
 

 

ISSN 1517-7076 artigo e-11965, 2018 

Autor Responsável: Francisco Marcone Lima Data de envio: 28/12/2016 Data de aceite: 25/05/2017 

 

10.1590/S1517-707620170001.0301 

Nanostructured titanium dioxide average  
size from alternative analysis of  
Scherrer’s Equation 

Tamanho médio das nanopartículas de dióxido 
de titânio a partir de uma nova abordagem  
na Equação de Scherrer 

Francisco Marcone Lima 
1
, Felipe Mota Martins 

1
, Paulo Herbert França Maia Júnior 

1
,                                                            

Ana Fabíola Leite Almeida
 1
, Francisco Nivaldo Aguiar Freire 

1 

1 Laboratoratório de Filmes Finos e Energias Renováveis, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, 

Brazil 

e-mail: marconeufc@gmail.com; felipemotamartins@hotmail.com; phfmj@yahoo.com.br; anfaleal@yahoo.com;      

nivaldo@ufc.br 

RESUMO 

Quantificar o tamanho de materiais em escala nanométrica é um dos desafios a serem superados, uma vez 

que existem técnicas diferentes. A equação de Scherrer modificada foi usada para estimar o tamanho das par-

tículas de dióxido de titânio em escala nanométrica. Dióxido de titânio com tamanho nominal de nanopartícu-

la de 21 nm foi usado como padrão para determinar a precisão da equação modificada. A partir dos dados de 

raios-X, para a amostra sem tratamento térmico foi obtido um valor médio do tamanho das nanopartículas de 

20,63 nm. Um tratamento estatístico foi usado para fazer uma correlação entre o valor estimando pela 

equação de Scherrer modificada e o valor nominal de 21nm. Um desvio de 0,70 foi encontrado entre o valor 

calculado e o valor nominal, indicando uma concordância entre os valores. Adicionalmente, a influência da 

temperatura sobre o tamanho médio das nanopartículas de dióxido de titânio foi pesquisada.  

Palavras-chave: Nanomateriais, Equação de Scherrer, Dióxido de Titânio. 

ABSTRACT 

The materials sizing in nano-scale is a challenge to be overcome, because the size determined by various 

methods differ. In order to shed light about the nanomaterials sizing, a modified Scherrer's equation was ap-

plied to estimate more accurately the nanostructured titanium dioxide crystal size. The manufactured titanium 

dioxide-nanostructured powder with nominal average size about 21nm was used as the reference standard to 

determine the accurate of modified equation. From X-ray diffraction data, an average crystal size about 20.63 

nm was achieved for unheated sample. To establish a relation between the result obtained with modified 

Scherrer's equation and the nominal average crystal size, a statistical treatment and a comparative assessment 

were performed. The average absolute divergence does not exceed 0.70 nm. The value of crystal size deter-

mined from X-ray data was in good agreement with that informed by the supplier. Additionally, the behavior 

of sample was studied as a function of temperature.   

Keywords: Nanomaterials, Scherrer's equation, Titanium dioxide. 

1. INTRODUCTION 

In the literature has been reported that the size effects have a strong influence on the properties of nano-

materials. The question is how to define the materials size. One way is using techniques for microstructure 

characterization with emphasis in the materials sizing. Techniques such as transmission electron microscopy 

(TEM), atomic force microscopy (AFM), fluorescence correlation spectroscopy (FCS) and others, available 

for measuring materials sizing are based on different fundamental principles [1]. Among the techniques, an 

X-ray diffraction (XRD) line profile has been used in study on the nanostructured materials sizing [2-5]. 

The X-ray diffraction (XRD) for powder samples is well-established and widely used in the field of 
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materials characterization to identify the materials that builds its crystalline structure [6]. In addition, the 

shape of a diffraction peak can be approximated by Gaussian distribution [4,7]: 

 222

iCO                (1)  

where βO: measured peak width in radians, βC: width due only to the crystal size D and its microstrain (ε), 

and βi: width due only to the instrumental effects. 

