Acessibilidade / Reportar erro

Vascular epiphytes of the Serra do Relógio: the surprising richness of the seasonal forests in the mountains of Minas Gerais, Southeastern Brazil

Abstract

Studies conducted on vascular epiphytes in Minas Gerais have revealed high richness in the seasonal semi-deciduous forests (SSF) in comparison with those of other Brazilian states. This study aimed to present a vascular epiphyte checklist of the Serra do Relógio (SR) in the Atlantic Forest of Minas Gerais, in order to analyze the similarity between two areas in different altitudes, as well as to discuss the high richness recorded for this synusia in the SSFs of this state. The survey was performed in two conservation units (CUs) apart from each other approximately 6 km and with elevations varying between ~500 and 1,434 m. The data were obtained from published articles and fieldwork performed between the years 2016 and 2019. We recorded 158 species distributed in 76 genera and 22 families. This richness is greater than those found in some ombrophilous forests, which was an unexpected result due to the high moisture of this phytophysionomy. Although approximately 66% of the species found in the SR are anemochoric and the compared CUs are geographically close, the similarity was only 22%, suggesting that the difference in altitude between the areas and the history of use can impose filters that influence the floristic composition of each one area. These results highlight the importance of preserving the forest remnants in Brazil and creating and maintain CUs to protect them.

Key words
altitude; Atlantic Forest; conservation units; Serra da Mantiqueira; Zona da Mata

Resumo

Os estudos sobre epífitas vasculares realizados em Minas Gerais vêm revelando uma elevada riqueza nas Florestas Estacionais Semideciduais (FES), quando comparadas àquelas de outros estados brasileiros. O presente estudo teve como objetivos apresentar uma listagem das epífitas vasculares da Serra do Relógio, na Floresta Atlântica de Minas Gerais, analisar a similaridade entre duas áreas localizadas em diferentes altitudes, além de discutir sobre a elevada riqueza registrada para esta sinúsia nas FES do estado. A pesquisa foi conduzida em duas Unidades de Conservação (UC) que distam cerca de 6 km entre si e possuem altitudes variando entre ~500 e 1.434 m. Os dados foram obtidos de estudos publicados e expedições realizadas entre os anos de 2016 e 2019. Nós registramos 158 espécies pertencentes a 76 gêneros e 22 famílias. A riqueza observada no presente estudo é maior do que aquela encontrada em pesquisas realizadas em florestas ombrófilas, fato considerado inesperado devido à elevada umidade desta fitofisionomia. Embora ~66% das espécies da SR tenham suas sementes dispersas pelo vento e as UC’s sejam geograficamente muito próximas, a similaridade encontrada foi de apenas ~22%, sugerindo que a diferença de altitude entre as áreas e o histórico de uso podem estabelecer filtros que influenciam na composição florística de cada uma delas. Nossos resultados ressaltam a importância da conservação dos remanescentes florestais no Brasil e da criação e manutenção de UC’s para protegê-los.

Palavras-chave
altitude; Floresta Atlântica; unidades de conservação; Serra da Mantiqueira; Zona da Mata

Introduction

Epiphytes are plants which spend their whole life, or part of it, without contact with the soil, normally using trees as support without parasitizing them (Benzing 1990Benzing DH (1990) Vascular Epiphytes. Cambridge University Press, Cambridge. 354p.; Zotz 2016Zotz G (2016) Plants on plants - The biology of vascular epiphytes. Springer, Berlin. 493p.). They play an important role in ecosystems, providing food, water, and shelter, and are even compared to small ecosystems (Rommel & Baights 1999Rommel C & Baights B (1999) Bromeliáceas como Ecosistemas. Plaza y Valdés, México. 123p.; Zanin & Tusset 2007Zanin EM & Tusset C (2007) Vriesia friburgensis Mez.: distribuição vertical da espécie e fauna associada. Revista Brasileira de Biociências 5: 138-140.; Seidl et al. 2020Seidl CM, Basham EW, Andriamahohatra LR & Scheffers BR (2020) Bird’s nest fern epiphytes facilitate herpetofaunal arboreality and climate refuge in two paleotropic canopies. Oecologia 192: 297-309.). Epiphytes also contribute to maintaining nutrients and local air moisture (Benzing 1998Benzing DH (1998) Vulnerabilities of tropical forest to climate change: the significance of resident epiphytes. Climate Change 39: 519-540.; Hargis et al. 2019Hargis H, Gotsch SG, Porada P, Moore GW, Ferguson B & Van Stan JT II (2019) Arboreal epiphytes in the soil-atmosphere interface: how often are the biggest “buckets” in the canopy empty? Geosciences 9: 342. <https://doi.org/10.3390/geosciences9080342>), and this characteristic can be highly relevant in the dry period in forests such as seasonal semi-deciduous forests (SSF) (Mestre et al. 2001Mestre LAM, Aranha JMR & Esper MLP (2001) Macroinvertebrate fauna associated to the bromeliad Vriesea inflata of the Atlantic Forest (Paraná State, Southern Brazil). Brazilian Archives Biolology and Technology 44: 89-94.). About 9% of all vascular plants in the world are epiphytes (Zotz 2013Zotz G (2013) The systematic distribution of vascular epiphytes - a critical update. Botanical Journal of the Linnean Society 171: 453-481. <https://doi.org/10.1111/boj.12010>), while this proportion is approximately 15% in the Atlantic Forest (Freitas et al. 2016Freitas L, Salino A, Menini Neto L, Almeida TE, Mortara SR, Stehmann JR, Amorim AM, Guimarães EF, Coelho MN, Zanin A & Forzza RC (2016) A comprehensive checklist of vascular epiphytes of the Atlantic Forest reveals outstanding endemic rates. PhytoKeys 58: 65-79.), and this number can be up to 50% of the total in smaller scales (Kelly et al. 1994Kelly DL, Tanner EVJ, Lughadha EMN & Kapos V (1994) Floristics and biogeography of a rain-forest in the Venezuelan Andes. Journal of Biogeography 21: 421-440. <https://doi.org/10.2307/2845760>).

Studies on vascular epiphytes in Minas Gerais have intensified in the last decade and have been performed in several types of vegetations such as urban green areas (Alvim et al. 2020Alvim FS, Furtado SG & Menini Neto L (2020) Diversity of vascular epiphytes in urban green areas of Juiz de Fora, Minas Gerais, Brazil. Floresta e Ambiente 27: e20190116. <https://doi.org/10.1590/2179-8087.011619>; Kaeser et al. 2020Kaeser SS, Ulguim PSB, Furtado SG, Campos BC, & Menini Neto L (2020) Composição florística e ecologia de epífitas vasculares na praça central do município de Mar de Espanha, Minas Gerais, Brasil. Revista Brasileira de Arborização Urbana 15: 26-38.), urban forests (Furtado & Menini Neto 2015aFurtado SG & Menini Neto L (2015a) Diversity of vascular epiphytes in urban environment: a case study in a biodiversity hotspot, the Brazilian Atlantic Forest. CES Revista 29: 82-101.; Santana et al. 2017Santana LD, Furtado SG, Nardy C, Leite FS & Menini Neto L (2017) Diversity, vertical structure and floristic relationships of vascular epiphytes in an urban remnant of the Brazilian Atlantic Forest. Hoehnea 44: 103-117.; Martins et al. 2020Martins PLSS, Furtado SG & Menini Neto L (2020) Could epiphytes be xenophobic? Evaluating the use of native versus exotic phorophytes by the vascular epiphytic community in an urban environment. Community Ecology 20: 1-11.), Cerrado sensu stricto (Menini Neto et al. 2019Menini Neto L, Maradini AC, Moura FR, Lima P & Furtado SG (2019) Out of the frying pan into the fire: the community structure of epiphytes in Brazilian savanna after the passage of fire. Edinburgh Journal of Botany 77: 77-87.), ombrophilous forests (Alves & Menini Neto 2014Alves FE & Menini Neto L (2014) Vascular epiphytes in a forest fragment of Serra da Mantiqueira and floristic relationships with Atlantic high altitude areas in Minas Gerais. Brazilian Journal of Botany 37: 187-196.; Furtado & Menini Neto 2015bFurtado SG & Menini Neto L (2015b) Diversity of vascular epiphytes in two high altitude biotopes of the Brazilian Atlantic Forest. Revista Brasileira de Botânica 38: 295-310., 2016Furtado SG & Menini Neto L (2016) Vascular epiphytic flora of a high montane environment of Brazilian Atlantic Forest: composition and floristic relationships with other ombrophilous forests. Acta Botanica Brasilica 30: 422-436., 2018aFurtado SG & Menini Neto L (2018a) Diversity high up: a cloud forest of the Serra da Mantiqueira as a vascular epiphyte hotspot. Rodriguesia 69: 263-279.,bFurtado SG & Menini Neto L (2018b) Elevational and phytophysiognomic gradients influence the epiphytic community in a cloud forest of the Atlantic phytogeographic domain. Plant Ecology 219: 677-690.) and seasonal semi-deciduous forests (Barbosa et al. 2015Barbosa DEF, Basílio GA, Silva FR & Menini Neto L (2015) Vascular epiphytes in a remnant of seasonal semideciduous forest in Zona da Mata of Minas Gerais Brazil. Bioscience Journal 31: 623-633., 2019; Basílio et al. 2015Basílio GA, Barbosa DEF, Furtado SG, Silva F & Menini Neto L (2015) Community ecology of epiphytic Bromeliaceae in a remnant of Atlantic Forest in Zona da Mata, Minas Gerais State, Brazil. Hoehnea 42: 21-31.). It is worth mentioning that the last vegetation type presented higher richness of vascular epiphytes in the Atlantic Forest (Zona da Mata) of Minas Gerais than in any other Brazilian states in the same type of phytophysionomy (Barbosa et al. 2015Barbosa DEF, Basílio GA, Silva FR & Menini Neto L (2015) Vascular epiphytes in a remnant of seasonal semideciduous forest in Zona da Mata of Minas Gerais Brazil. Bioscience Journal 31: 623-633., 2019).

