Acessibilidade / Reportar erro

Anthropic disturbances as the main driver of a semideciduous seasonal forest fragment in Minas Gerais

Abstract

The new environmental conditions imposed by disturbance events often create a mosaic of spots in different successional stages. Our objective was to describe the temporal variation of a semideciduous seasonal forest based on its anthropic disturbance history, verifying possible changes in forest dynamics and structure. We sampled the arboreal vegetation with a diameter at breast height (1.3 m above the ground; DBH) ≥ 5 cm in 15 permanent plots of 20 × 20 m where we performed four inventories (2003, 2005, 2007 and 2015). We observed a density decrease and a basal area increase, which indicates the late successional stage of the analyzed tree community. The phytosociological structure, richness and species diversity of the tree community did not show changes throughout the monitoring. However, the Protium spruceanum predominance may be a response to the environmental changes caused by the mining occurred in the area 250 years ago. The anthropic disturbances enduring influences make this type of work indispensable because it allows the ecological processes understanding, allowing a factual management of the forests by the its effective management and conservation.

Key words:
floristic composition; forest dynamics; long-term ecological studies; phytosociological structure; tropical forest

Resumo

As novas condições ambientais impostas por eventos de distúrbios criam um mosaico de manchas em diferentes estágios sucessionais. Nosso objetivo foi descrever a variação temporal de uma floresta estacional semidecidual em função do histórico de perturbação antrópica, verificando possíveis mudanças na dinâmica e estrutura da floresta. Nós amostramos a vegetação arbórea com diâmetro a 1,3 m do solo (DAP) ≥ 5 cm em 15 parcelas permanentes de 20 × 20 m onde realizamos quatro inventários (2003, 2005, 2007 e 2015). Nós verificamos uma diminuição da densidade e aumento da área basal, o que indica que a comunidade arbórea analisada se encontra em estágio tardio de sucessão. A estrutura fitossociológica, a riqueza e a diversidade de espécies da comunidade arbórea não apresentaram mudanças ao longo dos monitoramentos. Entretanto, o predomínio da espécie Protium spruceanum pode ser uma resposta às mudanças ambientais provocadas pela mineração que ocorreu na área há 250 anos. As influências duradouras dos distúrbios antrópicos tornam este tipo de trabalho imprescindível por permitir a compreensão dos processos ecológicos, possibilitando um gerenciamento factual das florestas pelo manejo e conservação efetivos.

Palavras-chave:
composição florística; dinâmica florestal; estudos ecológicos de longa duração; estrutura fitossociológica; floresta tropical

Introduction

The Human-biosphere interactions represent one of the current greatest threats to global biodiversity by changing the ecosystems dynamics around the world (Simberloff et al. 2013Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E & Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution 28: 58-66.; Lewis et al. 2015Lewis SL, Edwards DP & Galbraith D (2015) Increasing human dominance of tropical forests. Science 349: 827-832.). It is estimated that human activity had already changed 50% of terrestrial habitats in 1750 and reached values of 75% in 2000 (Ellis 2011Ellis EC (2011) Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society of London A 369: 1010-1035.). This global reality can be extended to the Brazilian Atlantic Domain through its deforestation history for conversion to agricultural areas and urban centers in the last three centuries (Haddad et al. 2015Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX & Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1: e1500052.). The semidecidual seasonal forests call special attention in this context due to their degradation degree within the domain in relation to its other formations (Cunha & Silva-Júnior 2014Cunha MCL & Silva-Júnior MC (2014) Flora e Estrutura de Floresta Estacional Semidecidual Montana nos estados da Paraíba e Pernambuco. Nativa 2: 95-102. ; Ribeiro et al. 2009Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ & Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological conservation 142: 1141-1153.; Teixeira et al. 2009Teixeira AMG, Soares-Filho BS, Freitas SR & Metzger JP (2009) Modeling landscape dynamics in an Atlantic Rainforest region: implications for conservation. Forest Ecology and Management 257: 1219-1230.).

Although some disturbances are common events in nature and the ecosystems may present considerable resilience (Holling 1973Holling CS (1973) Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1-23.), some of them can lead to durable changes in ecosystem status (Scheffer et al. 2001Scheffer M, Carpenter S, Foley JA, Folke C & Walker B (2001) Catastrophic shifts in ecosystems. Nature 413: 591-596.; Haddad et al. 2015Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX & Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1: e1500052.) and increased vulnerability to degradation (Ghazoul et al. 2015Ghazoul J, Burivalova Z, Garcia-Ulloa J & King LA (2015) Conceptualizing forest degradation. Trends in Ecology & Evolution 30: 622-632.; Seidl et al. 2016Seidl R, Spies TA, Peterson DL, Stephens SL & Hicke JA (2016) Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology 53: 120-129.). As an example, the fragmentation disturbance may promote functional diversity deterioration (Benchimol & Peres 2015Benchimol M & Peres CA (2015) Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. Journal of Ecology 103: 408-420.), increased tree mortality (Laurance et al. 2002Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG & Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology 16: 605-618.), decreased carbon stocks (Pütz et al. 2014Pütz S, Groeneveld J, Henle K, Knogge C, Martensen AC, Metz M, Metzger JP, Ribeiro MC, Paula MD & Huth A (2014) Long-term carbon loss in fragmented Neotropical forests. Nature Communications 5: 5037.), species richness loss and floristic composition changes (Matos et al. 2017Matos FAR, Magnago LFS, Gastauer M, Carreiras J, Simonelli M & Meira-Neto JAA (2017) Effects of landscape configuration and composition on phylogenetic diversity of trees in a highly fragmented tropical forest. Journal of Ecology 105: 265-276.). On the other hand, the canopy gap disturbance is pointed out as decisive in species diversity maintenance by the modification in resources availability that drives ecological succession and dynamic cycles that favor biological heterogeneity (Bell et al. 2006Bell G, Lechowicz MJ & Waterway MJ (2006) The comparative evidence relating to functional and neutral interpretations of biological communities. Ecology 87: 1378-1386.; Machado & Oliveira-Filho 2010Machado ELM & Oliveira-Filho AT (2010) Spatial patterns of tree community dynamics are detectable in a small (4 ha) and disturbed fragment of the Brazilian Atlantic forest. Acta Botanica Brasilica 24: 250-261.; Reyes et al. 2010Reyes GP, Kneeshaw D, de Grandpré L & Leduc A (2010) Changes in woody vegetation abundance and diversity after natural disturbances causing different levels of mortality. Journal of Vegetation Science 21: 406-417.).

The process of structural change that a specific forest suffers after a disturbance event that alters the biomass and organization of its tree community is called silvigenesis (Hallé et al. 1978Hallé F, Oldeman RAA & Tomlinson PB (1978) Tropical trees and forests. An architectural analysis. Springer, Verlag, Berlin. 441p.). According to Oldeman (1983)Oldeman RAA (1983) Tropical rain forest, architecture, silvigenesis and diversity. In: Sutton SL, Whitmore TC & Chadwick AC (eds.) Tropical rain forest: ecology and management. Blackwell, Oxford. Pp. 131-150. in order to distinguish the regeneration phases of the tree community one of the main forms would be the analysis of the both density and basal area parameters. We then observe the suggestion of five phases: stability, in which there is no basal area and density change; degradation, showing a decrease in both basal area and density; initial construction with degradation, when there is a basal area decrease and density increase; initial construction, with both basal area and density increase; late construction, presenting basal area increase and density decrease.

