Acessibilidade / Reportar erro

Characterization of the raw material with nanometric particle size used in the processing of the composite WC-10% Co

ABSTRACT

The composite WC-10% Co is one of the materials most produced by the hardmetal fabrication industry. However, a better understanding of the effect of process parameters on their structural characteristics is sought, especially with respect to the formation of metastable phases - η. In this work, we used the Rietveld Method with X - Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Brunauer - Emmett - Teller (BET) to investigate the structure of the raw materials used in the production of hardmetal. The particle sizes as well as the identified morphologies for the WC and Co powders are reflections of their manufacturing process, which introduce residual stresses for WC powder, low crystallinity and a significant amorphous portion for Co powder. These characteristics were identified with XRD in comparison to the obtained diffraction pattern and crystallographic databases. After the powder mixing process, the phases were quantified and the effects of this process were identified on the unit cells of each phase. This work shows that the characterization route using the Rietveld Method is efficient to analyze the structure of these materials during their processing. It was observed that the mixing process using high energy milling equipment promotes a change in the density of WC unit cells by “pushing” Co atoms into their structure. This may accelerate the dissolution process of most WC particles during sintering. And contribute to the accentuated formation of metastable phases eta – η, damaging the balance between the mechanical properties of hardness and fracture toughness making the tool or piece very hard and not very tenacious.

Keywords
nanometric WC; hardmetal; X-ray diffraction; materials characterization; Rietveld method

Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro, em cooperação com a Associação Brasileira do Hidrogênio, ABH2 Av. Moniz Aragão, 207, 21941-594, Rio de Janeiro, RJ, Brasil, Tel: +55 (21) 3938-8791 - Rio de Janeiro - RJ - Brazil
E-mail: revmateria@gmail.com