The Atlantic Forest in Minas Gerais originally covered 41% of the state territory, but is currently reduced to approximately 4% of its original area (Drummond et al. 2008Drummond GM, Machado ABM, Martins CS, Mendonça MP & Stehmann JR (2008) Listas vermelhas das espécies da fauna e da flora ameaçadas de extinção em Minas Gerais. 2ed. Fundação Biodiversitas, Belo Horizonte. CD-Rom.) and is mainly represented by secondary forest fragments (Campanili & Schaffer 2010Campanili M & Schaffer WB (2010) Mata Atlântica: patrimônio nacional dos brasileiros. Ministério do Meio Ambiente, Brasília. 408p.). The SSF is the forest physiognomy which covers the largest extension in this state and was the most affected vegetation due to deforestation for cattle, crops, and urban expansion (Stehmann & Sobral 2009Stehmann JR & Sobral M (2009) Diagnóstico do conhecimento da diversidade botânica: fanerógamas. In: Drummond GM, Martins CS, Greco MB & Vieira F (eds.) Biota Minas: diagnóstico do conhecimento sobre a biodiversidade no estado de Minas Gerais - subsídio ao Programa Biota Minas. Fundação Biodiversitas, Belo Horizonte. Pp. 355-387. ). It is recognized that it shelters high richness and endemism, however it is still undersampled, representing a knowledge gap in Brazil and is considered a priority for conducting floristic inventories (Giulietti et al. 2009Giulietti AM, Rapini A, Andrade MJG, Queiroz LP & Silva JMC (2009) Plantas raras do Brasil. Conservação Internacional, Belo Horizonte. 496p.; Stehmann et al. 2009Stehmann JR, Forzza RC, Salino A, Sobral M, Costa DP & Kamino LHY (2009) Plantas da Floresta Atlântica. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 505p.; Werneck et al. 2011Werneck MS, Sobral MEG, Rocha CTV, Landau EC & Stehmann JR (2011) Distribution and endemism of angiosperms in the Atlantic Forest. Natureza & Conservação 9: 188-193.). Such knowledge is even lower if taking into consideration the herb stratum or epiphytic plants (Stehmann & Sobral 2009Stehmann JR & Sobral M (2009) Diagnóstico do conhecimento da diversidade botânica: fanerógamas. In: Drummond GM, Martins CS, Greco MB & Vieira F (eds.) Biota Minas: diagnóstico do conhecimento sobre a biodiversidade no estado de Minas Gerais - subsídio ao Programa Biota Minas. Fundação Biodiversitas, Belo Horizonte. Pp. 355-387. ), with an understudied epiphytic flora even in larger and well-studied SSF remnants in Minas Gerais (Lombardi & Gonçalves 2000Lombardi JA & Gonçalves M (2000) Composição florística de dois remanescentes de Mata Atlântica do sudeste de Minas Gerais, Brasil. Revista Brasileira de Botânica 23: 255-282.; Messias et al. 2017Messias MCTB, Sousa HC, Scalon V, Roschel MB, Candido ES & Fujaco MAG (2017) Phanerogamic flora and vegetation of Itacolomi State Park, Minas Gerais, Brazil. Biota Neotropica 17: e20160236. <http://dx.doi.org/10.1590/1676-0611-BN-2016-0236>.).

In addition to the several phytophysiognomies, the Atlantic Forest has remarkable topographic heterogeneity from sea level to near 3,000 m. These conditions allow a great variety of habitats and complex biodiversity, which puts it as a global hotspot of biodiversity (Myers et al. 2000; Oliveira-Filho & Fontes 2000Oliveira-Filho AT & Fontes MA (2000) Patterns of floristic differentiation among Atlantic Forest in Southeastern Brazil and the influence of climate. Biotropica 32: 793-810.; Guedes et al. 2020Guedes TB, Azevedo JAR, Bacon CD, Provete DB & Antonelli A (2020) Diversity, endemism, and evolutionary history of montane biotas outside the Andean Region. In: Rull V & Carnaval AC (eds.) Neotropical diversification: patterns and processes. Springer Nature, Fascinating Life Sciences, Cham. Pp. 299-328.). Both on global and regional scales the mountains are recognized as world centers of diversity, showing a high number of threatened and endemic species, representing refuges for several organisms (Körner 2004Körner C (2004) Mountain biodiversity, its causes and function. Ambio Special Report 13: 11-17.; Barthlott et al. 2005Barthlott W, Mutke J, Rafiqpoor D, Kier G & Kreft H (2005) Global centers of vascular plant diversity. Nova Acta Leopoldina 92: 61-83.; Antonelli et al. 2018Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN & Hoorn C (2018) Geological and climatic influences on mountain biodiversity. Nature Geoscience 11: 718-725.). Among the Brazilian mountain chains, is worth mentioning the Serra da Mantiqueira, an important montane complex, essential to the conservation and maintenance of the biodiversity of the Southeastern Region of Brazil (Drummond et al. 2005Drummond GM, Martins CS, Machado ABM, Sebaio FA & Antonini Y (2005) Biodiversidade em Minas Gerais: um atlas para sua conservação. 2nd edition. Fundação Biodiversitas, Belo Horizonte. 222p.; Martinelli 2007Martinelli G (2007) Mountain biodiversity in Brazil. Revista Brasileira de Botânica 30: 587-597.; Guedes et al. 2020Guedes TB, Azevedo JAR, Bacon CD, Provete DB & Antonelli A (2020) Diversity, endemism, and evolutionary history of montane biotas outside the Andean Region. In: Rull V & Carnaval AC (eds.) Neotropical diversification: patterns and processes. Springer Nature, Fascinating Life Sciences, Cham. Pp. 299-328.).

