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ABSTRACT 

In this article, hybrid white organic light-emitting diodes (WOLEDs) under p-i-n structures have been 

investigated in terms of power efficiency. By using tris(8-hydroxy quinolinato) aluminum (Alq3) doped with 

8-hydroxy-quinolinato lithium (Liq) as an n-type and WHI112 doped with molybdenum trioxide (MoO3) as a 

p-type, the typical device structure of ITO/WHI112: 20 wt.% MoO3 (55 nm)/HTG-1 (10 nm)/UBH15: 3 

wt.% EB502 (10 nm)/EPH31: 3 wt.% EPY01 (25nm)/3TPYMB (10 nm)/Alq3: 33 wt.% Liq (25 nm)/Al (150 

nm) was fabricated. It has been found that the p-i-n device based device showed the lowest driving voltage 

and highest power efficiency among the undoped and n-type devices. At the current density of 20 mA/cm
2
, 

the roll-off of the efficiency in the p-i-n device was much smaller than the n-type and the undoped devices. 

The current and power efficiency of the p-i-n device were maintained with 17.2 cd/A and 5.1 lm/W at 100 

mA/cm
2
, it was reduced to 7.5 % and 21 %, respectively. In contrast, the n-type device exhibited the 

significant reduction of efficiency (14.4 cd/A and 3.8 lm/W at 80 mA/cm
2
), it was reduced to 20 % and 39.6 

%, respectively. The superior performances of the p-i-n structure based device were attributed to the high 

hole injection ability of WHI112:MoO3 and high electron mobility of Alq3:Liq, leading to high power 

efficiency and low driving voltage. A better balance of electrons and holes could contribute to a good current 

efficiency for the device. These findings strongly indicated that carrier injection ability and balance showed 

significant affects on the performance of OLED. 
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1. INTRODUCTION 

Since the discovery of the efficient organic light-emitting diodes (OLEDs) considerable interest has been 

increased in developing OLEDs with high efficiency, low operating voltage for display applications is 

concerned [1]. Much effort has been expanded for improving the OLED performance by modifying its 

structure to achieve the effective and balanced carrier injection. The carrier injections from electrodes are 

dependent on the energy barrier height at the interfaces between the electrodes and organic layers [2,3]. 

Reasonable charge carrier control in the OLED emitting layers (EMLs) is a key factor in OLED low driving 

voltage and high efficiency structure design. Two approaches are most frequently used to overcome the 

driving voltage problem. The first approach involves with inserting a thin layer as an anode buffer layer 

between the indium tin oxide (ITO) and hole transport layer (HTL). This buffer layer reduces the energy 

barrier and enhancesthe charge injection at the interface and ultimately reduces the driving voltage improving 

the device power efficiency [4-7]. The second method involves the use of strong electron acceptor and donor 

materials as dopants in the organic HTL and electron transport layer (ETL) [8,9]. Great efforts have been 

carried out to enhance n-doping electron transport conductivity [10]. DING et al. [11] have demonstrated the 

significantly enhanced device performance by combination of Lithium hydride (LiH) doped 8-

hydroxyquinoline aluminum (Alq3) as a electron transport layer (ETL). However, a few studies have been 

reported using 8-hydroxy-quinolinato lithium (Liq) as the electron injection layer [12]. The p-doping of HTL 

for enhancing the hole injection and lowering the drive voltages in OLEDs has attracted much attention [13]. 

The p-doping HTL is typically made by co-evaporating the hole transporting materials with a strong electron 

acceptor like the molybdenum trioxide (MoO3) [14] and the tetrafluro- tetracyano-quinodimethane (F4-

TCNQ) [15]. The p-doping could also achieve the ohmic conductivity to minimize the voltage drop across 
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the ITO/HTL interface. Judicious control of doping levels can also lead to the efficient carrier injection by 

the tunneling [16]. It is very difficult to balance the holes and electrons in the emitting layer, because hole 

mobility is generally faster than the electron mobility in organic materials. In order to solve this problem, 

several kinds of HTL, ETL, hole block layer and electron block layer have been studied [17,18]. 

