to Helene [4], chlorides penetrate through the pores, reaching the rebar and starting the corrosion. Thus, 
understanding how these ions diffuse inside the concrete can indicate the most appropriate material to be used. 

Among the techniques extensively studied in the literature for chloride diffusion in concrete, are those used 
by Ribeiro et al. [5], Shackelford [6] and Andrade [7], based on ASTM C 1202 [8], NT BUILD 492 [9], ASTM 
C 1556 [10], and ASTM C 1543 [11]. These aim to accelerate the natural process of penetration of these ions 
and allow the determination not only of diffusion but also of other transport parameters such as tortuosity and 
mechanical dispersion. 

The most usual techniques for determining the diffusion coefficient in concrete with a short test time apply a 
potential difference to accelerate the passage of chlorides. Andrade [7] considers that with potential differences of 
around 10 to 15 VDC, the migration phenomenon becomes predominant and the agitation caused in the particles is 
reduced, avoiding the problem of overheating in the methodology employed by ASTM C 1202 [8], which significantly 
affects the results obtained. 

Other studies evaluate the penetration of harmful substances in porous media, based on the phenomenon of 
diffusion, such as the bulk diffusion test standardized by ASTM C 1556 [10] that provides results closer to reality and 
takes longer. In the evaluation of soils, for example, there are tests in which no application of electrical potential 
difference but rather of pressure in a fluid containing contaminant. Thus, the results obtained portray the phenomenon 
studied more adequately while not altering the agitation of particles due to application of potential difference. This 
method has already been applied in cementitious matrices in the studies performed by Vilasboas et al. [12] and 
Visudmedanukul [13], an adaptation of the NBR 10786 [14]. 

Given the several methodologies with different physical principles used to measure chloride diffusion, this work 
aims to provide correlations between the chloride migration test standardized by UNE 83987 [15] and the column test, 
to verify the accuracy and reliability of these methods when applied to cement matrices. Furthermore, the influence of 
silica fume addition and the variation of mortar content on the diffusion results will be evaluated. This is because the 
covering layer in reinforced concrete structures has a higher mortar content than the concrete inside them due to the 
compaction and finishing of the structural elements. 

2 MATERIALS AND EXPERIMENTAL PROGRAM 

2.1 Materials 
In this research Portland CP V-ARI RS cement, standardized by NBR 16697 [16], fine quartz aggregate 

from the metropolitan region of Salvador, coarse aggregate, silica fume and CEMIX 2000 plasticizer admixture 
were used. 

The concrete formulation 1.00: 1.83: 2.37: x: 0.60 (cement: fine quartz aggregate: coarse aggregate: silica 
fume: water) was used. Its consistency, evaluated by slump test, was fixed at 180 ± 10 mm, and the content of 
silica fume added ranged from 5% (5-SA), 10% (10-SA) to 15% (15-SA) by mass of cement. The water/cement 
ratio was fixed at 0.60 and the reference concrete produced had C30 class for Brazilian compressive strength, 
according to NBR 8953 [17]. 

The samples were also prepared with varying amounts of mortar, from 54% (reference), 80% (80-AG), to 100% 
(100-AG). The materials used in the preparation of the concrete are presented in Table 1. 
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Table 1. Materials consumption per cubic meter of concrete. 

Mixture Cement 
(kg/m3) 

Fine quartz 
(kg/m3) 

Coarse 
(kg/m3) 

Silica fume 
(kg/m3) 

Water 
(kg/m3) 

Plasticizer 
admixture 

(l/m3) 

Compressive 
strength at 28 
days (MPa) 

REF 409.6 749.5 970.6 - 245.7 - 31.00 ± 0.85 
5-SA 407.6 745.9 965.9 20.5 244.5 0.48 31.35 ± 1.62 
10-SA 404.1 739.5 957.6 41.0 242.4 1.46 35.44 ± 0.67 
15-SA 400.7 733.2 949.5 61.4 240.4 1.88 37.67 ± 0.61 
80-AG 520.8 953.1 468.7 - 312.5 - 33.00 ± 1.00 
100-AG 622.5 1139.2 - - 373.5 - 32.65 ± 1.32 

The cement has a specific gravity (helium gas pycnometry - AccuPyc II 1340 Micromeritics) equal to 3.14 g/cm3, 
specific surface area BET (Gemini 2370 V1.02 - Micrometrics) equal to 7480 cm2/g and median equivalent diameter, 
D50 (Mastersizer 2000 Malvern), equal to 0.038 mm. 