The Serra do Relógio (SR) gathers one of the most relevant forest remnants of Zona da Mata of Minas Gerais and is part of the Southeastern Corridor of the Atlantic Forest in Serra da Mantiqueira. It is considered a very important area for the conservation of the flora in this state (Drummond et al. 2005Drummond GM, Martins CS, Machado ABM, Sebaio FA & Antonini Y (2005) Biodiversidade em Minas Gerais: um atlas para sua conservação. 2nd edition. Fundação Biodiversitas, Belo Horizonte. 222p.). It is a mountain chain with relevant environmental service for the society, provided by the existence of several water springs responsible for supplying about 31,000 people from the municipalities of Descoberto and São João Nepomuceno (Menini Neto et al. 2004Menini Neto L, Almeida VR & Forzza RC (2004) A família Orchidaceae na Reserva Biológica da Represa do Grama, Descoberto, Minas Gerais, Brasil. Rodriguésia 55: 137-156.), and the possibility of connecting forest fragments of this region (Barbosa et al. 2021Barbosa DEF, Basílio GA, Pereira LC, Gonzaga DR, Chautems A & Menini Neto L (2021) Too many floristic inventories? New records in seasonal semi-deciduous forest in the Serra da Mantiqueira in Minas Gerais state answers this question. Rodriguésia 72: e01142020. DOI: 10.1590/2175-7860202172106
https://doi.org/10.1590/2175-78602021721...
). The main phytophysiognomy of this area is montane seasonal semi-deciduous forest (IBGE 2012IBGE (2012) Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro. 271p.), although there are also wetlands, cloud forests, and campos de altitude (high altitude grasslands) at elevations above 1,000 m (Pereira Filho & Sartori 2013Pereira Filho HR & Sartori MA (2013) Plano de Manejo da Reserva Particular do Patrimônio Natural Alto da Boa Vista - I e II. ICMBio 1: 1-289.). Much of the SR is inserted in private properties, some of which have been transformed into Conservation Units (CUs), such as the Reserva Particular do Patrimônio Natural (RPPN), the Alto da Boa Vista (RPPNABV), RPPN Jurerê, RPPN Sítio Sannyasim, and the Parque Natural Municipal of Serra do Relógio, in addition to the Reserva Biológica da Represa do Grama (RBRG), the first biological reserve of Minas Gerais.

Although the Serra do Relógio is recognized as important for biodiversity conservation and has floristic studies about families (Menini Neto et al. 2004Menini Neto L, Almeida VR & Forzza RC (2004) A família Orchidaceae na Reserva Biológica da Represa do Grama, Descoberto, Minas Gerais, Brasil. Rodriguésia 55: 137-156.; Almeida et al. 2005Almeida VR, Temponi LG & Forzza RC (2005) Araceae da Reserva Biológica da Represa do Grama, Descoberto, MG. Rodriguésia 56: 127-144.; Lobão et al. 2006Lobão AQ, Forzza RC & Mello-Silva R (2006) Annonaceae da Reserva Biológica da Represa do Grama, Descoberto, MG, com uma nova espécie. Rodriguésia 57: 137-147.; Matozinhos & Konno 2008Matozinhos CN & Konno TUP (2008) Apocynaceae s.l. na Reserva Biológica da Represa do Grama, Descoberto, Minas Gerais, Brasil. Rodriguésia 59: 87-98.; Pereira et al. 2021Pereira LC, Barbosa DEF, Chautems A & Menini Neto L (2021) Gesneriaceae da Serra do Relógio, Descoberto, estado de Minas Gerais, Brasil. Hoehnea 48: e832019. <https://doi.org/10.1590/2236-8906-83/2019>.) and general flora of the RBRG (Forzza et al. 2014Forzza RC, Pifano DS, Oliveira-Filho AT, Meireles LD, Faria PL, Salimena FR, Mynssen CM & Prado F (2014) Flora vascular da Reserva Biológica da Represa do Grama, Minas Gerais, e sua relação florística com outras florestas do sudeste brasileiro. Rodriguésia 65: 275-292.), no one specific study about epiphytic flora was performed to date.

Considering the importance of this synusia for maintaining biodiversity in tropical forests and the relevance of the researched area, the present study aimed to present a vascular epiphyte checklist of the SR, analyzing the composition of the community and the similarity between the RPPNABV and RBRG (areas close to each other but at different elevations), and to discuss the high richness recorded for vascular epiphytes in SSFs of Minas Gerais, as well as the importance of preserving forest remnants in Brazil.

Material and Methods

Study area

The SR is located in the municipalities of Astolfo Dutra, Guarani, and Descoberto, and this study was performed in the portion located in the municipality of Descoberto, mainly in the RBRG (21º25’S, 42º56’W) and RPPNABV CUs (21º22’S, 42º56’W) (Figs. 1-2), which have extensions of 263.8 ha and 138.26 ha, respectively, totaling a montane SSF area of 402.06 ha. The relief is wavy to mountainous and the elevations lie between ~500 and 1,440 m. The RBRG is located between ~500 and 700 m, while the RPPNABV is located between ~820 and 1,440 m. The climate is Cwb according to the Köppen classification, with two well-defined seasons; one warm and humid (October to April), and another with mild temperatures and dry (May to September). The mean annual temperature is 22.3 °C and the mean precipitation is 1,550 mm, with the occurrence of orographic rainfalls, due to the relief responsible for the ascendence of moist coastal air masses (Pereira Filho & Sartori 2013).

Figure 1
Location of the study area. Left highlighting the Serra do Relógio (red circle), Zona da Mata, Minas Gerais, Southeastern Brazil. Right, aerial view of the Serra do Relógio and the Conservation Units (delimited in yellow) within its coverage area. In red the delimitation of the municipalities (whose names are shown in blue). RPPN: Reserva Particular do Patrimônio Natural (Private Natural Heritage Reserve).
Figure 2
a. General view of the Serra do Relógio, Zona da Mata, Minas Gerais, Southeastern Brazil; b-c. Reserva Biológica da Represa do Grama; d-e. RPPN Alto da Boa Vista. (Photos: D.E.F. Barbosa).

The two forest fragments are ~6 km apart but are somehow connected through an ecological corridor between the CUs, interspersed with crop and cattle pasture areas. Furthermore, both localities were used for coffee crops and wood extraction, and therefore present several seral stages, from reforested areas in the initial succession stage to areas with mature forests, with several large trees, mainly associated with places which are difficult to access (Pereira Filho & Sartori 2013; Forzza et al. 2014Forzza RC, Pifano DS, Oliveira-Filho AT, Meireles LD, Faria PL, Salimena FR, Mynssen CM & Prado F (2014) Flora vascular da Reserva Biológica da Represa do Grama, Minas Gerais, e sua relação florística com outras florestas do sudeste brasileiro. Rodriguésia 65: 275-292.).

Data collection

Data regarding species of the RBRG were obtained from published studies performed between 1999 and 2004 (Menini Neto et al. 2009Menini Neto L, Forzza RC & Zappi D (2009) Angiosperm epiphytes as conservation indicators in forest fragments: a case study from southeastern Minas Gerais, Brazil. Biodiversity and Conservation 18: 3785-3807.; Forzza et al. 2014Forzza RC, Pifano DS, Oliveira-Filho AT, Meireles LD, Faria PL, Salimena FR, Mynssen CM & Prado F (2014) Flora vascular da Reserva Biológica da Represa do Grama, Minas Gerais, e sua relação florística com outras florestas do sudeste brasileiro. Rodriguésia 65: 275-292.). The data for the RPPNABV was obtained from the management plan of the CU (Pereira Filho & Sartori 2013) and from collections performed by the authors of this study between July 2016 and January 2018, totaling 19 expeditions. We used the method presented by Filgueiras et al. (1994)Filgueiras TS, Nogueira PE, Brochado AL & Guala GF (1994) Caminhamento: um método expedito para levantamentos florísticos qualitativos. Caderno de Geociências 12: 39-43., aiming to cover the largest possible area. Fertile specimens were photographed (Figs. 3-4), collected (when necessary), herborized, and deposited in the CESJ Herbarium of the Universidade Federal de Juiz de Fora (acronym according to Thiers, continuously updated). An additional search was performed in the virtual databases (<http://reflora.jbrj.gov.br/>, <https://www.gbif.org/>, <http://www.jbrj.gov.br/jabot/>, <http://splink.cria.org.br/>) to seek additional records from both areas.

