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ABSTRACT 

This paper studies the two-dimensional micro-scale molecular simulations of the jet flow using Lagrange 

discrete systems and adopting Andresen flexible constraint mechanism. At the effects of different excitation 

conditions and boundary conditions, the low Mach number flow field and sound field are obtained, and 

characteristic results are given. At the jet flow and pipe flow regions, particles velocities distribution is 

consistent with traditional method. There are many small groups which have a bigger velocity value, and 

form the disturbance sources. The stronger interaction with the tube wall produces greater sound pressure, 

thus random collisions method at the tube wall is effective to deal with sound propagation problem. 

Therefore, this paper offers preliminary and calculated basis for the molecular and macroscopic quantum 

aerodynamic problems. 
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1. INTRODUCTION 

The traditional top-down fluid numerical simulations often focus on the discrete truncation errors, but ignore 

the physical conservation and numerical stability. Then the microscopic discrete model can be discovered the 

nature of the macro phenomena profoundly, because it is bottom-up approach for understanding the 

macro-micro particles and fluid phenomena essentials [1]. Lattice Boltzmann method has been the most 

successful applications [2]. From lattice Boltzmann method to molecular level study, the main considering 

objects changes into very small scale, so it would be more able to reveal acoustic mechanism. 

Once the atomic natures of matters are determined, quantum mechanics describes the microscopic 

world, the molecular composition and the microscopic behavior state of particles. Thus makes the situation 

become more complicated. So the molecular dynamics simulation study is widely used [3, 4]. On the other 

hand, due to the traditional jet flow sound caused by the traditional flow has been affected a lot of attention 

[5], and these results usually adopt nanometer size, need the huge amount of computation, so the research 

literatures are rarely reported about jet at molecular dynamics levels. This paper would introduce the 

high-performance computing method, and study the low Reynolds-number jet flow fields by molecular 

dynamics method, to provide a sound basis for the correct understanding of the micro-scale sound spread 

phenomenon, to explore microscopic mechanism of the jet sound. 

2. SIMULATION MODELS AND PRINCIPLES 

The air is a mixture with oxygen and nitrogen molecules by a certain mass ratio. According to the literature 

values [6, 7], the energy and length parameters use the Lorentz-Berthelot mixing rule [8]. Its potential energy 

function models are the two-body Lennard-Jones potential model [3]. The physical simulations are 

non-dimensional treatment [8]. The dimensional length, time, temperature, and density are as follows: 
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*r r                                                                                  (1) 

* 2 2 0.5( )t t m                                                                            (2) 

*

BT k T                                                                                (3) 

* 3 m                                                                              (4) 

Where r* is dimensional length, r is diameter [nm],  is length parameter [nm], t* is dimensional 

time; t is time[s], m is mass [kg],   is energy parameter [J], T* is dimensional temperature, T is temperature 

[K], kB is Boltzmann constant, ρ* is dimensional density, and ρ is density [kg/m3]. 

Analog pipeline size is 250 angstroms wide, and 1200 angstroms length. The particles at sidewall are 

arranged as looped and compact particle forms, named case 1 and case 2. Outer flow field size is 3000×8000 

(1200×3200) square angstroms. Calculation model is shown in fig. 1, the tube wall is a solid boundary on 

the pipe length, and the other boundary is the gas boundary. Import is simplified as a particle gun, producing 

various velocities continuously. At the outlet boundary, flow is freely. 
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Figure 1: Calculation model 

According to the ideal gas characteristic, the system macro-pressure is as below [3]:  

 

ij ij B3 ( ) 3PV r r Nk T                                                       (5) 

   B ij ij( / 3) /P Nk T r f V                                                      (6) 

 

Where P is pressure [Pa], V is volume [m3], N is number of molecules, rij is distance [nm] between 

molecule i and j, and fij is Lennard-Jones force [N]. 

Based from the relationship between the internal energy and temperature, kinetic energy is: 

 

 
i

2
kinetic i B c / 2 0.5 3 -  E p m k T N N                                               (7) 

 

Where Ekinetic is kinetic energy [J], p is momentum [kg·m/s], and Nc is the number of molecules at 

equilibrium statement. So, the temperature is directly controlled by the internal energy. More, we can add 

flexible control on the total system temperature, and temperature control factor as below: 

 

0.5
0{1 [ ( ( ))] / [ ( )]}t T T t T t                                                          (8) 
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Where λ is temperature control factor, δ is space step length [nm], τ is relaxation factor, and T0 is 

equilibrium temperature [K]. 

Weakened the long-range potential to bring direct truncated non-physical factors, the potential force 

are softened by math technology [3]. At the inlet, the velocities of particles are displayed approximate 

logarithmic distribution [5]. Definition of grid position is as (x, y), the position of equilibrium by the 

disturbance and displacement is as η (ηi, i = 1, 2.), the discrete macro-pneumatic system using Lagrange 

density of the sound field representation [9]: 

 

2 2

0 0 0[ 2 ( ) ] / 2LD LT LV p p          &                                    (9) 

 

Where LD is Lagrange density [kg/m3], LT is kinetic density [kg/m3], LV is potential density [kg/m3], 

the subscript tag 0 is equilibrium statement, is divergence sign, and η is displacement [nm]. 