The silica fume has a specific gravity equal to 2.35 g/cm3, specific surface area equal to 14860 cm2/g, and median 
equivalent diameter (D50) equal to 0.0047 mm. 

Table 2 presents the chemical compositions of the cement and silica fume obtained by X-ray fluorescence 
spectrometry (Shimadzu XRF-1800). It can be observed that the chemical composition of the Portland cement contains 
the following main components, such as calcium oxide (CaO), silica (SiO2), alumina (Al2O3), iron oxide (Fe2O3), 
magnesium oxide (MgO), a small percentage of sulfur trioxide (SO3) and other impurities. The presence of alumina 
(4.84%) is associated with C4AF (tetra-calcium aluminate iron) and C3A (tricalcium aluminate) phases. According to 
Shi et al. [18], Ribeiro et al. [5], and Yue et al. [19], the aluminate content delays the non-steady state diffusion of 
chlorides due to the formation of chloroaluminates in the concrete microstructure, in particular Friedel's salt 
(C3A⋅CaCl2⋅10H2O). 

Table 2. Chemical compositions of cement and silica fume used, in oxides. 

Content % CaO SiO2 Al2O3 MgO Fe2O3 SO3 K2O Na2O ZnO MnO LOI.a) 
Cement 61.12 19.10 4.84 2.73 3.19 3.35 0.70 0.24 - - 5.60 

Silica fume - 79.00 - - - - - - 16.86 4.14 4.40 
a) Loss on ignition. 

In the chemical composition of the silica fume, mainly silica (SiO2) is observed along with impurities such as zinc 
oxide (ZnO) and manganese oxide (MnO). However, the silica content in the silica fume used (79%) is lower than the 
minimum content established by the Brazilian standard NBR 13956 [20], which is 85%. 

For the fine quartz aggregate, the specific gravity was determined according to NBR NM 52 [21]. The specific gravity of the 
coarse aggregate was determined according to NBR NM 53 [22]. Both aggregates were manually sieved, according to NBR NM 
248 [23] to determine the granulometric composition. The results of this characterization can be seen in Table 3. 

Table 3. Physical characterization of aggregates and methods used. 

Properties Method Fine quartz Coarse 
Specific gravity (g/cm3) NM 52:2009 a) and NBR NM 53:2009 b) 2.66 2.87 

Maximum diameter (mm) 
NBR NM 248:2003 1.17 9.50 

Fineness Modulus 1.32 5.72 
Obs.: a) Method used to fine aggregate characterization; b) Method used to coarse aggregate characterization. 

2.2 Physical characterization of concretes 
The water absorption by capillarity of each mix design was determined according to the procedure according to 

NBR 9779 [24]. Three cylindrical specimens (ϕ10 cm x 20 cm) were used, and after 28 days of curing, they were dried 
in an oven to a constant mass. Then, the specimens were positioned in a container with a water slide equal to 5 ± 1 mm 
above the lower face, and the masses were monitored until equilibrium. 
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To calculate the sorptivity (S), the slope of the line generated by the results of water absorption (A, kg/m2) as a 
function of the square root of time (t) is used, according to Equation 1. 

𝐴𝐴 = 𝑏𝑏 + 𝑆𝑆 ⋅ √𝑡𝑡 (1) 

This test depends directly on the radius of the pores in the material, so the sorptivity is an indication of the diffusion 
results and consequently the durability of the concrete. 

After 28 days, three specimens were tested using the Archimedes principle, according to NBR 9778 [25]. The 
specimens were dried in an oven and their dry masses (Md) were determined, then the samples were immersed in water 
for 72h for complete saturation of the existing open porosity, and the immersed (Mi) and wet (Mw) masses were 
determined. The apparent porosity (PA) and density (DA) were calculated based on Equations 2 and 3, respectively, with 
ρL being the density of the liquid (in this case, water, equal to 1 g/cm3). 

