Population structure and one-year dynamics of the endangered tropical tree species Caesalpinia echinata Lam. (Brazilian red-wood): the potential importance of small fragments for conservation

Estrutura populacional e dinâmica de um ano da espécie ameaçada Caesalpinia echinata Lam. (pau-brasil): a importância potencial de pequenos fragmentos para conservação

Pablo José Francisco Pena Rodrigues Rodolfo Cesar Real de Abreu Eduardo M. B. Barcellos Haroldo Cavalcante de Lima Fabio Rubio Scarano About the authors

ABSTRACT

Caesalpinia echinata Lam. an endangered species, occurs in forest fragments of the Cabo Frio region, in Rio de Janeiro, Brazil. Data from four sub-populations were used to describe local population patterns and one-year dynamics. In each subpopulation, 0.1 ha-plots were set up and all C. echinata trees were mapped, and diameter and height were measured. The fragments sampled had different sizes and were subjected to various degrees of man-made disturbance, representing a succession gradient from an earlier (small fragment) to a later stage (large fragment). We compared the sub-populations as regards density, size structure, spatial distribution, germination and mortality, to identify short-term responses to mechanical injuries (broken stems, sand burial and man-made cuts). Matrix analysis considering the four C. echinata sub-populations together showed a slight tendency for population expansion (λ = 1.0211) if injury patterns do not lead to habitat extinction. On the other hand, sub-populations showed aggregated distribution patterns, particularly at forest edges. Diameter size structure varied from a reversed-J pattern, i.e. seedling abundance in the small fragment (more impacted sub-population) to a uniform plant distribution of size classes in the large one (less impacted sub-population). The sub-population in the smallest fragment showed the highest birth and mortality, in contrast to reduced demographic variation in the largest fragment. Moreover, the smallest fragment also showed the largest seedling stand density and biomass. These data indicate the potential importance of small fragments for the conservation of the Brazilian red-wood.

Key words:
Atlantic forest; Cabo Frio region; fragmentation; population structure; matrix analysis

RESUMO

Caesalpinia echinata Lam. (pau-brasil) é uma espécie ameaçada de extinção que ocorre em fragmentos florestais da região de Cabo Frio no Rio de Janeiro. Quatro sub-populações da região foram utilizadas para detecção de padrões populacionais e estudo de um ano de dinâmica da espécie. Em cada uma destas sub-populações, parcelas de 0,1 ha foram estabelecidas e todos os indivíduos de C. echinata foram mensurados quanto ao diâmetro e altura. Os fragmentos selecionados possuíam tamanhos distintos e estavam sujeitos a impactos antropogênicos diferenciados. Tais impactos representaram gradientes de sucessão de estágios iniciais (fragmento pequeno) até estágios tardios (fragmento grande). As sub-populações foram comparadas quanto à densidade de indivíduos, estrutura de tamanhos, distribuição espacial, germinação e mortalidade, a fim de detectar respostas em curto-prazo das plantas aos danos mecânicos (quebra, soterramento e corte). Análises de Modelos Matriciais foram realizadas considerando as quatro sub-populações como uma única população local. Estas indicaram pequena tendência de expansão populacional após eventos reprodutivos (λ = 1,0211), caso os padrões de danos não conduzissem a extinção total do habitat. Paralelamente, as sub-populações exibiram padrões agregados de distribuição, especialmente nas bordas florestais. A estrutura de diâmetros variou desde o padrão de J-reverso, e.g. abundância de sementes no fragmento pequeno (sub-população mais impactada) até a distribuição uniforme observada nas classes de diâmetros do maior fragmento (sub-população menos impactada). A sub-população do menor fragmento exibiu as maiores taxas de nascimento e mortalidade, contrastando com a reduzida variação demográfica do maior fragmento. Entretanto, o menor fragmento também exibiu a maior densidade de plântulas e biomassa. Estes resultados indicam que pequenos fragmentos também são importantes para a conservação do pau-brasil.

Palavras-chave:
Mata Atlântica; Cabo Frio; fragmentação; estrutura de populações; modelos matriciais

Full text available only in PDF format.

ACKNOWLEDGEMENTS

We thank D. S. D. Araujo, A. F. Costa, M. T. Nascimento and one anonymous reviewer for critical reading of the manuscript; several students of the Plant Ecology Laboratory for field assistance; and C. de la Maria and the Instituto Búzios Mata Atlântica/Búzios Bauen Club for providing logistic facilities. The Brazilian Research (CNPq) and Education (CAPES) Councils provided research grants.