Figure 3
a-i. Some species of vascular epiphytes recorded in the Serra do Relógio, Zona da Mata, Minas Gerais, Southeastern Brazil – a. Araceae: Monstera adansonii; b. Aspleniaceae: Asplenium mourai; c. Begoniaceae: Begonia convolvulacea; d. Blechnaceae: Lomaridium plumieri; e. Bromeliaceae: Billbergia porteana; f. Bromeliaceae: Quesnelia arvensis; g. Cactaceae: Rhipsalis floccosa; h. Clusiaceae: Clusia sp.; i. Dryopteridaceae: Elaphoglossum glaziovii.
Figure 4
a-i. Some species of vascular epiphytes recorded in the Serra do Relógio, Zona da Mata, Minas Gerais, Southeastern Brazil – a. Gesneriaceae: Nematanthus crassifolius; b. Hymenophyllaceae: Polyphlebium angustatum; c. Lycopodiaceae: Phlegmariurus biformis; d. Melastomataceae: Pleiochiton blepharodes; e. Onagraceae: Fuchsia regia; f. Orchidaceae: Grobya amherstiae; g. Orchidaceae: Zygopetalum mosenianum; h. Piperaceae: Peperomia tetraphylla; i. Polypodiaceae: Campyloneurum decurrens.

The species were identified with the support of specialists in the families and consultation with the literature. The spelling of the species names and authors were verified in ‘The International Plants Names Index’ (<https://www.ipni.org>). The evolutionary lineages of the plants are according to PPG I (2016)PPG I - The Pteridophyte Phylogeny Group (2016) A community-derived classification for extant lycophytes and ferns. Journal of Sytematics and Evolution 54: 563-603. for ferns and lycophytes, and to the APG IV (2016)APG IV - Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20. for the angiosperms.

The conservation status of the species was obtained from the Red Book of Brazilian Flora (Martinelli & Moraes 2013Martinelli G & Moraes MA (2013) Livro vermelho da flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Andrea Jakobsson- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 1100p.) and Drummond et al. (2008)Drummond GM, Machado ABM, Martins CS, Mendonça MP & Stehmann JR (2008) Listas vermelhas das espécies da fauna e da flora ameaçadas de extinção em Minas Gerais. 2ed. Fundação Biodiversitas, Belo Horizonte. CD-Rom. for Brazil and Minas Gerais state, respectively. The species were classified into dispersal syndromes and ecological categories according to Benzing (1990)Benzing DH (1990) Vascular Epiphytes. Cambridge University Press, Cambridge. 354p., but we did not distinguish between primary and secondary hemiepiphytes.

Similarity analysis

Although the two fragments are composed of montane SSF and are connected, both are located in different elevations, which can influence the temperature and humidity of each area (Ding et al. 2016Ding Y, Liu G, Zang R, Zhang J, Lu X & Huang J (2016) Distribution of vascular epiphytes along a tropical elevational gradient: disentangling abiotic and biotic determinants. Scientific Reports 6: 1-10.). Thus, we performed a similarity analysis to compare both areas taking into account that epiphytes are sensitive to microclimatic variations (Padilha et al. 2017Padilha PT, Elias GA, Santos R, Martins R & Citadini-Zanette V (2017) Vascular epiphytes respond to successional stages and microhabitat variations in a subtropical forest in southern Brazil. Brazilian Journal of Botany 40: 897-905.; Barbosa et al. 2019Barbosa DEF, Basílio GA, Furtado SG & Menini Neto L (2019) The importance of heterogeneity of habitats for the species richness of vascular epiphytes in remnants of Brazilian montane seasonal semideciduous forest. Edinburgh Journal of Botany 77: 99-118.).

A matrix of the presence (1) and absence (0) of the species was constructed. We used 147 species of vascular epiphytes, since those unidentified or without an accurate location information obtained in the herbarium sheets were excluded (Epidendrum ramosum Jacq., Maxillaria parviflora (Poepp. & Endl.) Garay and Scaphyglottis reflexa Lindl.). The similarity analysis was performed using UPGMA (Unweighted Pair Group Method with Arithmetic Mean) and the Jaccard Index in the PAST v.4.03 free access software program (Hammer et al. 2001Hammer O, Harper DAT & Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleont Electr 4: 1-9.).

Results and Discussion

We recorded 158 species in the Serra do Relógio (SR), distributed in 76 genera and 22 families (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.19750303.v1>). Eighty-six species were recorded in the RBRG, which has an area almost twice as large (263.8 ha) compared to the RPPNABV (138.26 ha), which houses 100 species. The altitude can justify these results, whereas that richest areas in vascular epiphytes have been recorded in elevations between 1,000 and 2,000 m in several studies (Madison 1977Madison M (1977) Vascular epiphytes: their systematic occurrence and salient features. Selbyana 2: 1-13.; Gentry & Dodson 1987Gentry AH & Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74: 205-233.; Benzing 1990Benzing DH (1990) Vascular Epiphytes. Cambridge University Press, Cambridge. 354p.; Küper et al. 2004Küper W, Kreft H, Nieder J, Köster N & Barthlot TW (2004) Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. Journal of Biogeography 31: 1477-1487.; Krömer et al. 2005Krömer T, Kessler M, Gradstein SR & Acebey A (2005) Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. Journal of Biogeography 32: 1799-1809.; Blum et al. 2011Blum CT, Roderjan CV & Galvão F (2011) Composição florística e distribuição altitudinal de epífitas vasculares da Floresta Ombrófila Densa na Serra da Prata, Morretes, Paraná, Brasil. Biota Neotropica 11: 141-159.; Bonnet et al. 2011Bonnet A, Curcio GR, Lavoranti OJ & Galvão F (2011) Flora epifítica vascular em três unidades vegetacionais do Rio Tibagi, Paraná, Brasil. Rodriguésia 62: 491-498.; Ding et al. 2016Ding Y, Liu G, Zang R, Zhang J, Lu X & Huang J (2016) Distribution of vascular epiphytes along a tropical elevational gradient: disentangling abiotic and biotic determinants. Scientific Reports 6: 1-10.; Furtado & Menini Neto 2018a; Barbosa et al. 2019Barbosa DEF, Basílio GA, Furtado SG & Menini Neto L (2019) The importance of heterogeneity of habitats for the species richness of vascular epiphytes in remnants of Brazilian montane seasonal semideciduous forest. Edinburgh Journal of Botany 77: 99-118.), thus favoring a richer epiphytic flora in the RPPNABV.

Ferns were represented by 45 species (approximately 28%), 21 genera, and 8 families, with the richest being Polypodiaceae (27 spp.), Aspleniaceae (seven spp.), and Hymenophyllaceae (four spp.) (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.19750303.v1>). The richest genus was Asplenium L. (Aspleniaceae) (seven spp.), followed by Campyloneurum C.Presl (Polypodiaceae) (six spp.), Pleopeltis Humb. (Polypodiaceae (five spp.), and Pecluma M.G.Price (Polypodiaceae) (four spp.). Lycophytes were represented by three species (approximately 2%), two genera and two families (Lycopodiaceae and Selaginellaceae).

Angiosperms were represented by 110 species (approximately 70%), distributed in 52 genera and 12 families. Orchidaceae (39 spp.) was the richest family, followed by Bromeliaceae (29 spp.), Araceae (15 spp.), and Piperaceae (eight spp.) (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.19750303.v1>). The richest genera were Peperomia Ruiz & Pav. (Piperaceae) and Vriesea Lindl. (Bromeliaceae) (eight spp. each), followed by Philodendron Schott (Araceae) (seven spp.) and Epidendrum L. (Orchidaceae), and Billbergia Thunb. (Bromeliaceae) (six spp. each).