𝑃𝑃𝐴𝐴 = 100 ⋅ 𝑀𝑀𝑤𝑤−𝑀𝑀𝑑𝑑
𝑀𝑀𝑤𝑤−𝑀𝑀𝑖𝑖

 (2) 

𝐷𝐷𝐴𝐴 =  ρ𝐿𝐿  ⋅ 𝑀𝑀𝑑𝑑
𝑀𝑀𝑤𝑤−𝑀𝑀𝑖𝑖

 (3) 

2.3 Chloride Migration Assessment in Concrete 

2.3.1 Sample selection and calibration of conductivity curve 
The selection of representative specimens of each composition is complicated because of the great diversity of elements (and 

their relative ratios). Therefore, an adaptation of ASTM E 562 [26] proposed by Ribeiro [5] was used. According to this standard, 
the relative amount (%) of a certain target phase (coarse aggregate, in this work) can be estimated by overlaying a grid on the 
specimen and then counting the intersecting nodes in the middle and edges of the target phase. In this example, which is illustrated 
in Figure 1, the grid contains 38 nodes, and intersections with gravel correspond to 15 points (12 in the middle + 6⋅0.5 at the 
edges). Thus, 15/38 would yield an estimated 39.5 vol.% of gravel in the sample. 

 
Figure 1. Process of sample selection and phase quantification for chloride migration tests, adapted from ASTM E 562–02 [5]. 

Prior to conducting the chloride migration tests, the specimens were submerged in distilled water for 24h, as in Ribeiro et al. 
[5], Castellote et al. [27], and Amorim Júnior et al. [28] studies, to saturate the specimens so that only the ionic migration occurred 
during the test. During the tests, the electrical conductivity of the anodic cell solution was monitored daily using a portable pen-
type digital conductivity meter (Homis Model 42). The concentration of chlorides in the anodic cell was estimated using the 
equation y = 132.88⋅x (R2 = 0.9969), where x is the conductivity in mS/cm and y is the concentration of Cl- in mol/l. This 
mathematical expression was obtained experimentally (Figure 2) with NaCl solutions, at 20 ºC. 
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Figure 2. Experimental relationship between electrical conductivity and chloride concentration in the anodic compartment, which 

initially contains distilled water. 

2.3.2. Accelerated migration test 
This test uses the principle of applying a potential difference between two cells, one filled with a solution containing 

a contaminant (NaCl) and the other cell with distilled water. After 28 days in water, the specimen was prepared and 
positioned between the two cells as shown in Figure 3. In this method, the migration occurs due to the application of 
an electrical potential difference of 12 VDC through the electrodes contained in the cells. 

 
Figure 3. Schematic drawing of the chloride migration test apparatus. 

For this test, a chloride migration apparatus was used, as suggested by Andrade [7] and developed by Ribeiro et al. [5], 
following the procedures presented in UNE 83987 [15]. The tests were carried out on three specimens of each series, each 
with a thickness of 40 mm, extracted from the central region of the cylindrical specimens (ϕ = 100 mm, h = 200 mm), 
using a diamond disc cutting machine. 

At the start of the test, the concentration of chlorides passing through the anodic cell is not a constant flow, due to 
adsorption on the capillary walls, and the reactions of these ions with the aluminates present in the cement and in the 
mineral additions. These form a Friedel’s salt at a non-steady state. When the pores are saturated and the reserves of 
aluminates depleted, the flow becomes constant, entering a steady-state condition. 

Thus, the time required to start the stationary phase is called time lag (τ) and is obtained through the intersection between the 
extension of the straight line that characterizes the steady-state condition and the abscissa axis (time), according to Figure 4. 
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Figure 4. Experimental determination of the time lag (τ); onset (Δ) and end (○) of the steady-state diffusion stage (adapted from 

Castellote et al. [24]). 

The diffusion coefficient in the transient or non-steady state (Dns), in cm2/s, can be measured, based on migration 
testing, using Equations 4 and 5, proposed by Castellote et al. [27]. The steady-state diffusion coefficient (Ds), in cm2/s, 
was calculated applying the modified Nernst-Plank equation (Equation 6). 