REFERENCES

  • Alvarez-Buylla, E. R. 1994. Density dependence and patch dynamics in Tropical Rain Forests: Matrix Models and applications to a tree species. The American Naturalist 143: 155-191.
  • Aguiar, F. F. & Barbedo, C. J. 1996. Efeito de fatores ambientais no crescimento de mudas de pau-brasil (Caesalpinia echinata Lam.). RBHO 2: 26-32.
  • Araujo, D. S. D. 1997. Cabo Frio region, southeastern Brazil. : Davis, S. D.; Heywood, V. H.; Herrera-Macbryde, O.; Villa-Lobos, J. & Hamilton, A. C. (eds.). Centers of plant diversity: a guide and strategy for their conservation. 3. The Americas. WWF/IUCN, Washington. Pp. 373-375.
  • Benitez-Malvido, J. 1998. Impact of forest fragmentation on seedling abundance in a tropical rain forest. Conservation Biology 12: 380-389.
  • Brasil 1992. Portaria nº: 006/92-N, 15 de janeiro de 1992. Lista oficial de espécies da flora brasileira ameaçadas de extinção. Diário Oficial da República Federativa do Brasil, Brasília-DF.
  • Bruna, E. M.; Nardy, O.; Strauss, S. Y. & Harrison, S. 2002. Experimental assessment of Heliconia acuminata growth in a fragmented Amazonian landscape. Journal of Ecology 90: 639-649.
  • Cardoso, M. A.; Provan, J.; Powell, W.; Ferreiras, P. C. E. & Oliveira, P. E. 1998. High genetic differentiation among remnant populations of the endangered Caesalpinia echinata Lam. (Leguminosae-Caesalpinoideae). Molecular Ecology 7: 601-608.
  • Cardoso, S. R. S.; Provan, J.; Lira, C. F.; Pereira, L. O. R.; Ferreira, P. C. G. & Cardoso, M. A. 2005. High levels of genetic structuring as a result of population fragmentation in the tropical tree species Caesalpinia echinata Lam.. Biodiversity and Conservation 14: 1047-1057.
  • Caswell, H. 1989. Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer Associates, Sunderland, MA.
  • Condit, R.; Hubbell, S. P. & Foster, R. B. 1995. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs 65: 419-439.
  • ______; Sukumar, R.; Hubbell, S. P. & Foster, R. B. 1998. Predicting population trends from size distributions: a direct test in a tropical tree community. American Naturalist 152: 495-509.
  • Corrêa, M. P. 1974. Dicionário das plantas úteis do Brasil e das exóticas cultivadas. IBDF, Ministério da Agricultura, Rio de Janeiro.
  • Cunha, M. W. & Lima, H. C. 1992. Viagem à Terra do Pau-Brasil. Agência Brasileira de Cultura, Rio de Janeiro.
  • Dean, W. 1996. A ferro e fogo: a história e a devastação da Mata Atlântica brasileira. Companhia das letras, São Paulo.
  • Didham, R. K. & Lawton, J. H. 1999. Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31: 17-30.
  • Ehrlén, J. & van Groenendael, J. 1998. Direct perturbation analysis for better conservation. Conservation Biology 12: 470-474.
  • FEEMA (Fundação Estadual do Meio Ambiente). 1988. Importância da biota da região de Cabo Frio, Rio de Janeiro.
  • Fenner, M. 1985. Seed Ecology. Chapman and Hall, London.
  • Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology and Systematics 34: 487-515.
  • Geβler, A.; Duarte, H. M.; Franco, A. C.; Lüttge, U.; Mattos, E. A.; Nahm, M.; Rodrigues, P. J. F. P.; Scarano, F. R. & Rennenberg, H. 2005. Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic Forest of SE-Brazil. III. Three legume trees in a semideciduous dry forest. Trees - Structures and Function 19: 523-530.
  • Hanski, I. & Gilpin, M. 1991. Metapopulationdynamics: brief history and conceptual domain. Biological Journal of the Linnaean Society 42: 3-16.
  • Harper, K. A.; Macdonald S. E.; Burton, P. J.; Chen, J.; Brosofske, Saunders, S.C.; Euskirchen, E. S.; Roberts, D.; Jaiteh, M. S. &, Esseen, P. 2005. Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology 19: 768-782.
  • Horvitz, C. C. & Schemske, D. W. 1995. Spatiotemporal variation in demographic transitions of a tropical understory herb: projection matrix analyses. Ecological Monographs 65: 155-192.
  • Janzen, D. H. 1983. No park is an island: increase in interference from outside as park size decreases. Oikos 41: 402-410.
  • Krebs, C. J. 1989. Ecological methodology. Harper-Collins Publishers, New York, 654p.
  • Küppers, M. 1994. Canopy gaps: competitive light interception and economic space filling-a matter of whole-plant allocation. : Caldwell, M. M. & Pearcy, R.W. (eds.). Exploitation of environmental heterogeneity by plants. Academic Press, London. Pp. 111-144.
  • Laurance, W. F. 2000. Do edge effects occur over large spatial scales? Trends in Ecology and Evolution 15: 134-135.
  • ______; Ferreira, L. V.; Rankin de Merona, J. M.; Laurance, S. G.; Hutchings, R. W. & Lovejoy, T. E. 1998. Effects of fragmentation on recruitment patterns in Amazonian tree communities. Conservation Biology 12: 460-469.