Therefore from the microstructure characterization with emphasis in the nanomaterials sizing from 

XRD data analysis, D can be estimate from Scherrer's equation [4,8,9]. Additionally, an apparent size D' can 

be rough estimate using the equation as described following [8]:  

  cos.' oD              (2)  

where λ is the radiation wavelength and θ is the Bragg's angle. The true size D can be obtained from of a cor-

rection factor K as describes follows [8]: 

 '.DKD                (3)  

where K is a dimensionless number known as the Scherrer's constant. 

The Scherrer's constant K can be of the order of unity [3,8], which is regarded that D is independent of 

the both size and shape of the material. But, K can has a deviation from the value of about unity, because it 

no only depends on the size and shape of the crystal [3,8,10]. Moreover, the Scherrer constant K is more of-

ten taken as about 0.9 [7,9,11-13], as derived in Scherrer’s original paper with K=2[2ln(2)/π]2 [10].  

The Scherrer's equation negligence the so-called instrumental and microstrain (ε) effects providing a 

rough estimate of D value [4]. Thus, in order width βO (Eq.1) needs to be corrected to estimate more accu-

rately the D value. In relation to the instrumental effect on βO, the correction can be made from the instru-

mental width (βi) using Caglioti equation [4]. Therefore in relation to the microstrain (ε), the correction uses 

the Williamson-Hall plots [4,14]. This method supposes that D and ε contribute to the broadening in βC with 

Lorentzian profile as described follows [4]. 

  DC             (4)  

where βD is the width due to change in D and βε is the width due to change in ε. Additionally, the value of the 

width βε may be calculated using the equation as described follows [4,7]. 

 tan..4             (5) 

D values from XRD analysis [2-17] and TEM [1,18,19] have been reported. However, some discrep-

ancies were found between the D values from XRD analysis and other techniques, such as TEM. One possi-

ble reason for the discrepancies might be a randomly oriented weak assumption for nanomaterial powder 

samples with too few particles, for textured nanoparticle ensembles, or for nanoparticle samples character-

ized by the new nano- and micro-beam X-ray instruments which may sample too few particles [15]. 

The XRD analysis has been used both structural refinements by the Rietveld method [20] and to de-

termine crystal size [2-17]. To estimate more accurately the D value from XRD analysis, GONÇALVES et al. 

[4] have exploited the correction in the width βo  using Caglioti equation, while RAITANO et al. [9], 

PORKODI AND AROKIAMARY [12], PAL AND CHAUHAN [14] have taken correction factor K as about 

0.9. But, other values for K can be obtained depending of shapes or crystal size distributions [8,10].  

The Scherrer's equation has been used to estimate the D value of TiO2 nanopowders [2,12,13,16]. But, 

we have not found papers on nanomaterials sizing of TiO2 nanopowders in which report the minimization of 

the errors caused by instrumental and microstrain effects using correction in the Scherrer's constant K. These 

accomplishments inspired the study of TiO2 nanomaterial sizing by X-ray diffraction analysis associated with 

an approach in the correction of K.  

2. EXPERIMENTAL PROCEDURE 

The following procedure allows estimate the crystal size using a modified Scherrer's equation with correction 

in K:  

 a. Differentiating the Bragg law with respect to θ, the following equation can be obtained: 

  cot. dd            (6) 

where d is the interplanar spacing, θ is the Bragg angle and ∆θ is the width of a diffraction peak observed in 

the angular region near θ. 

b. The angular width (∆θ) is defined in radians and it may be described by the following equation: 

 21               (7) 
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where θ1 and θ2 are very close to θ with θ1 < θ2. 

c. The width βC is defined as -∆θ and ε = Δd/d. 

 d. For βi = 0 and using a), b), c) and Eqs. 1 to 5, the modified Scherrer's equation can be obtained as 

describe following. 

θoβλD .cos.3             (8) 

where K is equal to 1/3. 

 e. The Scherrer's equation with and without correction in K was used to calculate the crystal size of 

TiO2 nanopowders. 