The richest families are according to the patterns found in the Neotropical Region (NR) (Mendieta-Leiva et al. 2020Mendieta-Leiva G, Ramos FN, Elias JPC, Zotz G, Acuña-Tarazona M, Alvim FS, Barbosa DEF, Basílio GA, Batke SP, Benavides AM, Blum CT, Boelter CR, Brancalion PHS, Carmona MJ, Carvalho LP, Rosa-Manzano E, Einzmann HJR, Fernández M, Furtado SG, Gasper AL, Guzmán-Jacob V, Hietz P, Irume MV, Jiménez-López DA, Kessler M, Kreft H, Krömer T, Machado GMO, Martínez-Meléndez N, Martins PLSS, Mello RM, Mendes AF, Menini Neto L, Mortara SR, Nardy C, Oliveira RP, Pereira ACA, Pillaca L, Quaresma AC, Quiel CR, Medina ES, Taylor A, Vega MS, Wagner K, Werneck MS, Werner FA, Wolf JHD, Zartman CE, Zuleta D & Jiménez-Alfaro B (2020) EpIG-DB: a database of vascular epiphyte assemblages in the Neotropics. Journal of Vegetation Science 31: 518-528. <https://doi.org/10.1111/jvs.12867>.) and the Atlantic Forest (AF) (Ramos et al. 2019Ramos FN, Mortara SR, Monalisa-Francisco N, Elias JPC, Menini Neto L, Freitas L, Kersten R, Amorim AM, Matos FB, Nunes-Freitas AF, Alcântara S, Alexandre MHN, Almeida-Scabbia RJ, Almeida OJG, Alves FE, Alves RMO, Alvim FS, Andrade ACS, Andrade S, Aona LYS, Araújo AC, Araújo KCT, Ariati V, Assis JC, Azevedo CO, Barbosa BF, Barbosa DEF, Barbosa FR, Barros F, Basílio GA, Bataghin FA, Bered F, Bianchi JS, Blum CT, Boelter CR, Bonnet A, Brancalion PHS, Breier TB, Brion CT, Buzatto CR, Cabral A, Cadorin TJ, Caglioni E, Canêz L, Cardoso PG, Carvalho FS, Carvalho RG, Catharino ELM, Ceballos SJ, Cerezini MT, César RG, Cestari C, Chaves CJN, Citadini-Zanette V, Coelho LFM, Coffani-Nunes JV, Colares R, Colletta GD, Corrêa NM, Costa AF, Costa GM, Costa LMS, Costa NGS, Couto DR, Cristofolini C, Cruz ACR, Del Neri LA, Di Pasquo M, Dias AS, Dias LCD, Dislich R, Duarte MC, Fabricante JR, Farache FHA, Faria APG, Faxina C, Ferreira MTM, Fischer E, Fonseca CR, Fontoura T, Francisco TM, Furtado SG, Galetti M, Garbin ML, Gasper AL, Goetze M, Gomes-da-Silva J, Gonçalves MFA, Gonzaga DR, Silva ACG, Guaraldo AC, Guarino ESG, Guislon AV, Hudson LB, Jardim JG, Jungbluth P, Kaeser SS, Kessous IM, Koch NM, Kuniyoshi YS, Labiak PH, Lapate ME, Santos ACL, Leal RLB, Leite FS, Leitman P, Liboni AP, Liebsch D, Lingner DV, Lombardi JA, Lucas E, Luzzi JR, Mai P, Mania LF, Mantovani W, Maragni AG, Marques MCM, Marquez G, Martins C, Martins LN, Martins PLSS, Mazziero FFF, Melo CA, Melo MMF, Mendes AF, Mesacasa L, Morellato LPC, Moreno VS, Muller A, Murakami MMS, Cecconello E, Nardy C, Nervo MH, Neves B, Nogueira MGC, Nonato FR, Oliveira-Filho AT, Oliveira CPL, Overbeck GE, Marcusso GM, Paciencia MLB, Padilha P, Padilha PT, Pereira ACA, Pereira LC, Pereira RAS, Pincheira-Ulbrich J, Pires JSR, Pizo MA, Pôrto KC, Rattis L, Reis JRM, Reis SG, Rocha-Pessôa PC, Rocha CFD, Rocha FS, Rodrigues ARP, Rodrigues RR, Rogalski JM, Rosanelli RL, Rossado A, Rossatto DR, Rother DC, Ruiz-Miranda CR, Saiter FZ, Sampaio MB, Santana LD, Santos JS, Sartorello R, Sazima M, Schmitt JL, Schneider G, Schroeder BG, Sevegnani L, Silva Júnior VO, Silva FR, Silva MJ, Silva MPP, Silva RG, Silva SM, Singer RB, Siqueira G, Soares LE, Sousa HC, Spielmann A, Tonetti VR, Toniato MTZ, Ulguim PSB, van den Berg C, van den Berg E, Varassin IG, Silva IBV, Vibrans AC, Waechter JL, Weissenberg EW, Windisch PG, Wolowski M, Ayañez A, Yoshikawa VN, Zandoná LR, Zanella CM, Zanin EM, Zappi DC, Zipparro VB, Zorzanelli JPF & Ribeiro MC(2019) Atlantic epiphytes: a data set of vascular and non-vascular epiphyte plants and lichens from the Atlantic Forest. Ecology 100: e02541. <https://doi.org/10.1002/ecy.2541>.), in which Orchidaceae and Bromeliaceae are the richest. Polypodiaceae is the third richest family and often occupy such rank in small scales, although Araceae, the third in AF and NR, is the fourth richest family in the SR (Hietz & Hietz-Seifert 1995Hietz P & Hietz-Seifert U (1995) Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. Journal of Vegetation Science 6: 487-498.; Wolf & Alejandro 2003Wolf JHD & Alejandro FS (2003) Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. Journal of Biogeography 30: 1689-1707.; Obermüller et al. 2012Obermüller FA, Silveira M, Salimon CI & Daly DC (2012) Epiphytic (including hemiepiphytes) diversity in three timber species in the southwestern Amazon, Brazil. Biodiversity and Conservation 21: 565-575.; Marcusso & Monteiro 2016Marcusso GM & Monteiro R (2016) Composição florística das epífitas vasculares em duas fisionomias vegetais no município de Botucatu, estado de São Paulo, Brasil. Rodriguésia 67: 553-569.; Furtado & Menini Neto 2018a; Araújo et al. 2019Araújo KCT, Santos JL & Fabricante JR (2019) Epífitas vasculares do Parque Nacional Serra de Itabaiana, Sergipe, Brasil. Biotemas 32: 21-29.; Barbosa et al. 2019Barbosa DEF, Basílio GA, Furtado SG & Menini Neto L (2019) The importance of heterogeneity of habitats for the species richness of vascular epiphytes in remnants of Brazilian montane seasonal semideciduous forest. Edinburgh Journal of Botany 77: 99-118.), which was corroborated in the present study. These four families together represent 70% of the recorded species in the SR.