Thus, from the perspective that ecosystem changes express a “nature sequence” (Túndisi 2013Túndisi JG (2013) Pesquisas ecológicas de longa duração: uma abordagem essencial ao estudo de ecossistemas e seus processos. In: Tabarelli M, Rocha CFD, Romanowski HP, Rocha O & Lacerda LD (eds.) PELD-CNPq dez anos do programa de pesquisas ecológicas de longa duração no Brasil: achados, lições e perspectivas. Vol. 1. Editora Universitária UFPE, Recife. Pp. 15-29.) and that a time is needed for their expression (Strayer et al. 1986Strayer DL, Glitzenstein JS, Jones CG, Kolasa J, Likens GE, McDonnell MJ, Parker GG & Pickett STA (1986) Long-term ecological studies: an illustrated account of their design, operation, and importance to ecology. Institute of Ecosystem Studies, New York Botanical Garden, Millbrook, Nova York. 38p.), several studies with a temporal approach were developed in brazilian semideciduous seasonal forests (Oliveira-Filho et al. 1997Oliveira-Filho AT, Mello JM & Scolforo JRS (1997) Effects of past disturbance and edges on tree community structure and dynamics within a fragment of tropical semideciduous forest in south-eastern Brazil over a five-year period (1987-1992). Plant Ecology 131: 45-66.; Nascimento et al. 1999Nascimento HEM, Dias AS, Tabanez AAJ & Viana VM (1999) Estrutura e dinâmica de populações arbóreas de um fragmento de floresta estacional semidecidual na região de Piracicaba, SP. Revista Brasileira de Biologia 59: 329-342.; Schiavini et al. 2001Schiavini I, Resende JCF & Aquino FG (2001) Dinâmica de populações de espécies arbóreas em matas de galeria e mata mesófila na margem do Ribeirão Panga, MG. In: Ribeiro JF, Fonseca CEL & Souza-Silva JC (eds.) Cerrado: caracterização e recuperação de matas de galeria. Embrapa-CPAC, Planaltina. Pp. 267-299.; Paula et al. 2004Paula AD, Silva AFD, Júnior MP, Santos FAMD & Souza ALD (2004) Sucessão ecológica da vegetação arbórea em uma Floresta Estacional Semidecidual, Viçosa, MG, Brasil. Acta Botanica Brasilica 18: 407-423.; Appolinário et al. 2005Appolinário V, Oliveira-Filho AT & Guilherme FAG (2005) Tree population and community dynamics in a Brazilian tropical semideciduous forest. Brazilian Journal of Botany 28: 347-360.; Oliveira-Filho et al. 2007Oliveira-Filho AT, Carvalho WAC, Machado ELM, Higuchi P, Appolinário V, Castro GC, Silva AC, Santos RM, Borges LF, Corrêa BS & Alves JM (2007) Dinâmica da comunidade e populações arbóreas da borda e interior de um remanescente florestal na Serra da Mantiqueira, Minas Gerais, em um intervalo de cinco anos (1999-2004). Revista Brasileira de Botânica 30: 149-161.; Paiva et al. 2007Paiva LVD & Araújo GMD & Pedroni F (2007) Structure and dynamics of a woody plant community of a tropical semi-deciduous seasonal forest in the” Estação Ecológica do Panga”, municipality of Uberlândia, Minas Gerais, Brazil. Brazilian Journal of Botany 30: 365-373.; Higuchi et al. 2008Higuchi P, Oliveira-Filho AT, Silva ACD, Machado ELM, Santos RMD & Pifano DS (2008) Dinâmica da comunidade arbórea em um fragmento de floresta estacional semidecidual montana em Lavras, Minas Gerais, em diferentes classes de solos. Revista Árvore 32: 417-426.; Silva & Araújo 2009Silva MR & Araújo GM (2009) Dinâmica da comunidade arbórea de uma floresta semidecidual em Uberlândia, MG, Brasil. Acta Botanica Brasilica 23: 49-56.; Machado & Oliveira-Filho 2010Machado ELM & Oliveira-Filho AT (2010) Spatial patterns of tree community dynamics are detectable in a small (4 ha) and disturbed fragment of the Brazilian Atlantic forest. Acta Botanica Brasilica 24: 250-261.; Mews et al. 2011Mews HA, Marimon BS, Pinto JRR & Silvério DV (2011) Dinâmica estrutural da comunidade lenhosa em floresta estacional semidecidual na transição cerrado-floresta amazônica, Mato Grosso, Brasil. Acta Botanica Brasilica 25: 845-857.). However, these studies only covered two monitoring periods which may had limited the results analysis (Abreu et al. 2014Abreu TAL, Pinto JRR & Mews HA (2014) Variações na riqueza e na diversidade de espécies arbustivas e arbóreas no período de 14 anos em uma Floresta de Vale, Mato Grosso, Brasil. Rodriguésia 65: 73-88.), since very short or very long intervals may not be capable of showing tree community responses to disturbance events (Phillips 1996Phillips OL (1996) Long-term environmental change in tropical forests: increasing tree turnover. Environmental Conservation 23: 235-248.; Rolim et al. 1999Rolim SG, Couto HTZ & Jesus RM (1999) Mortalidade e recrutamento de árvores na FlorestaAtlântica em Linhares (ES). Scientia Forestalis 55: 49-69.; Oliveira-Filho et al. 2007Oliveira-Filho AT, Carvalho WAC, Machado ELM, Higuchi P, Appolinário V, Castro GC, Silva AC, Santos RM, Borges LF, Corrêa BS & Alves JM (2007) Dinâmica da comunidade e populações arbóreas da borda e interior de um remanescente florestal na Serra da Mantiqueira, Minas Gerais, em um intervalo de cinco anos (1999-2004). Revista Brasileira de Botânica 30: 149-161.).

The vegetation monitoring by consecutive inventories allows the meticulous analysis of spatial patterns of mortality, recruitment, growth and floristic changes, which allows the understanding of the ecological processes that drive the communities (Corrêa & van den Berg 2002Corrêa BS & van den Berg E (2002) Estudo da dinâmica da população de Xylopia brasiliensis Sprengel em relação a parâmetros populacionais e da comunidade em uma floresta de galeria em Itutinga, MG, Brasil. Cerne 8: 1-12.). In addition, it is also possible to understand the life strategies employed by plant populations (Schiavini et al. 2001Schiavini I, Resende JCF & Aquino FG (2001) Dinâmica de populações de espécies arbóreas em matas de galeria e mata mesófila na margem do Ribeirão Panga, MG. In: Ribeiro JF, Fonseca CEL & Souza-Silva JC (eds.) Cerrado: caracterização e recuperação de matas de galeria. Embrapa-CPAC, Planaltina. Pp. 267-299.) and to recognize population changes and community oscillations in response to disturbances or successional transformations (Baker et al. 2003Baker TR, Swaine MD & Burslem DF (2003) Variation in tropical forest growth rates: combined effects of functional group composition and resource availability. Perspectives in Plant Ecology, Evolution and Systematics 6: 21-36.). In this sense, our objective was to describe the temporal variation of the arboreal community of a Semideciduous Seasonal Forest according to its anthropic disturbance history along 13 years of monitoring and four sampling intervals.

Material and Methods

Study area

The study area is a tropical forest fragment located in municipality of Bom Sucesso, Minas Gerais state, Brazil, under the geographic coordinates of 21º09’31.05”S, 44º54’10.84”W and with 840 m of altitude. The vegetation there is classified as semideciduous seasonal forests (IBGE 2012IBGE (2012) Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro. 271p. ), and is inserted in the Atlantic Domain lato sensu approach (Oliveira-Filho & Fontes 2000Oliveira-Filho AT & Fontes MAL (2000) Patterns of floristic differentiation among atlantic forests in southeastern Brazil and the influence of climate1. Biotropica 32: 793-810.; Eisenlohr & Oliveira-Filho 2015Eisenlohr PV & Oliveira-Filho AT (2015) Revisiting patterns of tree species composition and their driving forces in the Atlantic Forests of Southeastern Brazil. Biotropica 47: 689-701.). The region climate is classified as Köppen Cwb (De Sá Júnior et al. 2012De Sá Júnior A, Carvalho LG, Silva FF & Alves MC (2012). Application of the Köppen classification for climatic zoning in the state of Minas Gerais, Brazil. Theoretical and Applied Climatology 108: 1-7. ). The area underwent gold ore extraction during the XVIII century which resulted in the removal of soil up to 10 meters deep. In addition, the fragment lost about 30% of its total area in 2002 as result of Funil Hydroelectric Powerplant construction. The fragment current area is approximately 58 ha of native tropical forest (Appolinário et al. 2005Appolinário V, Oliveira-Filho AT & Guilherme FAG (2005) Tree population and community dynamics in a Brazilian tropical semideciduous forest. Brazilian Journal of Botany 28: 347-360.).