The XRD data of the all TiO2 nanopowder samples (Aldrich, purity 99.5%, 21nm average size) were 

obtained from monochromatic radiation diffractometer (Xpert Pro MPD - Panalytical, Cu-Kα, λ = 1.54Å, 40 

Kv, 45 mA) ranging from 10° to 100° (2θ). The material was used as purchased. The TiO2 samples were an-

nealed at 100 - 600 ºC for 40 minutes under ambient conditions using a muffle furnace at a heating rate of 7 

ºC/min. 

 The phase identification was carried out with Highscore Plus (Panalytical) program. After the identifi-

cation of phases, each phase corresponding pattern in Inorganic Crystal Structure Database (ICSD) was used 

for the refinement of structural parameters by the Rietveld refinement using the DBWSTool2.4. The program 

is free software and it is accessible in http://www.raiosx.ufc.br/site/?page_id = 296. After refining the data 

are saved in file in the .OUT format. From the data obtained after Rietveld refinement was estimated value of 

D by Scherrer's equation (traditional and modified). 

3. RESULTS  

The Figure 1 shows the XRD data of TiO2 samples for change temperature 600º C forward room temperature 

and the Table 1 shows the crystal size values before thermal treatment. In the Table 2 there is average size of 

TiO2 nanoparticles before and after thermal treatment and them behavior also showed in Figure 2 by Scher-

rer's (SC) and modified Scherrer's (MSC). The divergence may be attributed to the instrumental and mi-

crostrain effects, which provide a rough estimate of particles size by Scherrer's equation. On the contrary, this 

does not occur in the modified Scherrer’s equation. 

 

Figure 1: XRD data of anatase TiO2-nanostructured powder samples: unannealed and annealed at 100 up to 600 ºC. 
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Table 1: Nanostructured TiO2 size powders without thermal treatment calculated by Scherrer's equations.  

 

ANGLE 

2θ (degree) 

 

 

WIDTH 

βO (radians) 

 

D (nm) 

                            Modified 

 Scherrer's         Scherrer's 

  equation             equation 

 

ANGLE 

2θ (degree) 

 

 

WIDTH 

βO (radians) 

 

D (nm) 

                            Modified 

Scherrer's          Scherrer's 

equation              equation 

25.37 0.00279 56.54 18.85 76.09 0.00311 62.96 20.99 

37.01 0.00279 58.18 19.39 78.71 0.00316 63.06 21.02 

37.86 0.00279 58.32 19.44 80.79 0.00319 63.33 21.11 

38.63 0.00279 58.45 19.48 82.21 0.00323 63.31 21.10 

48.10 0.002827 59.66 19.89 82.72 0,00325 63.22 21.07 

53.95 0.00284 60.76 20.25 83.20 0.00325 63.46 21.15 

55.12 0.00286 60.71 20.24 92.23 0.00349 63.66 21.22 

62.16 0.00291 61.71 20.57 93.29 0.00352 63.65 21.21 

62.74 0.00293 61.53 20.51 94.25 0.00356 63.59 21.20 

68.81 0.00300 62.20 20.73 95.21 0.00358 63.85 21.28 

70.34 0.00301 62.41 20.80 98.37 0.00370 63.69 21.23 

74.11 0.00307 62.84 20.95 99.85 0.00375 63.77 21.26 

75.10 0.00309 62.90 20.96 - - - - 

Table 2: Average D and phase of TiO2 as a function of the temperature. 

TEMPERATURE (ºC) PHASE SCHERRER'S EQUATION 

D (nm) 

MODIFIED SCHERRER'S EQUATION 

D (nm) 

unannealed anatase -TiO2 61.91 (± 2.11) 20.63 (± 0.70) 

100  anatase -TiO2 54.12 (± 4.80) 18.04 (± 1.60) 

200  anatase -TiO2 54.46 (± 3.50) 18.15 (± 1.17) 

300  anatase -TiO2 55.73 (± 5.22) 18.58 (± 1.74) 

400  anatase -TiO2 49.27 (± 4.29) 16.42 (± 1.43) 

500  anatase -TiO2 

rutile -TiO2 

52.30 (± 5.93) 

69.52 (± 6.25) 

17.43 (± 1.98) 

23.17 (± 2.08) 

600  anatase-TiO2 54.08 (± 3.00) 18.02 (± 1.00) 
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Figure 2: The behavior of D of a-TiO2 phase as a function of temperature. 