𝐷𝐷𝑛𝑛𝑛𝑛 = 2⋅𝑙𝑙²
τ⋅υ²

⋅ �υ ⋅ coth υ
2
− 2�  (4) 

υ = 𝑧𝑧⋅𝑒𝑒⋅𝛥𝛥Ф
k⋅T

  (5) 

𝐷𝐷𝑛𝑛 = 𝑗𝑗𝐶𝐶𝐶𝐶⋅𝑅𝑅⋅𝑇𝑇⋅𝑙𝑙
z⋅𝛾𝛾⋅F⋅𝐶𝐶𝐶𝐶𝐶𝐶⋅𝛥𝛥Ф

  (6) 

Where l is the thickness of the sample (cm), τ is the time lag (s), z is the valence of the ions (equal to 1), e is the electric 
charge of an electron (1.6⋅10−19 C), ΔФ is the voltage (V), k is the Boltzmann constant (1.38⋅10−23 J/K), and T is the 
absolute temperature. Furthermore, jCl is the ion flux [mol/(s.cm2)], R is a constant [1.9872 cal/(mol·K)], F corresponds 
to the Faraday constant [23063 cal/(volt. eq)]. Finally, CCl is the chloride concentration in the cathode cell (mol/cm3), 
and γ is a constant of activity coefficient (0.657 for Cl−). 

2.3.3. Column test 
The column test aims to determine the transport parameters that interfere with the diffusion of contaminants by 

porous media in controlled laboratory conditions [6], [29] which reflect the real situation. This technique is extensively 
used to understand soil/contaminant interaction, but recently it has been applied in Portland cement matrices, such as 
soil-cement [13] and in mortars and concrete [12]. 

According to Vilasboas [12], Nascentes [30], and Bear [31] in the modeling of the transport of solutes by the column 
test, in which liquid flow occurs, it is not common to separate the diffusion process (D) from the dispersion process 
(Dm). They are treated in a combined way to define the parameter called hydrodynamic dispersion (Dh), as presented in 
Equation 7. 

𝐷𝐷ℎ = 𝐷𝐷 + 𝐷𝐷𝑚𝑚  (7) 

Dispersion-diffusion (D) is due to the flow of a chemical species in solution, however, when diffusion occurs inside 
the pores of the materials, it is reduced due to the tortuosity of the pores (w) and is expressed by Equation 8 [32]. The 
maximum value for tortuosity is equal to 1 because the maximum diffusion will happen when there are no blockages. 

𝐷𝐷 = 𝑤𝑤 ⋅ 𝐷𝐷𝐶𝐶𝑙𝑙   (8) 
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Mechanical dispersion (Dm) is the process of mixing the contaminant resulting from the variation in the 
percolation speed of the fluid, which occurs in the interconnected pores. The contaminants percolate at different 
speeds depending on the tortuosity, friction, and size of the pores [33]. The mechanical dispersion is expressed 
by means of Equation 9. 

𝐷𝐷𝑚𝑚 = α ⋅ 𝑣𝑣𝑣𝑣  (9) 

Where α is the mechanical dispersion coefficient (cm), vs is the solvent flow velocity (cm/s). 
It can be noted that only the diffusion coefficient (D) can be correlated with the stationary diffusion (Ds) 

obtained from the migration test. This is because diffusion considers ionic movement without water flow, there 
being only the tortuosity of the matrix pores as blockages [31]. Moreover, the diffusion coefficient in the non-
steady state (Dns), obtained from the ion migration test, does not present a theoretically similar parameter in 
the column test. 

To carry out this test, a column testing apparatus like the model indicated for concrete permeability tests 
was used, standardized by NBR 10786 [14], and used by Vilasboas et al. [12]. Three samples with 100 mm 
diameter and 40 mm thickness were taken from the central region of the cylindrical specimens using a diamond 
disc cutting machine. 

Before the diffusion tests, the samples remained immersed in distilled water for 24 hours, like the 
conditioning performed for the accelerated migration test. 

The test consists of forcing the contaminant fluid through the samples by applying a pressure (8 kgf/cm2). 
To ensure lateral sealing of the specimens, pressurized N2 is supplied, filling the outer part of the specimen and 
compressing a latex membrane that surrounds it. The same pressure as the N2 is supplied to the reservoirs of 
the solution, however, because they are located at a lower elevation than the nitrogen cylinder, the solution 
leaving the reservoirs has a lower pressure when reaching the samples, due to the loss of load. Thus, the external 
pressure is higher than the internal pressure, ensuring lateral sealing. The diagrams of the system, chambers, 
and apparatus can be seen in Figures 5 and 6, respectively. 