The richest genera of ferns (Asplenium, Campyloneurum, Pleopeltis, and Pecluma) are according to the literature (Kersten & Silva 2001Kersten RA & Silva SM (2001) Composição florística e distribuição espacial de epífitas vasculares em floresta da planície litorânea da Ilha do Mel, Paraná, Brasil. Revista Brasileira de Botânica 24: 213-226.; Buzatto et al. 2008Buzatto CR, Severo BMA & Waechter JL (2008) Composição florística e distribuição ecológica de epífitos vasculares na Floresta Nacional de Passo Fundo, Rio Grande do Sul. Iheringia, Série Botânica 63: 231-239.; Perleberg et al. 2013Perleberg TD, Garcia EN & Pitrez SR (2013) Epífitos vasculares em área com floresta estacional semidecidual, Pelotas, Rio Grande do Sul, Brasil. Ciência e Natureza 35: 65-73.; Ramos et al. 2019Ramos FN, Mortara SR, Monalisa-Francisco N, Elias JPC, Menini Neto L, Freitas L, Kersten R, Amorim AM, Matos FB, Nunes-Freitas AF, Alcântara S, Alexandre MHN, Almeida-Scabbia RJ, Almeida OJG, Alves FE, Alves RMO, Alvim FS, Andrade ACS, Andrade S, Aona LYS, Araújo AC, Araújo KCT, Ariati V, Assis JC, Azevedo CO, Barbosa BF, Barbosa DEF, Barbosa FR, Barros F, Basílio GA, Bataghin FA, Bered F, Bianchi JS, Blum CT, Boelter CR, Bonnet A, Brancalion PHS, Breier TB, Brion CT, Buzatto CR, Cabral A, Cadorin TJ, Caglioni E, Canêz L, Cardoso PG, Carvalho FS, Carvalho RG, Catharino ELM, Ceballos SJ, Cerezini MT, César RG, Cestari C, Chaves CJN, Citadini-Zanette V, Coelho LFM, Coffani-Nunes JV, Colares R, Colletta GD, Corrêa NM, Costa AF, Costa GM, Costa LMS, Costa NGS, Couto DR, Cristofolini C, Cruz ACR, Del Neri LA, Di Pasquo M, Dias AS, Dias LCD, Dislich R, Duarte MC, Fabricante JR, Farache FHA, Faria APG, Faxina C, Ferreira MTM, Fischer E, Fonseca CR, Fontoura T, Francisco TM, Furtado SG, Galetti M, Garbin ML, Gasper AL, Goetze M, Gomes-da-Silva J, Gonçalves MFA, Gonzaga DR, Silva ACG, Guaraldo AC, Guarino ESG, Guislon AV, Hudson LB, Jardim JG, Jungbluth P, Kaeser SS, Kessous IM, Koch NM, Kuniyoshi YS, Labiak PH, Lapate ME, Santos ACL, Leal RLB, Leite FS, Leitman P, Liboni AP, Liebsch D, Lingner DV, Lombardi JA, Lucas E, Luzzi JR, Mai P, Mania LF, Mantovani W, Maragni AG, Marques MCM, Marquez G, Martins C, Martins LN, Martins PLSS, Mazziero FFF, Melo CA, Melo MMF, Mendes AF, Mesacasa L, Morellato LPC, Moreno VS, Muller A, Murakami MMS, Cecconello E, Nardy C, Nervo MH, Neves B, Nogueira MGC, Nonato FR, Oliveira-Filho AT, Oliveira CPL, Overbeck GE, Marcusso GM, Paciencia MLB, Padilha P, Padilha PT, Pereira ACA, Pereira LC, Pereira RAS, Pincheira-Ulbrich J, Pires JSR, Pizo MA, Pôrto KC, Rattis L, Reis JRM, Reis SG, Rocha-Pessôa PC, Rocha CFD, Rocha FS, Rodrigues ARP, Rodrigues RR, Rogalski JM, Rosanelli RL, Rossado A, Rossatto DR, Rother DC, Ruiz-Miranda CR, Saiter FZ, Sampaio MB, Santana LD, Santos JS, Sartorello R, Sazima M, Schmitt JL, Schneider G, Schroeder BG, Sevegnani L, Silva Júnior VO, Silva FR, Silva MJ, Silva MPP, Silva RG, Silva SM, Singer RB, Siqueira G, Soares LE, Sousa HC, Spielmann A, Tonetti VR, Toniato MTZ, Ulguim PSB, van den Berg C, van den Berg E, Varassin IG, Silva IBV, Vibrans AC, Waechter JL, Weissenberg EW, Windisch PG, Wolowski M, Ayañez A, Yoshikawa VN, Zandoná LR, Zanella CM, Zanin EM, Zappi DC, Zipparro VB, Zorzanelli JPF & Ribeiro MC(2019) Atlantic epiphytes: a data set of vascular and non-vascular epiphyte plants and lichens from the Atlantic Forest. Ecology 100: e02541. <https://doi.org/10.1002/ecy.2541>.). It is worth mentioning the presence of Elaphoglossum Schott ex J.Sm., Hymenophyllum J. Sm., and Phlegmariurus (Herter) Holub, all well-represented in ombrophilous forests and underrepresented in species in seasonal forests (BFG 2018BFG - The Brazil Flora Group (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527.). However, the first two genera were recorded by Barbosa et al. (2019)Barbosa DEF, Basílio GA, Furtado SG & Menini Neto L (2019) The importance of heterogeneity of habitats for the species richness of vascular epiphytes in remnants of Brazilian montane seasonal semideciduous forest. Edinburgh Journal of Botany 77: 99-118. in a floristic survey performed in SSF fragments located above 1,200 m, suggesting that the presence of these genera/species in SSF above 1,000 m is more common than previously thought.

The main genera trend for angiosperms was also confirmed with the predominance of Peperomia, Vriesea, and Epidendrum, with the presence of Billbergia being less common in this ranking (Bianchi et al. 2012Bianchi JS, Michelon C & Kersten RA (2012) Epífitas vasculares de uma área de ecótono entre as Florestas Ombrófilas Densa e Mista, no Parque Estadual do Marumbi, PR. Estudos de Biologia 34: 37-44.; Perleberg et al. 2013Perleberg TD, Garcia EN & Pitrez SR (2013) Epífitos vasculares em área com floresta estacional semidecidual, Pelotas, Rio Grande do Sul, Brasil. Ciência e Natureza 35: 65-73.; Alves & Menini Neto 2014; Barbosa et al. 2015Barbosa DEF, Basílio GA, Silva FR & Menini Neto L (2015) Vascular epiphytes in a remnant of seasonal semideciduous forest in Zona da Mata of Minas Gerais Brazil. Bioscience Journal 31: 623-633.; Padilha et al. 2015Padilha PT, Santos Junior R, Custódio SZ, Oliveira LC, Santos R & Citadini-Zanette V (2015) Comunidade epifítica vascular do Parque Estadual da Serra Furada, sul de Santa Catarina, Brasil. Ciência e Natureza 37: 64-78.). Philodendron Schott is noteworthy in this group because it is one of the richest genera in the AF (Ramos et al. 2019Ramos FN, Mortara SR, Monalisa-Francisco N, Elias JPC, Menini Neto L, Freitas L, Kersten R, Amorim AM, Matos FB, Nunes-Freitas AF, Alcântara S, Alexandre MHN, Almeida-Scabbia RJ, Almeida OJG, Alves FE, Alves RMO, Alvim FS, Andrade ACS, Andrade S, Aona LYS, Araújo AC, Araújo KCT, Ariati V, Assis JC, Azevedo CO, Barbosa BF, Barbosa DEF, Barbosa FR, Barros F, Basílio GA, Bataghin FA, Bered F, Bianchi JS, Blum CT, Boelter CR, Bonnet A, Brancalion PHS, Breier TB, Brion CT, Buzatto CR, Cabral A, Cadorin TJ, Caglioni E, Canêz L, Cardoso PG, Carvalho FS, Carvalho RG, Catharino ELM, Ceballos SJ, Cerezini MT, César RG, Cestari C, Chaves CJN, Citadini-Zanette V, Coelho LFM, Coffani-Nunes JV, Colares R, Colletta GD, Corrêa NM, Costa AF, Costa GM, Costa LMS, Costa NGS, Couto DR, Cristofolini C, Cruz ACR, Del Neri LA, Di Pasquo M, Dias AS, Dias LCD, Dislich R, Duarte MC, Fabricante JR, Farache FHA, Faria APG, Faxina C, Ferreira MTM, Fischer E, Fonseca CR, Fontoura T, Francisco TM, Furtado SG, Galetti M, Garbin ML, Gasper AL, Goetze M, Gomes-da-Silva J, Gonçalves MFA, Gonzaga DR, Silva ACG, Guaraldo AC, Guarino ESG, Guislon AV, Hudson LB, Jardim JG, Jungbluth P, Kaeser SS, Kessous IM, Koch NM, Kuniyoshi YS, Labiak PH, Lapate ME, Santos ACL, Leal RLB, Leite FS, Leitman P, Liboni AP, Liebsch D, Lingner DV, Lombardi JA, Lucas E, Luzzi JR, Mai P, Mania LF, Mantovani W, Maragni AG, Marques MCM, Marquez G, Martins C, Martins LN, Martins PLSS, Mazziero FFF, Melo CA, Melo MMF, Mendes AF, Mesacasa L, Morellato LPC, Moreno VS, Muller A, Murakami MMS, Cecconello E, Nardy C, Nervo MH, Neves B, Nogueira MGC, Nonato FR, Oliveira-Filho AT, Oliveira CPL, Overbeck GE, Marcusso GM, Paciencia MLB, Padilha P, Padilha PT, Pereira ACA, Pereira LC, Pereira RAS, Pincheira-Ulbrich J, Pires JSR, Pizo MA, Pôrto KC, Rattis L, Reis JRM, Reis SG, Rocha-Pessôa PC, Rocha CFD, Rocha FS, Rodrigues ARP, Rodrigues RR, Rogalski JM, Rosanelli RL, Rossado A, Rossatto DR, Rother DC, Ruiz-Miranda CR, Saiter FZ, Sampaio MB, Santana LD, Santos JS, Sartorello R, Sazima M, Schmitt JL, Schneider G, Schroeder BG, Sevegnani L, Silva Júnior VO, Silva FR, Silva MJ, Silva MPP, Silva RG, Silva SM, Singer RB, Siqueira G, Soares LE, Sousa HC, Spielmann A, Tonetti VR, Toniato MTZ, Ulguim PSB, van den Berg C, van den Berg E, Varassin IG, Silva IBV, Vibrans AC, Waechter JL, Weissenberg EW, Windisch PG, Wolowski M, Ayañez A, Yoshikawa VN, Zandoná LR, Zanella CM, Zanin EM, Zappi DC, Zipparro VB, Zorzanelli JPF & Ribeiro MC(2019) Atlantic epiphytes: a data set of vascular and non-vascular epiphyte plants and lichens from the Atlantic Forest. Ecology 100: e02541. <https://doi.org/10.1002/ecy.2541>.), although not commonly cited among the richest genera in studies performed in the Southeastern Region of Brazil (Breier 2005Breier TB (2005) O epifitismo vascular em florestas do sudeste do Brasil. Tese de Doutorado. Universidade Estadual de Campinas, Campinas. 139p.; Bataghin et al. 2010Bataghin FA, Barros F & Pires JSR (2010) Distribuição da comunidade de epífitas vasculares em sítios sob diferentes graus de perturbação na Floresta Nacional de Ipanema, São Paulo, Brasil. Revista Brasileira de Botânica 33: 531-542.; Alves & Menini Neto 2014; Couto et al. 2016Couto DR, Fontana AP, Kollmann LJC, Manhães VC, Francisco TM & Cunha GM (2016) Vascular epiphytes in seasonal semideciduous forest in the state of Espírito Santo and the similarity with other seasonal forests in Eastern Brazil. Acta Scientiarum. Biological Sciences 38: 169-177. <https://doi.org/10.4025/actascibiolsci.v38i2.31320>; Marcusso & Monteiro 2016Marcusso GM & Monteiro R (2016) Composição florística das epífitas vasculares em duas fisionomias vegetais no município de Botucatu, estado de São Paulo, Brasil. Rodriguésia 67: 553-569.; Furtado & Menini Neto 2018a; Barbosa et al. 2019Barbosa DEF, Basílio GA, Furtado SG & Menini Neto L (2019) The importance of heterogeneity of habitats for the species richness of vascular epiphytes in remnants of Brazilian montane seasonal semideciduous forest. Edinburgh Journal of Botany 77: 99-118.). On the other hand, some genera of Pleurothallidinae are often found in ombrophilous forests (Luer 1986Luer CA (1986) Icones Pleurothallidinarum I. Systematics of the Pleurothallidinae (Orchidaceae). Monographs in Systematic Botany from the Missouri Botanical Garden, 15. Missouri Botanical Garden, Missouri. 81p.; Furtado & Menini Neto 2016, 2018a) and well-represented in SSF of Minas Gerais state (Barbosa et al. 2015Barbosa DEF, Basílio GA, Silva FR & Menini Neto L (2015) Vascular epiphytes in a remnant of seasonal semideciduous forest in Zona da Mata of Minas Gerais Brazil. Bioscience Journal 31: 623-633., 2019), but is represented by only five species in the SR.