In 2003, 15 permanent plots of 20 × 20 m (0.6 ha) were allocated, arranged from the lake margin towards the fragment interior in a systematic way (Fig. 1). We measured each one living arboreal individuals with a diameter at 1.30 m from the ground (Diameter at Breast Height - DBH) ≥ 5 cm and identified by specialists and marked with numbered aluminum platelets. Individuals with more than one stem were measured when the sum of squares of CBHs (forming the quadratic Circumference) reached the individual inclusion criterion (Carvalho et al. 2007Carvalho WAC, Oliveira-Filho AT, Fontes MAL & Curi N (2007) Variação espacial da estrutura da comunidade arbórea de um fragmento de floresta semidecídua em Piedade do Rio Grande, MG, Brasil. Revista Brasileira de Botânica 30: 315-335.). In 2005, 2007 and 2015 teams of researches returned there for monitoring, when surviving individuals were remeasured, dead individuals were recorded and recruits (individuals that met the minimum inclusion criterion) were included.

Figure 1
Location of the fifteen permanent parcels in the Semideciduous Seasonal Forest located in Bom Sucesso, Minas Gerais state - Brazil.

Vegetation dynamic

The arboreal community dynamics was analyzed for the three sampling intervals (2003-2005; 2005-2007; 2007-2015) through the parameters: mortality (M) and recruitment (R) of individuals and loss (P) and gain (G) in the basal area, calculated according to the exponential expressions:

[1] M = 1 N 0 N m / N 0 1 / t × 100
[2] R = 1 1 N r / N t 1 / t × 100
[3] P = 1 Ab 0 Ab d + Ab m / Ab 0 1 / t × 100
[4] G = 1 1 Ab r + Ab i / Ab t 1 / t × 100

Where: t is the time interval among the inventories; N0and Nt are, respectively, the abundances of individuals in the beginning and final time; Nm is the number of dead trees; Nr is the number of recruited individuals; Ab0and Abt are, respectively, the initial and final basal areas of trees; Abm is the basal area of dead trees; Abr is the basal area of the recruited individuals; Abd and Abi correspond to the decrement and increment in basal area of surviving trees (Sheil et al. 1995Sheil D, Burslem DF & Alder D (1995) The interpretation and misinterpretation of mortality rate measures. Journal of Ecology 83: 331-333., 2000Sheil D, Jennings S & Savill P (2000) Long-term permanent plot observations of vegetation dynamics in Budongo, a Ugandan rain forest. Journal of Tropical Ecology 16: 865-882.). We disregard individuals of Arecaceae family in analysis because their lack of secondary growth (Welden et al. 1991Welden CW, Hewett SW, Hubbell SP & Foster RB (1991) Sapling survival, growth, and recruitment: relationship to canopy height in a neotropical forest. Ecology 72: 35-50.).

Due to the temporal irregularity among intervals, the mortality and recruitment rates of the arboreal community were corrected according to Lewis et al. (2004)Lewis SL, Phillips OL, Baker TR, Lloyd J, Malhi Y, Almeida S, Higuchi N, Laurance WF, Neill DA, Silva JNM, Terborgh J, Torres Lezama A, Vásquez Martinez R, Brown S, Chave J, Kuebler C, Núñes Vargas P & Vinceti B (2004). Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society of London B: Biological Sciences 359: 421-436., enabling the comparison of the inventories, being made by the formula:

[5] λ = λ × t 0 , 08

Where: λ’ corresponds to the corrected dynamic rates; λ is equivalent to the dynamics rates observed; t refers to the time interval.

The tree community restructuring in terms of abundance and biomass (inferred from the basal area) was estimated by calculating the Doubling time and Half-life time (Korning & Balslev 1994Korning J & Balslev H (1994) Growth and mortality of trees in Amazonian tropical rain forest in Ecuador. Journal of Vegetation Science 5: 77-86.) by the formulas:

[6] T 1 / 2 = ln 0 , 5 / ln 1 + M
[7] T 2 = ln 2 / ln 1 + R
[8] T 1 / 2 = ln 0 , 5 / ln 1 + P
[9] T 2 = ln 2 / ln 1 + G

In which: T1/2e T2are equivalent respectively to time intervals for Half-life and Duplication; M and R correspond to dynamic rates of mortality and recruitment of individuals; P and G correspond to dynamic rates of basal area loss and gain. The stability was obtained through the inequalities between the times, for which we adopt values more distant from zero as less stable (Korning & Balslev 1994Korning J & Balslev H (1994) Growth and mortality of trees in Amazonian tropical rain forest in Ecuador. Journal of Vegetation Science 5: 77-86.).

We also performed the distribution of both abundance and basal area in four diameters classes for the four monitoring moments. We used the following classes: from 5 to 10, from 10.1 to 20, from 20.1 to 40 and greater than 40 cm in diameter. We defined increasing amplitude in order to reduce the effect of specimens accumulation in the lower classes (Oliveira-Filho et al. 2001Oliveira-Filho AT, Curi N, Vilela EA & Carvalho DA (2001) Variation in tree community composition and structure with changes in soil properties within a fragment of semideciduous forest in south-eastern Brazil. Edinburgh Journal of Botany 58: 139-158.).

Phytosociology and floristic composition

We performed the tree community description for the four monitoring moments through phytosociological analysis and floristic composition. Thus, we calculate the absolute and relative parameters of frequency, density and dominance, that formed the Importance Value (IV) (Ellenberg & Mueller-Dombois 1974Ellenberg H & Mueller-Dombois D (1974) Aims and methods of vegetation ecology. John Wiley & Sons Inc., New York. 547p.; Brower & Zar 1984Brower JE & Zar JH (1984) Field and laboratory methods for general ecology. 2nd ed. C. Brown, Dubuque. 226p.). In order to verify which species were more abundant over time, we developed abundance rank curves for the four inventories.

In order to evaluate aspects related to floristic composition, the richness and species diversity patterns of the tree community were analyzed graphically with estimates EstimateS software, version 8.2 (Colwell 2011Colwell RK (2011) EstimateS: statistical estimation of species richness and shared species from samples. Disponível em <http://viceroy.eeb.uconn.edu/estimates/>. Acesso em 28 agosto 2015.
http://viceroy.eeb.uconn.edu/estimates/...
). We developed then two graphs of rarefaction in relation to individual’s abundance (Gotelli & Colwell 2011Gotelli NJ & Colwell RK (2011). Estimating species richness. In: Magurran AE & Mcgill BJ (eds.) Biological diversity: frontiers in measurement and assessment. Oxford University, Oxford. Pp. 39-54.), one for species richness and other for Shannon diversity index (H’). We compared the curves through the confidence intervals (estimated value ± standard error) achieved by 999 randomizations per measurement. The Pielou equability index (J’) was used to estimate the tree community uniformity (Brower & Zar 1984Brower JE & Zar JH (1984) Field and laboratory methods for general ecology. 2nd ed. C. Brown, Dubuque. 226p.).