 
Figure 5. Schematic drawing of the column test apparatus. 
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Figure 6. Schematic drawing of internal operation of the permeameter. 

During the test, the solution that has percolated through the specimen is collected and its volume and chloride 
concentration over time is measured. Then an NVP x C/C0 graph is drawn with NVP being the number of porous volumes 
that represents the time that the volume percolated through the sample filling its pores, determined by Equation 10. 

N𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑜𝑜𝐶𝐶
n

  (10) 

Where Vol is the accumulated volume of the solution passing through the test (cm3) and n is the porosity of the specimen 
(cm3). 

Based on experimental points, a theoretical curve is adjusted, based on Equation 11, modified by Freeze and Cherry 
[34], to obtain a maximum determination coefficient (R2). 

𝐶𝐶(𝑥𝑥,𝑡𝑡)
𝑐𝑐0

= 1
2
�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �𝑅𝑅𝑑𝑑⋅𝑥𝑥−𝑣𝑣𝑠𝑠⋅𝑡𝑡

2�𝑅𝑅𝑑𝑑⋅𝐷𝐷ℎ⋅𝑡𝑡
� + exp �

𝑣𝑣𝑠𝑠⋅𝑥𝑥
𝐷𝐷ℎ
� 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �𝑅𝑅𝑑𝑑⋅𝑥𝑥+𝑣𝑣𝑠𝑠⋅𝑡𝑡

2�𝑅𝑅𝑑𝑑⋅𝐷𝐷ℎ⋅𝑡𝑡
��  (11) 

Where C(x,t) is the concentration at a depth x and time t desired, Co is the initial concentration, Rd is the retardation 
factor (≥ 1), Dh is the hydrodynamic dispersion, vs is the velocity of fluid percolation. 

The retardation factor (Rd) is directly influenced by the adsorption capacity of the porous media, which is related to 
its the specific surface and valence and size of the solute ions. Coarser soil fractions, for instance, tend to present Rd 
close to unity (i.e., are unable to retain appreciable amounts of solute on their solid surfaces) [35]. This parameter has 
conceptual similarity with the time lag obtained with the migration test performed according to UNE 83987 [15], since 
both quantify the capacity of the matrix to retain a given substance. 

3 RESULTS AND DISCUSSION 

3.1 Physical characterization of concretes 
It can be observed that the porosity of the matrix decreased as the silica fume content increased (Figure 7). This is 

due to the pozzolanic reaction, a consequence of the presence of amorphous silica in the silica fume used, which 
promotes the formation of hydrated calcium silicate (C-S-H). In addition, the silica fume has a filler effect caused by 
particles that do not react with Ca(OH)2 and that contribute to the filling of voids, allowing better packaging of particles 
[36], [37]. By varying the mortar content, an increase in the porosity of the specimens was noted because mortar is 
more porous than coarse aggregate. 
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Figure 7. (A) Apparent porosity and (B) density of concretes with different silica fume and mortar contents. 

The sorptivity of the concrete with varying contents of silica fume and mortar are presented in Figure 8. There is an 
increase in the rate of sorptivity of the concrete with the addition of higher contents of silica fume, up to the limit 
content of 10%. This is due to a reduction in the pore diameter, promoting an increase in the number of capillary pores 
and in turn increasing the water capillary absorption rate. With the addition of 15% of silica fume, there was a 
stabilization of the sorptivity due to a possible blocking and disconnection of the capillary pores [38]. 

There was also a reduction in the sorptivity in the specimens due to the increase in the mortar contents, however, this reduction 
was not statistically significant. This may have been due to the packaging factor of the system being more efficient when there 
are grains of different sizes, generating less porosity with the presence of the coarse aggregate. Furthermore, Scrivener et al. [39] 
reported that an increase in the content of fine quartz aggregate in the matrix makes the transition zone more tortuous. As a result, 
the capillary suction is made harder by the lack of a perfectly linear path, physically blocking the displacement of water. 