4. DISCUSSION  

According to Bragg's law, the formation of a diffraction peak should occur when there is a constructive inter-

ference of waves emitted from the Bragg's angles (θ) [6]. The Fig. 1 shows the XRD data of TiO2 samples as 

a function of temperature. The diffraction peaks of unheated TiO2 sample with nominal average size of 21nm 

matches with the standard patterns of anatase TiO2 (JCPDS card no. 71-1166). The Table 1 shows the crystal 

size values for sample without thermal treatment. This sample (with nanoparticles average size know) was 

used as standard to valid the Eq. 8. 

 The Eq. 6 suggests that as the value of θ is brought closer to 90º, the fractional error in d-spacing in 

the crystal as denoted by Δd/d approaches zero. We should use the diffraction peaks as closer to the value of 

2θ = 180º as possible to precisely calculate the true value of the d-spacing. In addition, since the measure-

ment of a diffraction peak at 2θ = 180º is physically impossible; the value of highly precise d-spacing should 

be obtained by correction methods of the width ∆θ. 

The width ∆θ can be assumed as .cosθ [9] or /sinθ [11], where  is a constant and θ is the Bragg's 

angle. In order since θ1 and θ2 are very close to θ and θ1 < θ2, if is used the angular width ∆θ as a measure of a 

peak width (βC), i.e, βC = - ∆θ, ε = Δd/d and βi = 0 are taken into consideration, the Eq. 8 is obtained. 

The nanomaterials sizing has been estimated from a simple Scherrer's equation assuming a spherical 

shape [16]. From width and D, that K can be: 0.862 - 1.458 (cube shape), 1.078 (sphere shape), 1.457 - 1.658 

(tetrahedron shape), 1.080 - 1.430 (dodecahedron shape) and 0.942 - 1.452 (octahedron shape) [3]. But dif-

ferent values for K can be obtained for different shapes or crystal size distributions [10].  Also, the crystal 

size effect has hard influence on the XRD line profiles [3]. In this work, the K value of 1/3 seems has a 

strong relationship with crystal size distributions effect.      

The crystal size shows an obvious inference on the scattering intensity and diffraction angles when the crystal 

is small enough [3]. Additionally, if fractional error in d-spacing is taken into consideration as Δd/d (Eq. 6 ), 

it may infers that to Δd/d approaches zero, a natural minimization of the errors caused by instrumental effects 

and microstrain will occur. The Figure 3 shows crystal size as a function of 2θ for TiO2 (a-TiO2 and r-TiO2 ) 

phase determined by modified Scherrer's equation. As consequence, the values of crystal size as function of 

2θ (Table 1) shows that using diffraction peaks with values of 2θ  near to 180º, the best agreement between 

the nominal crystal size and the sizes calculated from modified Scherrer's equation was obtained.  
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Figure 3: The crystal size as a function of 2θ. 
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As can be seen from Table 2 data, the average crystal size of TiO2 obtained from the modified Scher-

rer's equation (Eq. 8) is 20.63nm (± 0.70), while the average size calculated using the traditional Scherrer's 

equation is 61.91nm (± 2.11). It shows that a good agreement between the nominal size of 21 nm and the size 

calculated from modified Scherrer's equation was achieved which the average absolute divergence does not 

exceed 0.70 nm. Thus, the correction in K allows direct analysis of line broadening without a reference sam-

ple, i.e, for condition of βi = 0. 