In this paper, we have demonstrated hybrid white organic light-emitting diode (WOLEDs) devices 

based on the p-i-n structure with Liq doped into Alq3 as the n-doping layer and MoO3 doped into WHI112 as 

the p-doping layer. In order to reduce the driving voltage and improve efficiency, we use MoO3 doped into 

WHI112 as the p-doping layer and Liq doped into Alq3 as the n-doping layer, power efficiency and carrier 

balance have been overwhelmingly improved. The electrical engineering and hybrid WOLED charge balance 

are developed based on these experimental results. The mechanism of such improvement is also discussed on 

these experimental results. 

 

2. MATERIALS AND METHODS 

Glass coated with indium-tin oxide (ITO) was used as the starting substrate. The substrate was immersed 

sequentially in acetone and isopropyl alcohol under the ultrasonic bath for 15 min each, following by rinsing 

in DI water. The substrates were dried with nitrogen gas.  Then the samples were treated with the oxygen 

plasma for 1 min. prior to use. The devices were prepared by the vapor deposition onto the ITO coated glass 

substrate. Firstly, the series of electron-only devices were fabricated in order to obtain some data on the 

electron transport ability of Alq3 doped with Liq layers. The structures of electron-only devices were as 

follows: ITO/Alq3: x wt.% Liq (30 nm)/Al (130 nm), where x was 0 wt.% for device E-1, 10 wt.% for device 

E-2, 33 wt.% for device E-3, and 50 wt.% device E-4 (Table 1). Secondly, the study of hole-injection ability 

of WHI112 doped with MoO3 layer, the series of hole-only devices were fabricated. Hole-only device got the 

following structures: ITO/ WHI112: y wt% MoO3 (50 nm)/ HTG-1 (15 nm)/Al (130 nm), y was 0 wt.% for 

device H-1, 10 wt.% for device H-2, 20 wt.% for device H-3, and 30 wt.% for device H-4 (Table 2). 

 

Table 1: The parameters of electron-only devices. 

 

DEVICE 

ANODE  n-TYPE  CATHODE 

  Alq3 Liq  Al 

E-1 ITO  30 nm 0%  130 nm 

E-2 ITO  30 nm 10%  130 nm 

E-3 ITO  30 nm 33%  130 nm 

E-4 ITO  30 nm 50%  130 nm 

 

Table 2: The parameters of hole-only devices. 

DEVICE ANODE  p-TYPE  HTL  CATHODE 

  WHI112 MoO3  HTG-1  Al 

H-1 ITO  50 nm 0%  15 nm  130 nm 

H-2 ITO  50 nm 10%  15 nm  130 nm 

H-3 ITO  50 nm 20%  15 nm  130 nm 

H-4 ITO  50 nm 30%  15 nm  130 nm 

 

Finally, hybrid WOLEDs devices were fabricated with undoped, n-type and p-i-n structures. HTG-1 

was used as HTL, blue host UBH15 doped with blue fluorescent dopant EB-502 as blue EML, yellow host 

EPH-31 doped with yellow phosphorescent dopant EPY01as yellow EML, and tris(2,4,6-trimethyl-3-

(pyridin-3-yl)phenyl) borane (3TPYMB) was used as hole blocking layer (HBL), while LiF and Al were used 

as electron injection layer and cathode, respectively. The energy band diagrams and molecular structures 

were displayed in Fig. 1. The structures of undoped devices was ITO/WHI112 (55 nm)/HTG-1 (10 

nm)/UBH15: 3 wt.% EB502 (10 nm)/EPH31: 3 wt.% EPY01 (25nm)/3TPYMB (10 nm)/Alq3 (25 nm)/LiF 

(0.8 nm)/Al (150 nm).  When we added Alq3: 33 wt.% Liq (25 nm) and WHI112: 20 wt.% MoO3 (55 nm) 

onto the undoped devices, we obtained n-doped layer and p-doped layer (Table 3), respectively. All materials 

were purchased from e-Ray Optoelectronics Technology Co., Ltd., Taiwan (R.O.C.). The organic layer and 



                                                                                        CHITTAWANIJ, A.; LOCHAROENRAT, K. revista Matéria, v. 23, n. 1, 2018. 

the cathode layer were deposited under the ultrahigh vacuum chamber at 4x10
-6

 Torr. The active area of the 

devices was 5x5 mm
2
. The thickness of the organic layers was monitored by using quartz-crystal monitor. 