Results

Vegetation dynamic

The individual’s mortality rate was higher than recruitment rate in all considered intervals and presented long instability periods. This imbalance in favor of mortality resulted in the occurrence of shorter half-live times and longer doubling times. However, half-life and doubling times were more balanced in the period 2005-2007 due to more similar numbers of dead individuals and recruits, which resulted in a stability value close to zero (Tab. 1). For the basal area, gains were greater than losses at all intervals considered. This imbalance in favor of the basal area gain rate resulted in longer half-live times and shorter doubling times. Although this pattern also occurs in the other measurements, in the period of 2003-2005 the half-life time and the doubling time presented close values and thus more balanced (Tab. 1).

Table 1
Dynamics parameters for the three periods (2005, 2007 and 2015) in the Semideciduous Seasonal Forest fragment located in Bom Sucesso, Minas Gerais state - Brazil.

The observed species abundance disposition in diametric classes presented the reversed exponential (J-inverted) form in all inventories (Fig. 2a), characterized by low values in the upper classes that increase towards the lower classes. The area basal distribution classes presented a normal pattern (Fig. 2b).

Figure 2
a-b. Classes of diameters in the four inventories (2003, 2005, 2007 and 2015) in the Semideciduous Seasonal Forest fragment located in Bom Sucesso, Minas Gerais state, Brazil - a. by observed abundances; b. by registered basal area.

Phytosociology and floristic composition

We recorded 1.341 individuals and 142 species over the 13 years of monitoring, of which 359 individuals (27%) belonging to the Burseraceae, 188 (14%) to Fabaceae, 161 (12%) to Myrtaceae and 108 individuals (8%) to Rubiaceae, in sequence. The other families reached no more than 5% of representation of the total tree community, seven of them consisting of only one individual (Asteraceae, Cannabaceae, Lamiaceae, Malpighiaceae, Sapotaceae, Symplocaceae and Theaceae).

For the phytosociological structure, the species that stood out hierarchically in IV terms in 2003 were Protium spruceanum (Benth.) Engl., Copaifera langsdorffii Desf., Protium widgrenii Engl., Myrcia pulchra (O.Berg) Kiaersk., Ixora brevifolia Benth., Clethra scabra Pers., Machaerium villosum Vogel, Trichilia pallida Sw., Lamanonia ternata Vell. and Siphoneugena crassifolia (DC.) Proença & Sobral (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.9892379.v1>). The species Protium spruceanum (Benth.) Engl., Copaifera langsdorffii Desf. and Protium widgrenii Engl. did not change their position in the IV rank in the other inventories, whereas Ixora brevifolia Benth., Clethra scabra Pers., Machaerium villosum Vogel, Trichilia pallida Sw. and Siphoneugena crassifolia (DC.) Proença & Sobral alternated their hierarchical position without leaving the top ten species (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.9892379.v1>). We observed the predominance of Protium spruceanum (Benth.) Engl. and Copaifera langsdorffii Desf. in all the inventories, even verifying an abundance reduction of both that was more discreet in Copaifera langsdorffii Desf. (Fig.3).

Figure 3
Tree species abundance ranks over 13 years of monitoring conducted on a Semideciduous Seasonal Forest located in Bom Sucesso, Minas Gerais state, Brazil.

The low IV species underwent some changes in their hierarchical position throughout the monitoring events. Occurred the outputs of Erythroxylum citrifolium A.St.-Hil., Ocotea laxa (Nees) Mez and Myrcia guianensis (Aubl.) DC. in 2005; Lithrea molleoides (Vell.) Engl., Erythroxylum pulchrum A.St.-Hil., Dalbergia frutescens (Vell.) Britton, Casearia decandra Jacq. and Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Hieron. ex Niederl. in 2007; Ocotea velutina (Nees) Rohwer, Miconia latecrenata (DC.) Naudin, Myrsine guianensis (Aubl.) Kuntze, Ocotea odorifera (Vell.) Rohwer and Vitex polygama Cham. in 2015 (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.9892379.v1>). On the other hand, was first recorded: Miconia trianae Cogn., Ocotea odorifera (Vell.) Rohwer and Allophylus edulis in 2005; Vernonanthura divaricata (Spreng.) H.Rob., in 2007; Annona coriacea Mart., Annona sp., Senna multijuga (Rich.) H.S.Irwin & Barneby, Ficus enormis Mart. ex Miq., Calyptranthes clusiifolia O.Berg, and two undetermined species (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.9892379.v1>) in 2015. The last monitoring event was the one with higher number of new species recorded.

The lack of changes over time in species richness and diversity was observed through rarefaction curves (Fig. 4a-b), since the confidence intervals of the estimates from the randomizations were overlapped. Similar behaviors were recorded for the Pielou equability (J), which was 0.75 in 2003, 0.76 in 2005 and 0.77 for both 2007 and 2015.

Figure 4
a-b. Rarefaction curves for the tree community over 13 years of monitoring conducted on a Semideciduous Seasonal Forest located in Bom Sucesso, Minas Gerais state, Brazil - a. for species number; b. for Shannon diversity index.

Discussion

The found tree community temporal pattern of decreasing density and increasing basal area is a worldwide trend of tropical forests (Lewis et al. 2009Lewis SL, Lloyd J, Sitch S, Mitchard ET & Laurance WF (2009) Changing ecology of tropical forests: evidence and drivers. Annual Review of Ecology, Evolution, and Systematics 40: 529-549.). In relation to phytosociological structure and floristic composition, Atlantic semideciduous seasonal forests commonly present 33% to 40% of species with abundance varying from one to two individuals (Paula et al. 2004Paula AD, Silva AFD, Júnior MP, Santos FAMD & Souza ALD (2004) Sucessão ecológica da vegetação arbórea em uma Floresta Estacional Semidecidual, Viçosa, MG, Brasil. Acta Botanica Brasilica 18: 407-423.) and both dominance and density concentrated in a few populations (Fonseca et al. 2013Fonseca SN, Ribeiro JHC & Carvalho FA (2013) Estrutura e diversidade da regeneração arbórea em uma floresta secundária urbana (Juiz de Fora, MG, Brasil). Floresta e Ambiente 20: 307-315.).

Vegetation dynamic

Imbalances between recruitment rates and mortality of individuals, as well as rates of loss and gain of the basal area, are common for fragments of semideciduous tropical forests and are always related to the silvigenic silvicultural cycle of forests reconstruction (Oliveira-Filho et al. 2007Oliveira-Filho AT, Carvalho WAC, Machado ELM, Higuchi P, Appolinário V, Castro GC, Silva AC, Santos RM, Borges LF, Corrêa BS & Alves JM (2007) Dinâmica da comunidade e populações arbóreas da borda e interior de um remanescente florestal na Serra da Mantiqueira, Minas Gerais, em um intervalo de cinco anos (1999-2004). Revista Brasileira de Botânica 30: 149-161.; Machado & Oliveira-Filho 2010Machado ELM & Oliveira-Filho AT (2010) Spatial patterns of tree community dynamics are detectable in a small (4 ha) and disturbed fragment of the Brazilian Atlantic forest. Acta Botanica Brasilica 24: 250-261.; Mews et al. 2011Mews HA, Marimon BS, Pinto JRR & Silvério DV (2011) Dinâmica estrutural da comunidade lenhosa em floresta estacional semidecidual na transição cerrado-floresta amazônica, Mato Grosso, Brasil. Acta Botanica Brasilica 25: 845-857.). In addition, different disturbances such as droughts, landslides, floods, fire, storms, canopy gaps opening, and human interventions (Condit et al. 1995Condit R, Hubbell SP & Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs 65: 419-439.; Damasceno-Junior et al. 2004Damasceno-Junior GA, Semir J, Santos FAMD & Leitão-Filho HDF (2004) Tree mortality in a riparian forest at Rio Paraguai, Pantanal, Brazil, after an extreme flooding. Acta Botanica Brasilica 18: 839-846.) are generally the main agents in forest dynamics (Condit et al. 1995Condit R, Hubbell SP & Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs 65: 419-439.; Baker et al. 2005Baker PJ, Bunyavejchewin S, Oliver CD & Ashton PS (2005) Disturbance history and historical stand dynamics of a seasonal tropical forest in western Thailand. Ecological Monographs 75: 317-343. ).