The initial velocity distribution is according to Maxwell random values, and its’ initial acceleration are 

set to zero. At the different time step, the speed values at the import and outlet boundary are reassigned, but 

the overall region adopts the direct control method in the case 1, and Andresen temperature control in the 

case 2. The calculated program uses dynamic target arrays to update the number of particles, and pass them 

pointer arrays to update its coordinate’s values and the others (as in fig. 2). If the particles is beyond the 

control region, then force them freezing, that is stationary. Time step length is taken as 0.0072, and the total 

number of time steps is 10+5. The front steps are for fully developed flow, when the flow lines show cyclical 

changes, and meet requirements of the state statistical system. The subsequent steps are for the relevant 

parameters statistics, such as the sound pressure level (SPL [dB]). 
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Figure 2: Program chart 

 

Considering the physical mechanisms, system pressures are directly related to the definition style, we 

consider the following four options about Lagrange density: the direct calculation of sound pressure is 

arranged as option 1, which is depended on macro parameter (density and pressure). Local parameters are 

arranged as option 2, mixed parameters are arranged as option 3, and the traditional definition is option 4. 

3. FURTHER ANALYSIS AND DISCUSSION 

Numerical experiments are carried out firstly in the tube pipeline. With a random velocity along the vertical 

direction of the pipe diameter, the results are compared to conventional macro theory consistently. Although 

the Reynolds number is small, but the molecular layer flow speed still exist a big difference, showing the 

nature of turbulence. The existence of the Y velocity shows random features. The viscosity values [m2/s] are 

smaller in center region, but bigger at wall aside (as in fig. 3). 
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Near-field velocity pulse is relative to the mainstream pulse. The X acceleration value is fluctuating 

around zero. At central tube, the axial velocity fluctuation is significantly. The Y acceleration value displays 

small fluctuations, a few larger speed particles clusters still exist. Far-field acceleration value is almost zero. 

The Y velocity distribution at 10d place from nozzles is normal (compared with the traditional distribution), 

but still with small fluctuations (as in fig. 4). Higher speed flow particle clusters exist, and forms the 

disturbance source. At the both sides of axis, the velocity distribution changes largely by a few big-speed 

particles, the overall is symmetry. The negative velocities display back flow and entrainment. 

 

 

Figure 3: Molecular viscosity at diferent direction 

Higher speed flow field particle clusters exist, and forms the disturbance source. Near-field velocity 

pulse jet boundary relative to the mainstream pulse of small, the X acceleration value is fluctuating around 

zero; main part is zero (fig. 4). At central pipe, the axial velocity fluctuation significantly, the Y acceleration 

value displays small fluctuations; X acceleration value is a few larger Speed particles clusters still exist. 

Far-field acceleration value is almost zero. The Y velocity distribution at 10 d place from nozzles is normal 

(compared with the distribution of the traditional number), but still with small fluctuations. At the both sides 

of axis, the velocity distribution and instability changes largely by few big-speed particles, the overall is 

symmetry. The negative velocity display back flow and entrainment. 

 

          

          a) Shaft velocity at tube region                     b) Shaft acceleration at tube region 

 

Figure 4: Flow distributions diagram in tube region in case 1 

Three programs calculate the Lagrange density can better reflect LD values (as in fig. 5); the fourth 

option cannot be calculated. In case 1, The first and third option schemes value calculated is lower than that 

of the second option, but in case 2 , the first two calculation values are less than that of the third calculation 
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value. 

In case 1, the situation is different from that in the case 2. Considering the wall interactions, three 

kinds of SPL are 133, 133 and 126.4dB respectively (fig. 6). At the 10d and 5d distances in case 2, the sound 

pressure calculated are 107.6,107.6; 115.5dB 115.6; 115.6, 117dB respectively. The corresponding 

attenuations are 1.6, 1.6 and 0.3 decibels per pipe diameter. 

  

Figure 5: LD comparison at the 10d place                    Figure 6: The SPL values at the nozzle        

axis in case 1                                      in case 2 

With time step increasing, the density value variation in case 1 shows the two short intervals 

characteristics firstly, followed by another two large intervals (fig. 7). Further, intervals distance increases, 

but there exist two basic cycles. This is similar to frequency, and may reflect the inherent characteristics of 

the jet system. 

At the tube monitoring point near the tube wall, the fluid particles collide with the tube wall frequently 

and randomly. This is the random effects results. The tube wall near the nozzle is the basic source of the jet 

sound, and it may be the dipole sound source (as in fig. 8). 

 

   

       Figure 7: The density change at the                Figure 8: The internal wall speed of a control 

                5d place of in case 1                             in case 2     

 

4. CONCLUSIONS 

In this paper, the jet flow field of two-dimensional micro-scale simulation of molecular dynamic, using the 

Lagrange density mechanism, describes the sound propagation. The main are as bellow: 

Compared to the traditional theory, the results compare well with the literature [5]. This shows the 
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nature of turbulence at all regions, velocity fluctuations displays out random features. The viscosity values 

are smaller in center region, but bigger at wall aside, no longer a constant.  

Lagrange density can be convenient to calculate by the local density and pressure in order to obtain 

sound pressure, and the traditional definition style cannot get sound pressure values. The sound pressure 

values are similar to pulse pressure value, and Lagrange densities have two period times characteristics 

approximately.  

At the jet flow field and pipes region, particles velocities distributions are consistent with LBM, but 

with many small groups which have bigger velocity, and form the disturbance sources.  

The strong interaction with the tube wall produces greater sound pressure, such as dipole. Thus 

random collisions method at the tube wall is effective to deal with sound propagation problem. 

Compared with the direct algorithm verlet algorithm is easier to load, effective to control temperature, 

and of the stalemate to Lagrange conservative force field nature. Molecular Mechanics programming can be 

achieved over the use of the space accuracy 10-8 m and the accuracy time 10-12s, which greatly improved the 

accuracy of the sound field simulation. 

This paper offers preliminary basis and calculated basis for the molecular and macroscopic quantum 

aerodynamic problems. 
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