Current-voltage characteristics were measured with the computer-controlled Keithley 2400 Source Meter and 

elctroluminescence (EL) spectra was measured with the Spectrascan PR650 photometer. All the 

measurements were carried out at room temperature and atmosphere. 

 

Figure 1: Energy band diagrams and molecular structures of the tested materials. 

Table 3: The parameters of undoped, n-doped and p-i-n devices. 

DEVICE 
HIL 

p-

DOPANT 
HTL BLUE EML YELLOW EML HBL ETL 

n-

DOPANT 
EIL 

WH112 MoO3 HTG-1 UBH15 EB502 EPH31 EPY01 3TPYMB Alq3 Liq LiF 

undoped 

55 nm 

- 

15 nm 

      - 0.8 nm 

n-doped - 10 nm 3% 25% 3% 10nm 25 nm 
33% - 

p-i-n 20%       

 

3. RESULTS AND DISCUSSION 

 

3.1 Characteristics of electron-only and hole-only devices 

In electron-only device, the current density as a function of voltage (J-V) characteristics at the various Liq 

doped into Alq3ratios are shown in Fig. 2. In electron-only device, a rapid increasing in the device current 

occurs when Liq is doped into the Alq3 layer. Increasing the current density is seen when a small 10 wt.% Liq 

doping concentration is introduced into the Alq3 layer, as compared with the control device. The J-V charac-

teristics of electron-only device are strongly dependent on the doping ratio in the electron transport layer. At 

the same voltage, the current density increases along with increasing the doping ratio. The highest current 

density is observed at 33 wt.% Liq doping ratio. The E-1, E-2, E-3 and E-4 device driving voltage at 100 

mA/cm
2
 are 8, 5.3, 2.6 and 6.7 V, respectively. These electron-only device J-V characteristics suggest that a 

certain Liq to Alq3doping ratio could improve the co-deposited layer electron transport ability. The advantage 

of using Alq3:Liq as the ETL is explained using the electron hopping exchange along with their Lowest Un-

occupied Molecular Orbital (LUMO). In a single host device, electrons hop along the LUMO in Alq3. Since 

the LUMO-LUMO difference between Alq3 (3.1eV) and Liq (3.24 eV) is negligible, subject to their similar 

LUMO, transport manifolds alongwith their LUMO are expected to exhibit a certain extent of overlapping 

after a mixing ratio goes beyond 33 wt.% Liq. Therefore, it is likely that a large energetic disorder between 

Alq3 and Liq contributes to the electron hopping, implying that electron hopping among Alq3 and Liq sites is 

favorable [19]. The high electron conductivity of Alq3:Liq might originate from the short electron transport 

hopping length as compared with the pure Alq3 ETL. However, the current conduction is reduced dramati-

cally as the doping ratio is further increased to 50 wt.% in the device E-4. This result is attributed to the car-

rier quenching and defection effects. 

 In hole-only device, J-V characteristics at various MoO3 ratios doped into WHI112 are shown in Fig. 

3. The J-V characteristics of hole-only device are strongly dependent on the hole transport layer doping ratio. 
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Comparing with the undoped device, we could see that the low doping strikingly decreases the driving 

voltage and the J-V characteristics are strongly dependent on the hole injection layer doping ratio. At the 

same voltage, the current density increases along with increasing MoO3 doping ratio. The highest current 

density is observed at 20 wt.% MoO3 doping ratio, indicating that the p-doping HIL layer conductivity 

increases due to MoO3 doping into WHI112. The H-1, H-2, H-3 and H-4 device driving voltages are 5.4, 4.3, 

3.8 and 4.2 V, respectively. The results indicate that doping MoO3 reduces the potential barrier for the hole 

injection at the ITO interface [20]. The hole-only device current enhancement is attributed to the reduction of 

resistivity and activation energy, leading to decreased ohmic losses. 

   

Figure 2: Electron-only J-V characteristics of devices E-1 to E-4. 

 

Figure 3: Hole-only J-V characteristics of devices H-1 to H-4. 