The general pattern of decreasing abundance and increasing basal area is a trend of tropical forests in post-disturbance recovery (Crow 1980Crow TR (1980) A rainforest chronicle: a 30-year record of change in structure and composition at El Verde, Puerto Rico. Biotropica 1: 42-55.; Lewis et al. 2009Lewis SL, Lloyd J, Sitch S, Mitchard ET & Laurance WF (2009) Changing ecology of tropical forests: evidence and drivers. Annual Review of Ecology, Evolution, and Systematics 40: 529-549.). In this situation, there is a high mortality rate in smaller diameter classes (Felfili 1995Felfili JM (1995) Growth, recruitment and mortality in the Gama gallery forest in central Brazil over a six-year period (1985-1991). Journal of Tropical Ecology 11: 67-83.; Kellman et al. 1998Kellman M, Tackaberry R & Rigg L (1998) Structure and function in two tropical gallery forest communities: implications for forest conservation in fragmented systems. Journal of Applied Ecology 35: 195-206.) and a basal area increase of individuals of the largest diameter classes (Werneck & Franceschinelli 2004Werneck MS & Franceschinelli EV (2004) Dynamics of a dry forest fragment after the exclusion of human disturbance in southeastern Brazil. Plant Ecology 174: 339-348.). These two situations are justified by the low competition capacity of individuals of smaller diameter classes in relation to large arboreal individuals occupying higher strata and the greater longevity (Felfili 1995Felfili JM (1995) Growth, recruitment and mortality in the Gama gallery forest in central Brazil over a six-year period (1985-1991). Journal of Tropical Ecology 11: 67-83.; Mews et al. 2011Mews HA, Marimon BS, Pinto JRR & Silvério DV (2011) Dinâmica estrutural da comunidade lenhosa em floresta estacional semidecidual na transição cerrado-floresta amazônica, Mato Grosso, Brasil. Acta Botanica Brasilica 25: 845-857.). The competition influence occurs through resources availability changes by disturbances that promote competitive interactions in site (Reyes et al. 2010Reyes GP, Kneeshaw D, de Grandpré L & Leduc A (2010) Changes in woody vegetation abundance and diversity after natural disturbances causing different levels of mortality. Journal of Vegetation Science 21: 406-417.). Thus, the interaction between arboreal individuals in a site can lead to high individuals mortality and basal area increase, characterizing a moment of forest community self-thinning (Higuchi et al. 2008Higuchi P, Oliveira-Filho AT, Silva ACD, Machado ELM, Santos RMD & Pifano DS (2008) Dinâmica da comunidade arbórea em um fragmento de floresta estacional semidecidual montana em Lavras, Minas Gerais, em diferentes classes de solos. Revista Árvore 32: 417-426.).

Phytosociology and floristic composition

The most representative families are typical of structure and composition of Sub-Montana and Montana Atlantic Forests of Brazilian Southeastern region (Oliveira-Filho & Fontes 2000Oliveira-Filho AT & Fontes MAL (2000) Patterns of floristic differentiation among atlantic forests in southeastern Brazil and the influence of climate1. Biotropica 32: 793-810.), with the exception of Burseraceae. The Burseraceae great expression is due to Protium spruceanum, which has its occurrence related to Atlantic and Amazon Rain forests and to Cerrado riparian forests (Rodrigues et al. 2003Rodrigues LA, Carvalho DD, Oliveira Filho AT, Botrel RT & Silva ED (2003) Florística e estrutura da comunidade arbórea de um fragmento florestal em Luminárias, MG. Acta Botanica Brasilica 17: 71-87.), being classified as a dominant species in well or poorly drained environments and of good fertility (Marques et al. 2003Marques MCM, Silva SM & Salino A (2003) Florística e estrutura do componente arbustivo-arbóreo de uma floresta higrófila da bacia do rio Jacaré-Pepira, SP, Brasil. Acta Botanica Brasilica 17: 495-506.; Silva et al. 2007Silva AC, van den Berg E, Higuchi P & Oliveira Filho AT (2007) Comparação florística de florestas inundáveis das regiões Sudeste e Sul do Brasil. Revista Brasileira de Botânica 30: 257-269.; Teixeira et al. 2008Teixeira AP, Assis MA, Siqueira FR & Casagrande JC (2008) Tree species composition and environmental relationships in a Neotropical swamp forest in Southeastern Brazil. Wetlands Ecology and Management 16: 451-461.). This high representativeness is probably associated the anthropic disturbance occurred in the 18th century and the successional advance of the forest. This disturbance promoted stirring the soil up to 10 meters deep (Appolinário et al. 2005Appolinário V, Oliveira-Filho AT & Guilherme FAG (2005) Tree population and community dynamics in a Brazilian tropical semideciduous forest. Brazilian Journal of Botany 28: 347-360.) and created deep ravines along the fragment that allowed water inlet (Appolinário et al. 2005Appolinário V, Oliveira-Filho AT & Guilherme FAG (2005) Tree population and community dynamics in a Brazilian tropical semideciduous forest. Brazilian Journal of Botany 28: 347-360.), thus creating humid sites suitable for the establishment and development of this species.

The high Copaifera langsdorffii representativeness is probably related to its generalist habitat behavior (van den Berg & Oliveira-Filho 1999van den Berg E & Oliveira-Filho AT (1999) Spatial partitioning among tree species within an area. Flora 194: 249-266.). In the study area, the condition of higher humidity does not affect all plots and the general character of this species makes it possible to occur in flooded environments (Lobo & Joly 2000Lobo PC & Joly CA (2000) Aspectos ecofisiológicos da vegetação de mata ciliar do Sudeste do Brasil. In: Rodrigues R & Leitão-Filho HF (eds.) Matas ciliares: conservação e recuperação. Editora da Universidade de São Paulo, São Paulo. Pp. 143-157.; Brito et al. 2006Brito ER, Martins SV, Oliveira Filho AT, Silva E & Silva AF (2006) Estrutura fitossociológica de um fragmento natural de floresta inundável em área de orizicultura irrigada, município de Lagoa da Confusão, Tocantins. Revista Árvore 30: 829-836. ) and not flooded (Sampaio et al. 1997Sampaio AB, Nunes RV & Walter BMT (1997) Fitossociologia de uma mata de galeria na Fazenda Sucupira do Cenargen, Brasília/DF. In: Leite LL & Saito CH (eds.) Contribuição ao conhecimento ecológico do Cerrado. Vol. 1. UnB, Brasília. Pp. 29-37.; Felfili 1998Felfili JM (1998) Determinação de padrões de distribuição de espécies em uma mata de galeria no Brasil Central com a utilização de técnicas de análise multivariada. Boletim do Herbário Ezechias Paulo Heringer 2: 35-48.). Besides, this species is identified as one of the most abundance species in most forest fragments in the Center-South region of the state of Minas Gerais (Oliveira-Filho et al. 1994Oliveira-Filho AT, Scolforo JRS & Mello JD (1994) Composição florística e estrutura comunitária de um remanescente de floresta semidecídua montana em Lavras, MG. Revista Brasileira de Botânica 17: 167-182.). In addition, the ripening of the forest provides a decline in the availability of light that favors the establishment of species constituting more advanced serials, such as Protium spruceanum (Connell & Slatyer 1977Connell JH & Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist, University of Chicago 982: 1119-1144.; Amaral et al. 2013Amaral WG, Pereira IM, Machado ELM, Oliveira PA, Dias LG, Mucida DP & Amaral CS (2013) Relação das espécies colonizadoras com as características do substrato em áreas degradadas na Serra do Espinhaço Meridional. Bioscience Journal 29: 1696-1707.) and Copaifera langsdorffii (Nunes et al. 2003Nunes YRF, Mendonça AVR, Oliveira-Filho AT, Botezelli L & Machado ELM (2003) Variações da fisionomia, diversidade e composição de guildas da comunidade arbórea em um fragmento de floresta semidecidual em Lavras, MG. Acta Botanica Brasilica 17: 213-229.; Aquino & Barbosa 2009Aquino CD & Barbosa LM (2009) Classes sucessionais e síndromes de dispersão de espécie arbóreas e arbustivas existentes em vegetação ciliar remanescente (Conchal, SP), como subsídio para avaliar o potencial do fragmento como fonte de propágulos para enriquecimento de áreas revegetadas no Rio Mogi-Guaçu, SP. Revista Árvore 33: 349-358.).