Studies performed in ombrophilous forests have recorded the highest richness in Brazil (Schütz-Gatti 2000Schütz-Gatti AL (2000) O componente epifítico vascular na Reserva Natural Salto Morato, Guaraqueçaba - PR. . Universidade Federal do Paraná, Curitiba. 93p.; Blum et al. 2011Blum CT, Roderjan CV & Galvão F (2011) Composição florística e distribuição altitudinal de epífitas vasculares da Floresta Ombrófila Densa na Serra da Prata, Morretes, Paraná, Brasil. Biota Neotropica 11: 141-159.; Furtado & Menini Neto 2018a), which is an expected result due to the high moisture of this phytophysiognomy, which in turn favors epiphyte establishment (Gentry & Dodson 1987Gentry AH & Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74: 205-233.; Kersten 2010Kersten RA (2010) Epífitas vasculares - histórico, participação taxonômica e aspectos relevantes, com ênfase na Mata Atlântica. Hoehnea 37: 9-38.). However, the richness found in the SR is unexpectedly higher than those found in studies performed in ombrophilous forest and ecotones with other vegetation types (mixed ombrophilous forest or seasonal semi-deciduous forest) which are considered to be very rich areas in epiphytes (Kersten 2010Kersten RA (2010) Epífitas vasculares - histórico, participação taxonômica e aspectos relevantes, com ênfase na Mata Atlântica. Hoehnea 37: 9-38.; Kersten & Waechter 2011Kersten RA & Waechter JL (2011) Florística e estrutura de epífitas vasculares na transição entre as florestas ombrófilas densa e mista da vertente oeste da Serra do Mar paranaense, Brasil. In: Felfili JM, Eisenlohr PV, Melo MMRF, Andrade LA & Meira Neto JAA (orgs.) Fitossociologia no Brasil: métodos e estudos de casos. Editora UFV, Viçosa. Pp. 479-503.) (Tab. S2, available on supplementary material <https://doi.org/10.6084/m9.figshare.19750303.v1>).

Some characteristics could be related to the high recorded richness in the SR. The sampling period in the RBRG (four years) was much longer than in other studies about vascular epiphytes (see Barbosa et al. 2019Barbosa DEF, Basílio GA, Furtado SG & Menini Neto L (2019) The importance of heterogeneity of habitats for the species richness of vascular epiphytes in remnants of Brazilian montane seasonal semideciduous forest. Edinburgh Journal of Botany 77: 99-118. ), representing a great sampling effort and an eventual influence on the richness. On the other hand, this study was not entirely focused on epiphytic plants, which could have resulted in the undersampling of this synusia (Lima et al. 2011Lima RA, Dittrich VAO, Souza VC, Salino A, Breier TB & Aguiar OT (2011) Flora vascular do Parque Estadual Carlos Botelho, São Paulo, Brasil. Biota Neotropica 11: 173-214.; Messias et al. 2017Messias MCTB, Sousa HC, Scalon V, Roschel MB, Candido ES & Fujaco MAG (2017) Phanerogamic flora and vegetation of Itacolomi State Park, Minas Gerais, Brazil. Biota Neotropica 17: e20160236. <http://dx.doi.org/10.1590/1676-0611-BN-2016-0236>.). The sampling time in the RPPNABV was similar to that of other studies (19 months). Thus, in this case, it seems that the sampling effort was not a determining reason for the species richness, as observed by Barbosa et al. (2015, 2019).

Both areas have a heterogeneous relief, water springs, and streams, which according to Drummond et al. (2005)Drummond GM, Martins CS, Machado ABM, Sebaio FA & Antonini Y (2005) Biodiversidade em Minas Gerais: um atlas para sua conservação. 2nd edition. Fundação Biodiversitas, Belo Horizonte. 222p., are factors responsible for the high floristic richness in Minas Gerais and may be applicable in this case. Together with the aforementioned elements, the size of the fragments can also contribute, taking into account that larger areas are potentially more suitable to hold more species, also diminishing the influence of the border effect which is directly related to the species richness of this synusia (Debinski & Holt 2000Debinski DM & Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conservation Biology 14: 342-55.; Bataghin et al. 2008Bataghin FA, Fiori A & Toppa RH (2008) Efeito de borda sobre epífitos vasculares em Floresta Ombrófila Mista, Rio Grande do Sul, Brasil. O Mundo da Saúde 32: 329-338.). Furthermore, although the forests of Minas Gerais are profoundly fragmented, they may be a little more preserved in comparison with the SSF in other states. Therefore, more studies in undersampled regions are necessary to fulfill the knowledge gaps and enable a better understanding about the epiphytic flora and the conservation status of the forest remnants of this state, considering that epiphytes are good indicators in these cases (Triana-Moreno et al. 2003Triana-Moreno LA, Garzón-Venegas NJ, Sánchez-Zambrano J & Vargas O (2003) Epífitas vasculares como indicadores de regeneración en bosques intervenidos de la amazonía Colombiana. Acta Biológica Colombiana 8: 31-42.; Bataghin et al. 2010Bataghin FA, Barros F & Pires JSR (2010) Distribuição da comunidade de epífitas vasculares em sítios sob diferentes graus de perturbação na Floresta Nacional de Ipanema, São Paulo, Brasil. Revista Brasileira de Botânica 33: 531-542.).