 It is possible that the high holes are transferred from the Highest Occupied Molecular Orbitals (HO-

MO) in the WHI112:MoO3 matrix into the HTG-1 HOMO. The MoO3 (5.3 eV) and HTG-1 (5.4 eV) HOMO 

levels have closely energetic positions making a charge transfer and energetically favorable process. The hole 

transfer results in increased charge carrier concentration in the bulk HTL which increases the film conducti-

vity and reduces HTL ohmic losses during the device operation. Through the increased bulk conductivity 

process, the current density is expected to increase with increasing the doping concentration. However, our 

devices demonstrate the reduced performance at higher 20% MoO3 to WHI112 concentration. It is likely that 

because the heavy doping MoO3 molecules saturate the layer and escape into the HIL (WHI112:MoO3)/HTL 

(HTG-1) interface. This thin MoO3 layer creates a dipole barrier at the interface with HTL which increases 

the necessary device driving voltage. It is possible that a high MoO3 concentration might lead to significant 

dopant diffusion through the HTL into the EML, causing electroluminescence (EL) quenching in the emissi-

ve region. This suggests that the aggregations tend to degrade the device performance. 

 

3.2 Comparison between undoped and n-type devices of hybrid WOLEDs 

Hybrid WOLEDs are attracting significant attention due to their unique large-scale fabrication merits for the 
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solid-state lighting sources. The yellow phosphorescent with the blue fluorescent emitter combination might 

result in a good compromising among the high efficiency hybrid systems. We know that in conventional de-

vices, such as undoped device, the number of the holes is much greater than the number of the electrons. A 

surplus of the holes at the HTL/EML interface increases the probability that EML cations are formed, leading 

to the device degradation rapidly. From the electron-only device, the further experiments should focus on a 

device with Alq3: 33 wt.% Liq  layer as the n-doping. The n-type device with 33 wt.% Liq doped into Alq3 as 

the electron carrier for hybrid WHOLEDs is therefore studied. It is very important to balance out the current 

supply to the emission zone. This is carried out with 3TPYMB as the electron-blocking and HTG-1 as hole-

blocking layers nearby the emission zone. These layers create an additional barrier for the carriers to be injec-

ted. The result shows that the recombination and/or emission zone is clearly separated from the area with the 

high carrier concentration. The structure of this device is ITO/WHI112 (55 nm)/HTG-1 (10 nm)/UBH15: 3 

wt.% EB502 (10 nm)/EPH31: 3 wt.% EPY01 (25nm)/3TPYMB (10 nm)/Alq3: 0 or 33 wt.% Liq (25 

nm)/with or without LiF (0.8 nm)/Al (150 nm), where Liq is 0% with LiF for undoped device and Liq is 33 

wt.% without LiF for n-type device. Figure 4 shows L-V and J-V (inset) characteristics of undoped and n-type 

devices.The n-type device shows the lower operational voltage and higher current density and luminance 

slopes than the undoped device. It is clearly seen that under the same current density, the n-type device pro-

duces higher emissions than the undoped device. This represents the lower electron injection barrier and 

higher efficiency from the n-type device. Therefore Alq3:Liq produces the higher electron injection efficiency 

and higher luminance than LiF. The power efficiency of the two devices is shown in Fig. 5. The power effici-

encies of the undoped and n-type devices are 6.4 and 7.81 lm/W at 5 mA/cm
2
, respectively. The driving vol-

tage of the n-type device at 5 mA/cm
2
 is 7.2 V, which is reduced, as compared with the undoped device (11 

V). This significant enhancement of performance is attributed to the improved transport conductivity of the 

n-doping Liq doped into Alq3layer. This shows that Liq incorporation into Alq3 materials could improve de-

vice performance, by increasing the electron concentration in Alq3 films and moving the Fermi level close to 

the LUMO of Alq3 [19]. 

 

Figure 4: L-V and J-V (inset) characteristics of undoped and n-type devices. 
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Figure 5: Power efficiency-current density characteristics of undoped and n-type devices. 

 

3.3 Comparison between n-typeand p-i-n devices of hybrid WOLEDs 

The power efficiency depends on the carrier injection, the transportation and the carrier balance. The p-i-n 

device is fabricated in which the WH112 layer is doped with 20 wt.% MoO3 in the ITO/WHI112: 20 wt.% 

MoO3 (55 nm)/HTG-1 (10 nm)/UBH15: 3 wt.% EB502 (10 nm)/EPH31: 3 wt.% EPY01 (25nm) Alq3: 33 

wt.% Liq (25 nm)/Al (150 nm) configuration. The n-type device and p-i-n device characteristics are displa-

yed in Figs. 6-8.  