In contrast, the species that left and entered the sample showed abundances ranging from one to two individuals. The characteristic of there are few very abundant species and many little abundant species is considered common in tropical forests (Hartshorn 1980Hartshorn GS (1980) Neotropical forest dynamics. Biotropica 1: 23-30.; Felfili & Felfili 2001Felfili MC & Felfili JM (2001) Diversidade alfa e beta no cerrado sensu stricto da Chapada Pratinha, Brasil. Acta Botanica Brasilica 15: 243-254.). Species with few individuals may reappear in other moments by migration, seed bank individuals recruitment, seedlings growth or by the growth of individuals that did not meet the minimum inclusion criteria in previous inventories (Swaine et al. 1987Swaine MD, Lieberman D & Putz FE (1987) The dynamics of tree populations in tropical forest: a review. Journal of Tropical Ecology 3: 359-366.).

The behaviors demonstrated by the rarefaction curves for both species richness and diversity show a stability increase in relation to floristic composition oscillations patterns, which confirm the phytosociological structure (Gotelli & Colwell 2011Gotelli NJ & Colwell RK (2011). Estimating species richness. In: Magurran AE & Mcgill BJ (eds.) Biological diversity: frontiers in measurement and assessment. Oxford University, Oxford. Pp. 39-54.). The absence of variation in both richness and Shannon diversity index occurs due to the compensation between the number of species with low abundance they arrived and leaved the tree community (Paiva et al. 2007Paiva LVD & Araújo GMD & Pedroni F (2007) Structure and dynamics of a woody plant community of a tropical semi-deciduous seasonal forest in the” Estação Ecológica do Panga”, municipality of Uberlândia, Minas Gerais, Brazil. Brazilian Journal of Botany 30: 365-373.). The value of Pielou equability (J) is justified by the concentration of both dominance and density in few populations (Gonzaga et al. 2008Gonzaga APD, Oliveira-Filho AT, Machado ELM, Hargreaves P & Machado JNDM (2008) Diagnóstico florístico-estrutural do componente arbóreo da floresta da Serra de São José, Tiradentes, MG, Brasil. Acta Botanica Brasilica 22: 505-520.; Moreira & Carvalho 2013Moreira B & Carvalho FA (2013) A comunidade arbórea de um fragmento urbano de Floresta Atlântica após 40 anos de sucessão secundária (Juiz de Fora, Minas Gerais). Biotemas 26: 59-70.).

The results suggest the mining influence on the formation of community patterns, selecting species through the creation of new conditions. However, there were no differences in temporal behavior that could be attributed to the past occurrence of this disturb. We believe that the time elapsed since the mining closure was enough for the community to reach a climax stage associated with the new conditions (Whitaker 1974Whitaker RH (1974) Climax concepts and recognition. In: Vegetation dynamics. Vol. 1. Springer, Dordrecht. Pp. 137-154.), in which a structure and composition molded by the disturbance vary in time due to the forest dynamics characteristic oscillations (Korning & Balslev 1994Korning J & Balslev H (1994) Growth and mortality of trees in Amazonian tropical rain forest in Ecuador. Journal of Vegetation Science 5: 77-86.; Carvalho & Felfili 2011Carvalho FA & Felfili JM (2011) Variações temporais na comunidade arbórea de uma floresta decidual sobre afloramentos calcários no Brasil Central: composição, estrutura e diversidade florística. Acta Botanica Brasilica 25: 203-214.). Thus, the community would have reached a dynamic equilibrium status characterized by stability of general patterns of structure and composition, added to temporary fluctuations of biomass and entry and exit of species.

Our work was one of the first to monitor Atlantic semideciduous seasonal forests through successive inventories. Thus it contributes to recognition of tree community oscillations and to the understanding of successional transformations and population changes resulting from anthropic disturbances effects (mining) by community dynamics, phytosociological structure and floristic composition. Studies with these properties are essential because they offer a substantial contribution to conservation science and to implementation of effective forest ecosystem conservation policies, since anthropogenic disturbances show long-term effects (Haddad et al. 2015Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX & Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1: e1500052.).

Acknowledgments

We thank the Dendrology and Ecology of Tropical Forests Laboratory of the Federal University of Lavras for their assistance in the work development. This article was also partially produced during the discipline Scientific Publication in Ecology (PEC 533) of the Postgraduate in Applied Ecology of the Federal University of Lavras. So, we thank more specifically the collaboration of Mariana Azevedo Rabelo and the teacher responsible for the discipline Carla Rodrigues Ribas. TMCS, ABMS and CRS had a scholarship granted by the Minas Gerais Research Support Foundation - Fapemig, Coordination for the Improvement of Higher Education Personnel - CAPES and the National Council for Scientific and Technological Development - CNPq, respectively.

