Acessibilidade / Reportar erro

Fractography and dissipation of kinetic energy in a polymeric/ceramics ballistic panel submitted to the impact of a metallic projectile

In this study we have explored the behavior and the damage mechanisms of a laminate panel composed of polymeric and ceramic materials, submitted to the impact of a metallic projectile. The design of a system with the impact side in ceramic material (SiC) was made, with a support of an ultra-high molecular weight polyethylene (UHMWPE), plaques made with 200 mm square geometry and 5 mm thick, and polymeric tissue cuts with equal area dimensions. The (NIJ) Standard 0101.06 was taken as reference for testing the ballistic impact essay; crater formation was identified in the ceramic material; using optical microscopy and scanning fractures and delamination were identified as predominant failure mechanisms; in the polymeric material, fibrillation twist, fiber fusion, conical deformation and delamination were observed and then samples were analyzed using "Morye, Smith and Retch e Ipson" kinetic energy balance models. The result showed that the most influential to dissipate energy, is the panel made with dual ceramic plate (SiC) and double-layer polymeric tissue as a backup.

composite systems; impact; failure mechanisms; kinetic energy dissipation


Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro, em cooperação com a Associação Brasileira do Hidrogênio, ABH2 Av. Moniz Aragão, 207, 21941-594, Rio de Janeiro, RJ, Brasil, Tel: +55 (21) 3938-8791 - Rio de Janeiro - RJ - Brazil
E-mail: revmateria@gmail.com