 
Figure 8. Sorptivity of the studied concretes. 



S. A. Pinto, S. L. Machado and D. V. Ribeiro 

Rev. IBRACON Estrut. Mater., vol. 15, no. 3, e15307, 2022 10/17 

3.2 Chloride Migration Assessment in Concrete 

3.2.1 Accelerated migration test 
Figure 9 shows the evolution of chloride concentration in the anodic chamber of reference concrete samples and those 

containing additions of 5%, 10%, and 15% silica fume. The concentration of chloride ions (Cl-) increases with time, because of 
the application of the applied electric voltage, forcing these ions to migrate towards the positive pole of the system. 

As more silica fume is added to the cement matrix, a deviation in the chloride concentration curve as a function of 
time can be seen to the right. This represents an increase in the time lag value up to 126% for a 15% addition of silica 
fume. Therefore, in concrete containing silica fume, the chlorides take longer to saturate and to cross the covering layer 
of the concrete, reaching the rebar and depassivating it. In the non-steady state condition, the solution containing 
chlorides adsorbs to the walls of the interconnected capillary pores and reactions between the chlorides and the 
aluminates present in the cement form Friedel's salt [40]. 

 
Figure 9. Chloride concentration in the anodic cell solution as a function of time for the concrete specimens with 0%, 5%, 10%, 

and 15% of silica fume (○ = beginning of steady state and Δ = end of steady state). 

After the start of the steady-state condition, the flow of ions (jCl) becomes constant until the stability of the chloride 
concentration is reached [27]. For samples with varying silica fume contents, there is a reduction in the flow of ions. 
When present in the concrete (this can be visualized by the reduction in the inclination of the straight line in the steady-
state condition), the addition of silica fume confers greater durability of the concrete as well as resistance to the action 
of chlorides. This finding is in line with the results obtained in studies by Aïtcin [41] and Ribeiro et al. [5], which 
showed that mineral additions reduce the movement of chlorides in the concrete microstructure due to the better 
distribution of pore diameters, resulting from the pozzolanic reactions, which difficult the ionic movement. 

Figure 10 shows the evolution of chloride concentration in the anodic chamber when reference concrete samples 
are evaluated (with a mortar content equal to 54%) and with mortar contents equal to 80% and 100%. 

 
Figure 10. Chloride concentration in the anodic cell solution as a function of time for the concrete specimens with different mortar 

content (○ = beginning of steady state and Δ = end of steady state). 
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An approximate 49% increase in the time lag was observed by reducing the consumption of coarse aggregate, due 
to the higher consumption of cement and, consequently, higher content of aluminates. With an increase in the mortar 
content, the coarse aggregate/paste interface is reduced until non-existent (samples containing 100% mortar), which 
alters the connectivity of the pores and leads to an increase in tortuosity, making the passage of chloride ions difficult. 
These interfacial transition zones are of great importance in durability studies because it is through them that the 
preferential penetration of chloride ions occurs [5], [18]. 

In addition, due to the reduction in the aggregate/paste transition zone from a higher mortar content, the chloride 
flow is also reduced. This is because the solution containing chlorides will preferentially pass through this interface 
[42], [43] because of the change in the tortuosity of the pores, as previously discussed. 

Furthermore, the diffusion coefficients in the steady and non-steady states obtained from concrete with different contents of 
silica fume and mortar, respectively, are shown in Tables 4 and 5. The results of the non-steady state diffusion coefficient (Dns) 
were classified based on the limits established by Nilsson et al. [44] which refer to the Dns obtained by the NT Build 492 test [9]. 
According to Guignone et al. [45], the Dns values obtained by the method of UNE 83987 [15] and NT Build 492 [9] show 
similarities. However, according to Sell Júnior et al. [46], the difference between the diffusion coefficients determined by these 
methods is greater when evaluating the concretes that have greater permeability. However [28], [47], used this classification in 
articles that evaluated the chloride diffusion by the method of UNE 83987 [15]. 

Table 4. Classification of concretes with different silica fume contents as to resistance to chloride penetration, according to the 
limits established by Nilsson et al. [44]. 