References

  • Abreu TAL, Pinto JRR & Mews HA (2014) Variações na riqueza e na diversidade de espécies arbustivas e arbóreas no período de 14 anos em uma Floresta de Vale, Mato Grosso, Brasil. Rodriguésia 65: 73-88.
  • Amaral WG, Pereira IM, Machado ELM, Oliveira PA, Dias LG, Mucida DP & Amaral CS (2013) Relação das espécies colonizadoras com as características do substrato em áreas degradadas na Serra do Espinhaço Meridional. Bioscience Journal 29: 1696-1707.
  • Appolinário V, Oliveira-Filho AT & Guilherme FAG (2005) Tree population and community dynamics in a Brazilian tropical semideciduous forest. Brazilian Journal of Botany 28: 347-360.
  • Aquino CD & Barbosa LM (2009) Classes sucessionais e síndromes de dispersão de espécie arbóreas e arbustivas existentes em vegetação ciliar remanescente (Conchal, SP), como subsídio para avaliar o potencial do fragmento como fonte de propágulos para enriquecimento de áreas revegetadas no Rio Mogi-Guaçu, SP. Revista Árvore 33: 349-358.
  • Baker PJ, Bunyavejchewin S, Oliver CD & Ashton PS (2005) Disturbance history and historical stand dynamics of a seasonal tropical forest in western Thailand. Ecological Monographs 75: 317-343.
  • Baker TR, Swaine MD & Burslem DF (2003) Variation in tropical forest growth rates: combined effects of functional group composition and resource availability. Perspectives in Plant Ecology, Evolution and Systematics 6: 21-36.
  • Benchimol M & Peres CA (2015) Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. Journal of Ecology 103: 408-420.
  • Bell G, Lechowicz MJ & Waterway MJ (2006) The comparative evidence relating to functional and neutral interpretations of biological communities. Ecology 87: 1378-1386.
  • Brito ER, Martins SV, Oliveira Filho AT, Silva E & Silva AF (2006) Estrutura fitossociológica de um fragmento natural de floresta inundável em área de orizicultura irrigada, município de Lagoa da Confusão, Tocantins. Revista Árvore 30: 829-836.
  • Brower JE & Zar JH (1984) Field and laboratory methods for general ecology. 2nd ed. C. Brown, Dubuque. 226p.
  • Carvalho FA & Felfili JM (2011) Variações temporais na comunidade arbórea de uma floresta decidual sobre afloramentos calcários no Brasil Central: composição, estrutura e diversidade florística. Acta Botanica Brasilica 25: 203-214.
  • Carvalho WAC, Oliveira-Filho AT, Fontes MAL & Curi N (2007) Variação espacial da estrutura da comunidade arbórea de um fragmento de floresta semidecídua em Piedade do Rio Grande, MG, Brasil. Revista Brasileira de Botânica 30: 315-335.
  • Colwell RK (2011) EstimateS: statistical estimation of species richness and shared species from samples. Disponível em <http://viceroy.eeb.uconn.edu/estimates/>. Acesso em 28 agosto 2015.
    » http://viceroy.eeb.uconn.edu/estimates/
  • Connell JH & Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist, University of Chicago 982: 1119-1144.
  • Condit R, Hubbell SP & Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs 65: 419-439.
  • Corrêa BS & van den Berg E (2002) Estudo da dinâmica da população de Xylopia brasiliensis Sprengel em relação a parâmetros populacionais e da comunidade em uma floresta de galeria em Itutinga, MG, Brasil. Cerne 8: 1-12.
  • Crow TR (1980) A rainforest chronicle: a 30-year record of change in structure and composition at El Verde, Puerto Rico. Biotropica 1: 42-55.
  • Cunha MCL & Silva-Júnior MC (2014) Flora e Estrutura de Floresta Estacional Semidecidual Montana nos estados da Paraíba e Pernambuco. Nativa 2: 95-102.
  • Damasceno-Junior GA, Semir J, Santos FAMD & Leitão-Filho HDF (2004) Tree mortality in a riparian forest at Rio Paraguai, Pantanal, Brazil, after an extreme flooding. Acta Botanica Brasilica 18: 839-846.
  • De Sá Júnior A, Carvalho LG, Silva FF & Alves MC (2012). Application of the Köppen classification for climatic zoning in the state of Minas Gerais, Brazil. Theoretical and Applied Climatology 108: 1-7.
  • Eisenlohr PV & Oliveira-Filho AT (2015) Revisiting patterns of tree species composition and their driving forces in the Atlantic Forests of Southeastern Brazil. Biotropica 47: 689-701.
  • Ellenberg H & Mueller-Dombois D (1974) Aims and methods of vegetation ecology. John Wiley & Sons Inc., New York. 547p.
  • Ellis EC (2011) Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society of London A 369: 1010-1035.
  • Felfili JM (1998) Determinação de padrões de distribuição de espécies em uma mata de galeria no Brasil Central com a utilização de técnicas de análise multivariada. Boletim do Herbário Ezechias Paulo Heringer 2: 35-48.
  • Felfili JM (1995) Growth, recruitment and mortality in the Gama gallery forest in central Brazil over a six-year period (1985-1991). Journal of Tropical Ecology 11: 67-83.
  • Felfili MC & Felfili JM (2001) Diversidade alfa e beta no cerrado sensu stricto da Chapada Pratinha, Brasil. Acta Botanica Brasilica 15: 243-254.
  • Fonseca SN, Ribeiro JHC & Carvalho FA (2013) Estrutura e diversidade da regeneração arbórea em uma floresta secundária urbana (Juiz de Fora, MG, Brasil). Floresta e Ambiente 20: 307-315.
  • Ghazoul J, Burivalova Z, Garcia-Ulloa J & King LA (2015) Conceptualizing forest degradation. Trends in Ecology & Evolution 30: 622-632.
  • Gonzaga APD, Oliveira-Filho AT, Machado ELM, Hargreaves P & Machado JNDM (2008) Diagnóstico florístico-estrutural do componente arbóreo da floresta da Serra de São José, Tiradentes, MG, Brasil. Acta Botanica Brasilica 22: 505-520.
  • Gotelli NJ & Colwell RK (2011). Estimating species richness. In: Magurran AE & Mcgill BJ (eds.) Biological diversity: frontiers in measurement and assessment. Oxford University, Oxford. Pp. 39-54.
  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX & Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1: e1500052.
  • Hallé F, Oldeman RAA & Tomlinson PB (1978) Tropical trees and forests. An architectural analysis. Springer, Verlag, Berlin. 441p.
  • Hartshorn GS (1980) Neotropical forest dynamics. Biotropica 1: 23-30.
  • Higuchi P, Oliveira-Filho AT, Silva ACD, Machado ELM, Santos RMD & Pifano DS (2008) Dinâmica da comunidade arbórea em um fragmento de floresta estacional semidecidual montana em Lavras, Minas Gerais, em diferentes classes de solos. Revista Árvore 32: 417-426.
  • Holling CS (1973) Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1-23.
  • IBGE (2012) Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro. 271p.
  • Kellman M, Tackaberry R & Rigg L (1998) Structure and function in two tropical gallery forest communities: implications for forest conservation in fragmented systems. Journal of Applied Ecology 35: 195-206.
  • Korning J & Balslev H (1994) Growth and mortality of trees in Amazonian tropical rain forest in Ecuador. Journal of Vegetation Science 5: 77-86.
  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG & Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology 16: 605-618.
  • Lewis SL, Edwards DP & Galbraith D (2015) Increasing human dominance of tropical forests. Science 349: 827-832.
  • Lewis SL, Phillips OL, Baker TR, Lloyd J, Malhi Y, Almeida S, Higuchi N, Laurance WF, Neill DA, Silva JNM, Terborgh J, Torres Lezama A, Vásquez Martinez R, Brown S, Chave J, Kuebler C, Núñes Vargas P & Vinceti B (2004). Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society of London B: Biological Sciences 359: 421-436.
  • Lewis SL, Lloyd J, Sitch S, Mitchard ET & Laurance WF (2009) Changing ecology of tropical forests: evidence and drivers. Annual Review of Ecology, Evolution, and Systematics 40: 529-549.
  • Lobo PC & Joly CA (2000) Aspectos ecofisiológicos da vegetação de mata ciliar do Sudeste do Brasil. In: Rodrigues R & Leitão-Filho HF (eds.) Matas ciliares: conservação e recuperação. Editora da Universidade de São Paulo, São Paulo. Pp. 143-157.
  • Machado ELM & Oliveira-Filho AT (2010) Spatial patterns of tree community dynamics are detectable in a small (4 ha) and disturbed fragment of the Brazilian Atlantic forest. Acta Botanica Brasilica 24: 250-261.