  • ______; Laurance, S. G.; Ferreira, L. V.; Rankin de Merona, J. M.; Gascon, C. & Lovejoy, T. E. 1997. Biomass collapse in Amazonian forest fragments. Science 278: 1117-1118.
  • ______; Lovejoy, T.; Vasconcelos, H. L.; Bruna, E. M.; Didham, R. K.; Stouffer, P.; Gascon, C.; Bierregaard, R.; Laurance, S. & Sampaio, E. 2002. Ecosystem decay of Amazonian forest fragments, a 22-year investigation. Conservation Biology 16(3): 605-618.
  • ______; Nascimento, H. E. M.; Laurance, S. G.; Andrade, A.; Ewers, R. M.; Harms, K. E.; Luizão, R. C. C. & Ribeiro, J. E. 2007. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2(10): e1017. doi:10.1371/journal.pone.0001017
    » https://doi.org/10.1371/journal.pone.0001017
  • Lefkovitch L. P. 1965. The study of population growth in organisms grouped by stages. Biometrics 21: 1-18.
  • Lieberman, D.; Lieberman, M.; Peralta, R. & Hartshorn, G. S. 1985. Mortality patterns and stand turnover rates in a wet tropical forest in Costa Rica. Journal of Ecology 73: 915-924.
  • McCook, L. J. 1994. Understanding ecological community succession: causal models and theories, a review. Vegetatio 110: 115-147.
  • Mooney, H. A.; Bullock, S. H. & Medina, E. 1995. Introduction. : Bullock, S. H.; Mooney, H. A. & Medina, E. (eds.). Seasonally dry tropical forests. Cambridge University Press, New York. Pp. 1-8.
  • Morris, W. F. & Doak, D. F. 2002. Quantitative conservation biology: theory and practice of population viability analysis. Sinauer Associates, Sunderland, MA, USA.
  • Myers N.; Mittermeier, R. A.; Mittermeier, C. G.; Fonseca, G. A. B. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858.
  • Oliveira-Filho, A. T.; Mello, J. M. & Scolforo, J. R. 1997. Effects of past disturbance and edges on tree community structure and dynamics within a fragment of tropical semideciduous forest in a south-eastern Brazil over a five-year period (1987-1992). Plant Ecology 131: 45-66.
  • Oliveira-Filho, A. T. & Fontes, M. A. L. 2000. Patterns of floristic differentiation among Atlantic forests in southeastern Brazil and the influence of climate. Biotropica 32: 793-810.
  • Primack, R. B.; Ashton, P. S.; Chai, P. & Lee, H. S. 1985. Growth rates and population structure of Moraceae trees in Sarawak, East Malaysia. Ecology 66: 577-588.
  • Rincón, E. & Huante, P. 1993. Growth responses of tropical deciduous tree seedlings to contrasting light conditions. Trees - Structure and Function 7: 202-207.
  • Sanchez-Azofeifa, G. A.; Kalacska, M.; Quesada, M.; Calvo-Alvarado, J. C.; Nassar, J. M. & Rodríguez, J. P. 2005. Need for integrated research for a sustainable future in tropical dry forests. Conservation Biology 19: 285-286.
  • Sarukhán, J. 1980. Demography problems in tropical systems. : Solbrig, O. T. (ed.). Demography and evolution in plant populations. Blackwell, Oxford. Pp. 161-188.
  • Scarano, F. R. 2002. Structure, function and floristic relationships of plant communities Rodrigues, P. J. F. P. et al. in stressful habitats marginal to the Brazilian Atlantic rain forest. Annals of Botany 90: 517-524.
  • ______; Duarte, H. M.; Ribeiro, K. T.; Rodrigues, P. J. F. P.; Barcellos, E. M. B.; Franco, A. C.; Brulfert, J.; Deléens, E. & Lüttge, U. 2001. Four sites with contrasting environmental stress in southeastern Brazil: relations of species, life form diversity, and geographical distribution to ecophysiological parameters. Botanical Journal of Linnaean Society 136: 345-364.
  • Schemske, D. W.; Husband, B. C.; Ruckelshaus, M. H.; Goodwillie, C.; Parker, I. M. & Bishop, J. G. 1994. Evaluating approaches to the conservation of rare and endangered plants. Ecology 75: 584-606.
  • Sih, A.; Jonsson, B. G. & Luikart, G. 2000. Habitat loss: ecological, evolutionary and genetic consequences. Trends in Ecology and Evolution 15: 132-134.
  • Silvertown, J.; Franco, M.; Pisanty, I. & Mendoza, A. 1993. Comparative plant demography - relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecology 81: 465-476.
  • Sokal, R. R. & Rohlf, F. J. 1995. Biometry: the principles and practice of statistics in biological research. 3rd ed. Freeman, New York.
  • Weiner, J. 1988. Variation in performance of individuals in plant populations. : Davy A. J.; Hutchings M. J. & Watkinson A. R. Plant population ecology. Blackwell, Oxford. Pp. 59-81.
  • Williams-Linera, G. 1990. Vegetation structure and environmental conditions of forest edges in Panama. Journal of Ecology 78: 356-373.

Publication Dates

  • Publication in this collection
    Jan-Mar 2009

History

  • Received
    May 2008
  • Accepted
    Feb 2009
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br