 

Figure 6: L-V and J-V (inset) characteristics of hybrid WOLEDs of n-type and p-i-n devices. 
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Figure 7: Power efficiency-current density character-istics of hybrid WOLEDs of n-type and p-i-n devices. 

 

Figure 8: Electroluminescence (EL) spectra of hybrid WOLEDs of n-type and p-i-n devices. 

  

As compared with the n-type device, the L-V and J-V (inset) curves of the p-i-n device are significan-

tly enhanced, indicating that the device conductivity is improved using the p-i-n structure, as shown in Fig. 6. 

It is clear that the power efficiency of the p-i-n device is considerably increased as compared with the n-type 

device as shown in Fig. 7. This indicates the improvement of the p-i-n deviceconductivity. Table 4 summari-

zes the data for both devices obtained from the n-type device and p-i-n device at 20 mA/cm
2
. The p-i-n devi-

ce current efficiency, power efficiency and voltage are improved at 18.6 cd/A, 6.5 lm/W and 8.9 V at 20 

mA/cm
2
, respectively, as compared with the n-type device at 18 cd/A, 6.3 lm/W and 9.4 V, respectively. 

 

Table 4: Performance of hybrid WOLED devices at 20 mA/cm2. 

DEVICES VOLTAGE LUMINANCE YIELD POWER EFFICIENCY CIE  (X,Y) 

n-type 9.4 V 3600 cd/m
2
 18.0 cd/A 6.3 lm/W 0.45,0.50 

p-i-n 8.9 V 3720 cd/m
2
 18.6 cd/A 6.5 lm/W 0.39,0.48 

 

           However, the roll-off of the efficiency in the p-i-n device is much smaller than the n-type device. The 

current and power efficiency of the p-i-n device are maintained with 17.2 cd/A and 5.1 lm/W at 100 mA/cm
2
, 

it is reduced to 7.5 % and 21 %, respectively. In contrast, the n-type device exhibits the significant reduction 

of efficiency (14.4 cd/A and 3.8 lm/W at 80 mA/cm
2
), it is reduced to 20 % and 39.6 %, respectively. On the 

other hand, for the p-i-n device, the combination of the hole-transport character of 20 wt.% MoO3 doped into 
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WHI112 and the electron-transport property of 33 wt.% Liq doped into Alq3 is contributed to the controlling 

the holes and the electrons in the light-emitting layer and results in the stable efficiency roll-off hybrid 

WOLED. Figure 8 shows the EL spectra of the n-type device and p-i-n device. The EL spectrum shows the 

difference of the peak between these two devices. It is interesting to note that the EL spectrum of the p-i-n 

device is high as compared with the n-type device. The blue peak spectrum appeared as the electron injection 

is increased and it shifts the recombination into the blue emission layer. This indicates that the p-i-n device 

plays a major impact on the hybrid WOLED optical characteristics. The CIE coordinates of the n-typeand p-

i-n devices are (0.45, 0.50) and (0.39, 0.48), respectively, as shown in Table 1. As the result, the p-i-n device 

contributes to a certain degree to the good hole-electron balance in the light-emitting layer. 

4. CONCLUSIONS 

We have presented the hybrid WOLEDs based onp-i-n structure of novel Alq3:Liq and WHI112:MoO3 as n-

type and p-type, respectively. Current efficiency of 18.6 cd/A, power efficiency of 6.5 lm/W, and driving 

voltage 8.9 V at a current density of 20 mA/cm
2
 in p-i-n hybrid WOLEDs were obtained. The roll-off of the 

efficiency in the p-i-n device was much smaller than the n-type and undoped devices. The current and power 

efficiency of the p-i-n device were maintained with 17.2 cd/A and 5.1 lm/W at 100 mA/cm
2
, it was reduced 

to 7.5 % and 21 %, respectively. In contrast, the n-type device exhibited the significant reduction of the effi-

ciency (14.4 cd/A and 3.8 lm/W at 80 mA/cm
2
), it was reduced to 20 % and 39.6 %, respectively. The supe-

rior performance was attributed to the high hole and electron ability of WH112:MoO3 and Alq3:Liq, leading 

to low driving voltage and better electron and hole balance, contributing to enhanced efficiency even at the 

high current density. Effective carrier balance between the holes and electrons was achieved from the en-

hanced transport layer conductivity, leading to the device enhanced efficiency. 
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