 As mentioned above [4,14], the correction of the broadening in βO due to instrumental and microstrain 

effects should be possible only using additional equations, what allow us to estimate the D with best preci-

sion. Furthermore, apart from sample-specific contributions to the βO, it is important that the βi of the appa-

ratus is accurately determined [10]. Fortunately, Eq. 8 provides the nanomaterials sizing directly from exper-

imental width (βO) without using additional equations 

 In the traditional Scherrer's equation there are sources of errors (instrumental factor and microstrain), 

what provides a rough estimate of particles size [4]. On contrary, the Eq. 8 should be interpreted as the cor-

rected Scherrer's equation, where the correction factor K equal to 1/3 allows us to estimate the value of D 

only due to the chance in D size without the influence of microstrain and instrumental effects.    

 A peak broadening is calculated based on real diffractometer characteristics such as acquisition geom-

etry, X-ray tube design, primary and secondary optics, specimen size and others [2]. Therefore the results 

shows that the values for nanomaterial sizing must be estimated from the Eq. 8, because it has the property of 

eliminate both influence contributions: instrumental effects and microstrain to the broadening in the βO. This 

property seems to arise independently of the path used, possibly due the value of D (Eq. 8) be a net product 

between the expansion and contraction generated in a stable crystal. Thus, the Equation 8 was used to esti-

mate the average size D of TiO2 nanoparticles as a function of the temperature (Table 2).  

The correction of error in the Scherrer´s equation has been reported. MONSHI et al [7] have reported 

the use of least squares method to mathematically decrease the source of errors in the Scherrer's equation. 

GONÇALVES et al [4] have exploited the correction for the effects of instrumental broadening using Ca-

glioti equation and separation between size and strain broadening by Williamson–Hall equation. The Table 2 

data suggest that from the Equation 8, the error in D-size in the crystal approaches unity. As consequence, in 

opposition the traditional Scherrer’s equation, we may infer that the modified Scherrer’s equation (Eq. 8) 

should be used to estimate more accurately that the values of nanoparticles size. 

Additionally, the effect of annealing temperature on the both structure and size of TiO2 was observed. 

The TiO2 polymorph has three phases: anatase, rutile and bruquita [21-23], and its own intrinsic properties 

leading to different technological applications in the form of nanoparticles, such as in dye-sensitized solar 

cells [24-27], lubricant [28], deionization [29], opto-mechanical composite [30] and others. In this experi-

mental work was observed only the anatase-TiO2 (a-TiO2) and rutile-TiO2 (r-TiO2) phases (Figure 1).  

According SAMET et al. [16] and SARODE et al. [13], TiO2 calcined at 400 °C exhibits only diffrac-

tion peaks relative to the anatase phase. In this work was observed that the a-TiO2 phase in the samples was 

determined to be stable from unheated up to 400ºC and at 600ºC, but at 500 ºC the dominant phase was r-

TiO2 and some a-TiO2 phase peaks detonated in the Figure 1 as “ * ”. It appears clearly that, a-TiO2 to r-TiO2 

phase transition takes place for an annealing temperature of 500°C and again following the crystallization of 

a-TiO2 at 600ºC. SUYITNO et al. [24] have been reported the anatase phase be dominant for samples treated 

up to 600 °C. 

From of the combination of the XRD peak analysis and modified Scherrer’s equation we infer that 

have a relationship between the a-TiO2 to r-TiO2 phase transition and D. The change in size appears (Table 2) 

to be associated with the phase change, which initially has a reduction of D stimulated thermally by interpar-

ticles mass diffusion without phase shift, however the temperature increase induces a new phase and increase 

particle. It is obvious that TiO2 nanoparticles size seem has behavior influenced by both temperature and 

phase change. The Figure 2 shows the D values for a-TiO2 as a function of temperature. 
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5. CONCLUSION  

The results show that the modified Scherrer's equation can be used to calculate crystals size directly from 

measured βo located at any 2θ in the XRD pattern without additional equations for the broadening correction 

in βo. Also, it is possible that, the correction in K=1/3 allows eliminating the influence of ε in estimating D, a 

fact that cannot be done applying the traditional Scherrer's equation. Furthermore, the temperature and phase 

transition influence strongly the TiO2 nanoparticles size.  
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