Mixture Time lag (h) Ion flow 
(10-10 mol/s⋅cm2) 

Ds 
(10-8 cm2/s) 

Dns 
(10-8 cm2/s) 

Resistance to chloride 
penetration 

REF 204.22 5.91 1.48 9.33 
High 

(5⋅10-8 cm2/s < Dns < 10⋅10-8 
cm2/s) 

5-SA 298.00 3.41 0.85 6.30 

10-SA 372.05 3.68 0.92 5.05 

15-SA 461.12 3.92 0.98 4.08 
Very high 

(2.5⋅10-8 cm2/s < Dns < 5⋅10-8 
cm2/s) 

Table 5. Classification of concretes with different mortar contents as to resistance to chloride penetration, according to the limits 
established by Nilsson et al. [44]. 

Mixture Time lag (h) Ion flow 
(10-10 mol/s⋅cm2) 

Ds 
(10-8 cm2/s) 

Dns 
(10-8 cm2/s) 

Resistance to chloride 
penetration 

REF 204.22 5.91 1.48 9.33 
High 

(5⋅10-8 cm2/s < Dns < 10⋅10-8 
cm2/s) 

80-AG 218.03 2.88 0.72 8.61 

100-AG 304.04 4.14 1.03 6.17 

Some researchers [47]–[49] have also observed that the addition of 10% silica fume in relation to the mass of cement 
promoted better refinement of the microstructure. However, according to the results presented in Table 5, it was found 
that this improvement also occurred with an increase in the mortar content. 

3.2.2 Column test 
The retention curves from the column test were plotted, presenting the mean curves as well as the standard deviation 

existing at all points on the curve (Figure 11). The retardation factor (Rd) was determined based on the curve that 
correlates the relative concentration of chloride ions (C/C0) and the number of porous volumes (NVP), which is a method 
used by Vilasboas et al. [12]. The retardation factor (Rd) corresponds to the number of pore volumes equivalent to a 
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relative concentration of 50%. The other parameters were identified through the interaction of these coefficients to 
adjust a curve to present a higher correlation coefficient (R2), from the experimental points obtained. 

 
Figure 11. Relative chloride concentration curve in the concrete column test with different content of (A) silica fume and (B) 

mortar. 

Table 6 shows the average transport parameters obtained by adjusting the column test data for the different types of 
concrete tested. 

Table 6. Summary of transport parameters determined by the column test in concretes with different silica fume and mortar 
contents. 

Mixture Rd 
(-) 

vs 
(10-6 cm/s) 

α 
(cm) 

Dm 
(10-7 cm2/s) 

w 
(-) 

D1) 
(10-8 cm2/s) R2 

REF 1.65 4.29 0.20 8.58 0.00100 1.60 0.98 
5-SA 1.70 3.04 0.10 3.04 0.00040 0.64 0.94 

10-SA 2.15 1.56 0.09 1.40 0.00054 0.86 0.96 
15-SA 2.80 2.32 0.07 9.24 0.00062 0.99 0.97 
80-AG 1.83 3.12 0.26 8.11 0.00045 0.72 0.93 

100-AG 2.45 1.56 0.18 2.81 0.00064 1.02 0.93 
Obs.: 1) Using the diffusion of the chloride ion in water (Dcl = 1.60⋅10-5 cm2/s). 

The values of Rd, which represents a parameter like the time lag (τ) of the ionic migration test, are in the range found by 
Vilasboas et al. [12] for concrete and mortar tests (1.40 to 3.50), and by Visudmedanukul [13] in soil-cement tests (1.03 to 2.77). 
As well as the time lag (τ) of the ionic migration test, the Rd indicates the retention capacity of the substances. 

This behavior is also reflected in the diffusion coefficients found for these materials because this is related to a 
constant (diffusion of chloride in water, equal to 1.60⋅10-5 cm2/s [12], [51]) multiplied by the tortuosity factor of each 
analyzed sample (w ⋅ DCl). 

The results obtained corroborate those obtained by Shekarchi et al. [49], who verified small changes in the chloride 
diffusion coefficients in concrete with silica fume contents higher than 7.5%, when exposed in a maritime zone. 
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Although different methods were used in relation to ionic migration, the diffusion values obtained (Ds and D) were 
similar because they have the same physical sense. 