  • Marques MCM, Silva SM & Salino A (2003) Florística e estrutura do componente arbustivo-arbóreo de uma floresta higrófila da bacia do rio Jacaré-Pepira, SP, Brasil. Acta Botanica Brasilica 17: 495-506.
  • Matos FAR, Magnago LFS, Gastauer M, Carreiras J, Simonelli M & Meira-Neto JAA (2017) Effects of landscape configuration and composition on phylogenetic diversity of trees in a highly fragmented tropical forest. Journal of Ecology 105: 265-276.
  • Mews HA, Marimon BS, Pinto JRR & Silvério DV (2011) Dinâmica estrutural da comunidade lenhosa em floresta estacional semidecidual na transição cerrado-floresta amazônica, Mato Grosso, Brasil. Acta Botanica Brasilica 25: 845-857.
  • Moreira B & Carvalho FA (2013) A comunidade arbórea de um fragmento urbano de Floresta Atlântica após 40 anos de sucessão secundária (Juiz de Fora, Minas Gerais). Biotemas 26: 59-70.
  • Nascimento HEM, Dias AS, Tabanez AAJ & Viana VM (1999) Estrutura e dinâmica de populações arbóreas de um fragmento de floresta estacional semidecidual na região de Piracicaba, SP. Revista Brasileira de Biologia 59: 329-342.
  • Nunes YRF, Mendonça AVR, Oliveira-Filho AT, Botezelli L & Machado ELM (2003) Variações da fisionomia, diversidade e composição de guildas da comunidade arbórea em um fragmento de floresta semidecidual em Lavras, MG. Acta Botanica Brasilica 17: 213-229.
  • Oldeman RAA (1983) Tropical rain forest, architecture, silvigenesis and diversity. In: Sutton SL, Whitmore TC & Chadwick AC (eds.) Tropical rain forest: ecology and management. Blackwell, Oxford. Pp. 131-150.
  • Oliveira-Filho AT, Curi N, Vilela EA & Carvalho DA (2001) Variation in tree community composition and structure with changes in soil properties within a fragment of semideciduous forest in south-eastern Brazil. Edinburgh Journal of Botany 58: 139-158.
  • Oliveira-Filho AT, Carvalho WAC, Machado ELM, Higuchi P, Appolinário V, Castro GC, Silva AC, Santos RM, Borges LF, Corrêa BS & Alves JM (2007) Dinâmica da comunidade e populações arbóreas da borda e interior de um remanescente florestal na Serra da Mantiqueira, Minas Gerais, em um intervalo de cinco anos (1999-2004). Revista Brasileira de Botânica 30: 149-161.
  • Oliveira-Filho AT & Fontes MAL (2000) Patterns of floristic differentiation among atlantic forests in southeastern Brazil and the influence of climate1. Biotropica 32: 793-810.
  • Oliveira-Filho AT, Mello JM & Scolforo JRS (1997) Effects of past disturbance and edges on tree community structure and dynamics within a fragment of tropical semideciduous forest in south-eastern Brazil over a five-year period (1987-1992). Plant Ecology 131: 45-66.
  • Oliveira-Filho AT, Scolforo JRS & Mello JD (1994) Composição florística e estrutura comunitária de um remanescente de floresta semidecídua montana em Lavras, MG. Revista Brasileira de Botânica 17: 167-182.
  • Paiva LVD & Araújo GMD & Pedroni F (2007) Structure and dynamics of a woody plant community of a tropical semi-deciduous seasonal forest in the” Estação Ecológica do Panga”, municipality of Uberlândia, Minas Gerais, Brazil. Brazilian Journal of Botany 30: 365-373.
  • Paula AD, Silva AFD, Júnior MP, Santos FAMD & Souza ALD (2004) Sucessão ecológica da vegetação arbórea em uma Floresta Estacional Semidecidual, Viçosa, MG, Brasil. Acta Botanica Brasilica 18: 407-423.
  • Phillips OL (1996) Long-term environmental change in tropical forests: increasing tree turnover. Environmental Conservation 23: 235-248.
  • Pütz S, Groeneveld J, Henle K, Knogge C, Martensen AC, Metz M, Metzger JP, Ribeiro MC, Paula MD & Huth A (2014) Long-term carbon loss in fragmented Neotropical forests. Nature Communications 5: 5037.
  • Reyes GP, Kneeshaw D, de Grandpré L & Leduc A (2010) Changes in woody vegetation abundance and diversity after natural disturbances causing different levels of mortality. Journal of Vegetation Science 21: 406-417.
  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ & Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological conservation 142: 1141-1153.
  • Rodrigues LA, Carvalho DD, Oliveira Filho AT, Botrel RT & Silva ED (2003) Florística e estrutura da comunidade arbórea de um fragmento florestal em Luminárias, MG. Acta Botanica Brasilica 17: 71-87.
  • Rolim SG, Couto HTZ & Jesus RM (1999) Mortalidade e recrutamento de árvores na FlorestaAtlântica em Linhares (ES). Scientia Forestalis 55: 49-69.
  • Sampaio AB, Nunes RV & Walter BMT (1997) Fitossociologia de uma mata de galeria na Fazenda Sucupira do Cenargen, Brasília/DF. In: Leite LL & Saito CH (eds.) Contribuição ao conhecimento ecológico do Cerrado. Vol. 1. UnB, Brasília. Pp. 29-37.
  • Scheffer M, Carpenter S, Foley JA, Folke C & Walker B (2001) Catastrophic shifts in ecosystems. Nature 413: 591-596.
  • Schiavini I, Resende JCF & Aquino FG (2001) Dinâmica de populações de espécies arbóreas em matas de galeria e mata mesófila na margem do Ribeirão Panga, MG. In: Ribeiro JF, Fonseca CEL & Souza-Silva JC (eds.) Cerrado: caracterização e recuperação de matas de galeria. Embrapa-CPAC, Planaltina. Pp. 267-299.
  • Seidl R, Spies TA, Peterson DL, Stephens SL & Hicke JA (2016) Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology 53: 120-129.
  • Sheil D, Burslem DF & Alder D (1995) The interpretation and misinterpretation of mortality rate measures. Journal of Ecology 83: 331-333.
  • Sheil D, Jennings S & Savill P (2000) Long-term permanent plot observations of vegetation dynamics in Budongo, a Ugandan rain forest. Journal of Tropical Ecology 16: 865-882.
  • Silva MR & Araújo GM (2009) Dinâmica da comunidade arbórea de uma floresta semidecidual em Uberlândia, MG, Brasil. Acta Botanica Brasilica 23: 49-56.
  • Silva AC, van den Berg E, Higuchi P & Oliveira Filho AT (2007) Comparação florística de florestas inundáveis das regiões Sudeste e Sul do Brasil. Revista Brasileira de Botânica 30: 257-269.
  • Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E & Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution 28: 58-66.
  • Strayer DL, Glitzenstein JS, Jones CG, Kolasa J, Likens GE, McDonnell MJ, Parker GG & Pickett STA (1986) Long-term ecological studies: an illustrated account of their design, operation, and importance to ecology. Institute of Ecosystem Studies, New York Botanical Garden, Millbrook, Nova York. 38p.
  • Swaine MD, Lieberman D & Putz FE (1987) The dynamics of tree populations in tropical forest: a review. Journal of Tropical Ecology 3: 359-366.
  • Teixeira AMG, Soares-Filho BS, Freitas SR & Metzger JP (2009) Modeling landscape dynamics in an Atlantic Rainforest region: implications for conservation. Forest Ecology and Management 257: 1219-1230.
  • Teixeira AP, Assis MA, Siqueira FR & Casagrande JC (2008) Tree species composition and environmental relationships in a Neotropical swamp forest in Southeastern Brazil. Wetlands Ecology and Management 16: 451-461.
  • Túndisi JG (2013) Pesquisas ecológicas de longa duração: uma abordagem essencial ao estudo de ecossistemas e seus processos. In: Tabarelli M, Rocha CFD, Romanowski HP, Rocha O & Lacerda LD (eds.) PELD-CNPq dez anos do programa de pesquisas ecológicas de longa duração no Brasil: achados, lições e perspectivas. Vol. 1. Editora Universitária UFPE, Recife. Pp. 15-29.
  • van den Berg E & Oliveira-Filho AT (1999) Spatial partitioning among tree species within an area. Flora 194: 249-266.
  • Welden CW, Hewett SW, Hubbell SP & Foster RB (1991) Sapling survival, growth, and recruitment: relationship to canopy height in a neotropical forest. Ecology 72: 35-50.
  • Werneck MS & Franceschinelli EV (2004) Dynamics of a dry forest fragment after the exclusion of human disturbance in southeastern Brazil. Plant Ecology 174: 339-348.
  • Whitaker RH (1974) Climax concepts and recognition. In: Vegetation dynamics. Vol. 1. Springer, Dordrecht. Pp. 137-154.

Edited by

Area Editor: Dr. Pedro Higushi

Publication Dates

  • Publication in this collection
    11 Nov 2019
  • Date of issue
    2019

History

  • Received
    13 Sept 2017
  • Accepted
    31 May 2018
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br