Unlike the method used by Vilasboas et al. [12], the tortuosity (W) was not fixed as this is a coefficient directly 
linked to the microstructure of the analyzed material, which undergoes alteration as the water/cement or water/binder 
ratio is altered. The mechanical dispersion coefficient (α) was like the results of porosity obtained, showing behavior 
like that observed by Vilasboas et al. [12]. 

When the input of chlorides in the cement matrix is evaluated, the mechanical dispersion (Dm) has a priority effect 
over the dispersion-diffusion (D) because it has a higher input velocity in the studied matrices. This shows that the 
contaminant penetration through the water flow is more significant than by diffusion, regardless of the microstructure 
of the tested samples. 

3.2.3 Correlations between results obtained by different testing methods 
The values of the steady-state diffusion coefficients, obtained through ionic migration tests (Ds) and column (D) 

were correlated, according to Figure 12. The adjustment was made to meet the existing physical parameters, where the 
linear equation generated cannot have a linear coefficient other than 0 (zero). 

 
Figure 12. Correlation between ion migration tests and column test. 

As observed in Figure 12, the data obtained in both tests have a linear correlation, with a significant determination 
coefficient (R2) of 85.26%. It was also observed that the angular coefficient of the straight-line approaches 1, which 
would be the value of “perfect correlation”, being equal to 1.0035. This means that besides having a good correlation, 
the values obtained are practically the same indicating that they represent equivalent parameters, despite being based 
on very distinct physical and methodological foundations. 

This evaluation is also confirmed by Pearson's R test, in which the correlations can present values varying from 1 
to -1, with the value equal to 1 being a perfect and directly proportional correlation, -1 an inverse proportional perfect 
correlation, and 0 when there is no correlation. For this test, an R approximately equal to 0.94 was found, indicating a 
strong direct correlation between the evaluated data (R ≥ 0.70). 

In addition, a good correlation (R2 equal to 75.47%) between the values obtained from the time lag and the 
retardation factor was obtained (Figure 13) which, despite being numerically and conceptually distinct, measure the 
capacity to retain contaminants inside the material studied. Unlike the previous correlation, this adjustment may present 
a linear coefficient different from 0 (zero), because the minimum value of the retardation factor is equal to 1 (one) and, 
because they are numerically different parameters, the angular coefficient of the straight line is not close to 1. 
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Figure 13. Correlation between time lag and retardation factor. 

A linear correlation was only possible by removing data that did not obey a normal distribution. The result obtained 
with Pearson's R confirms the correlation obtained, it demonstrates a strong direct correlation (R ≥ 0.70) with a value 
approximately equal to 0.87. 

4 CONCLUSIONS 

Based on the results obtained in this study, it can be concluded that: 
• The addition of silica fume to the concrete promoted an increase of up to 126% in the time lag and reduced the 

chloride flow, compared to the reference concrete; 
• The increase in mortar content resulted in a 49% increase in the time lag and reduced the flow of chloride ions when 

compared to the reference concrete; 
• Chloride diffusion coefficients are lower because of the increase in mortar content. Similar behavior was observed 

when silica fume is added in contents up to 10%, indirectly demonstrating the importance of the transition zone for 
chloride passage in the matrix; 

• The parameters Rd and time lag have similar meaning that indicate the retention capacity of chloride ions in the 
matrix. The retardation factor (Rd) values obtained in column tests are directly proportional to the time lag values 
obtained in ionic migration tests, regardless of the mortar or silica fume content; 

• In spite of the methodological differences between the column test and the ionic migration test, both are 
demonstrated to be effective in determining chloride diffusion coefficients in concrete and mortars, presenting a 
strong correlation between the diffusion values obtained; 

• The steady-state diffusion coefficients, obtained through ionic migration tests (Ds) and column (D) presented 
practically equal values, indicating that they represent equivalent parameters, despite being based on very different 
physical and methodological foundations; 

• The difference in the voltage used in the migration test (12 VDC) did not significantly affect the measured diffusion 
values. Therefore, this method can be used in durability design; 

• As well as being a faster method, the ionic migration test provides important parameters for concrete quality 
evaluation, such as time lag and ion flow, making it more versatile than the column test. 
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