Eight species found in the SR are noteworthy because they are threatened with extinction on different scales (Drummond et al. 2008Drummond GM, Machado ABM, Martins CS, Mendonça MP & Stehmann JR (2008) Listas vermelhas das espécies da fauna e da flora ameaçadas de extinção em Minas Gerais. 2ed. Fundação Biodiversitas, Belo Horizonte. CD-Rom.; Martinelli & Moraes 2013Martinelli G & Moraes MA (2013) Livro vermelho da flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Andrea Jakobsson- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 1100p.). Asplenium mourai, Billbergia tweedieana, Nematanthus crassifolius, and Nidularium longiflorum are considered vulnerable (VU) in Minas Gerais, while Quesnelia augustocoburgii and Epidendrum ochrochlorum are endangered (EN) and Zygopetalum mosenianum is critically endangered (CR) in this state. Vriesea penduliflora is considered VU in Minas Gerais and EN in Brazil.

Regarding the ecological categories, we found 118 characteristic holoepiphytes (75%), 18 facultative holoepiphytes (11%), 20 hemiepiphytes (13%), and only two accidental epiphytes (1%). In relation to dispersion syndromes, we found 104 anemochoric species (66%) and 54 zoochoric species (34%) concerning the dispersal syndrome. The high number of Orchidaceae and fern species justifies the predominance of characteristic holoepiphytes, as also found in other studies (Kersten & Silva 2001Kersten RA & Silva SM (2001) Composição florística e distribuição espacial de epífitas vasculares em floresta da planície litorânea da Ilha do Mel, Paraná, Brasil. Revista Brasileira de Botânica 24: 213-226.; Bataghin et al. 2010Bataghin FA, Barros F & Pires JSR (2010) Distribuição da comunidade de epífitas vasculares em sítios sob diferentes graus de perturbação na Floresta Nacional de Ipanema, São Paulo, Brasil. Revista Brasileira de Botânica 33: 531-542.; Barbosa et al. 2015Barbosa DEF, Basílio GA, Silva FR & Menini Neto L (2015) Vascular epiphytes in a remnant of seasonal semideciduous forest in Zona da Mata of Minas Gerais Brazil. Bioscience Journal 31: 623-633.; Furtado & Menini Neto 2016; Mai et al. 2019Mai P, Rossado A, Bonifacino JM & Waechter JL (2019) Catalogue of the vascular epiphytic flora of Uruguay. Acta Botanica Brasílica 33: 683-708.). The facultative holoepiphytes are mainly represented by Bromeliaceae, Begoniaceae, and Cactaceae species, while as expected Araceae is responsible for the majority of the hemiepiphytes (Blum et al. 2011Blum CT, Roderjan CV & Galvão F (2011) Composição florística e distribuição altitudinal de epífitas vasculares da Floresta Ombrófila Densa na Serra da Prata, Morretes, Paraná, Brasil. Biota Neotropica 11: 141-159.; Barbosa et al. 2019Barbosa DEF, Basílio GA, Furtado SG & Menini Neto L (2019) The importance of heterogeneity of habitats for the species richness of vascular epiphytes in remnants of Brazilian montane seasonal semideciduous forest. Edinburgh Journal of Botany 77: 99-118.). The record of only two accidental epiphytes probably reinforces that such studied fragments must present a good conservation condition, once is expected that anthropized areas present a high number of species of this category (Barthlott et al. 2001Barthlott W, Schmit-Neuerburg V, Nieder J & Engwald S (2001) Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology 152: 145-156.; Furtado & Menini Neto 2015a; Santana et al. 2017Santana LD, Furtado SG, Nardy C, Leite FS & Menini Neto L (2017) Diversity, vertical structure and floristic relationships of vascular epiphytes in an urban remnant of the Brazilian Atlantic Forest. Hoehnea 44: 103-117.; Alvim et al. 2020Alvim FS, Furtado SG & Menini Neto L (2020) Diversity of vascular epiphytes in urban green areas of Juiz de Fora, Minas Gerais, Brazil. Floresta e Ambiente 27: e20190116. <https://doi.org/10.1590/2179-8087.011619>).

Anemochory as the main dispersal syndrome is an expected pattern (Benzing 1990Benzing DH (1990) Vascular Epiphytes. Cambridge University Press, Cambridge. 354p.; Geraldino et al. 2010Geraldino HCL, Caxambú MG & Souza DC (2010) Composição florística e estrutura da comunidade de epífitas vasculares em uma área de ecótono em Campo Mourão, PR, Brasil. Acta Botanica Brasilica 24: 469-482.; Barbosa et al. 2015Barbosa DEF, Basílio GA, Silva FR & Menini Neto L (2015) Vascular epiphytes in a remnant of seasonal semideciduous forest in Zona da Mata of Minas Gerais Brazil. Bioscience Journal 31: 623-633.), considering the distribution of the plants on phorophytes (Madison 1977Madison M (1977) Vascular epiphytes: their systematic occurrence and salient features. Selbyana 2: 1-13.) and is influenced in the present study by the high number of orchids, ferns, and bromeliads of the genera Tillandsia and Vriesea.

The similarity analysis revealed that only 22% (or 32 species) are shared between both studied areas. Also studying epiphytes, Küper et al. (2004)Küper W, Kreft H, Nieder J, Köster N & Barthlot TW (2004) Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. Journal of Biogeography 31: 1477-1487. found a low similarity between close sites (~30 km) in the Andes. A similar result was also found by Alves & Menini Neto (2014) in three areas of the Serra da Mantiqueira, with distances varying from ~14 and 22 km. The sites compared in both studies present similar altitudes and phytophysiognomies, which is different from the present study because both CUs are closer (~6 km) and are connected by an ecological corridor, and are also composed of the same phytophysiognomy. Thus, we could expect greater sharing of species. However, the low recorded similarity suggests that the difference of elevations between the areas imposes environmental filters which influence the epiphytic community composition. For example, to some extent areas located at higher altitudes can provide milder temperatures and higher humidity due to the presence of clouds and orographic rainfalls, influencing the formation of more peculiar flora (Hietz & Hietz -Seifert 1995; Ding et al. 2016Ding Y, Liu G, Zang R, Zhang J, Lu X & Huang J (2016) Distribution of vascular epiphytes along a tropical elevational gradient: disentangling abiotic and biotic determinants. Scientific Reports 6: 1-10.). Morelli et al. (2020)Morelli MCM, Souza CR, Morel JD, Maia VA, Santos ABM, Miranda KF & Santos RM (2020) Can small-scale altitudinal gradients predict spatial and temporal patterns in tropical forests? Journal of Forestry Research 32: 1855-1865. <https://doi.org/10.1007/s11676-020-01259-8>. recorded significant differences in the composition of trees in a mountain, showing that habitat heterogeneity of montane areas is conducive to species turnover.

Thus, in addition to watercourses, the RPPNABV is above 1,000 m a.s.l. and is influenced by orographic rainfalls, and can therefore offer favorable conditions for species demanding a moister environment (Bonnet et al. 2010Bonnet A, Curcio GR, Lavoranti OJ & Galvão F (2010) Relações de epífitos vasculares com fatores ambientais nas florestas do Rio Tibagi, Paraná, Brasil. Biotemas 23: 37-47.; Marcusso & Monteiro 2016Marcusso GM & Monteiro R (2016) Composição florística das epífitas vasculares em duas fisionomias vegetais no município de Botucatu, estado de São Paulo, Brasil. Rodriguésia 67: 553-569.), as the species occurring in the rainforest, such as Asplenium mourai, Cirrhaea dependens, Cochlidium punctatum, Elaphoglossum glaziovii, Epidendrum chlorinum, Hymenophyllum caudiculatum, Lellingeria apiculata, Melpomene pilosissima, Moranopteris achilleifolia, Phlegmariurus biformis, P. fontinaloides, Vriesea bituminosa, V. longicaulis, and V. penduliflora. (BFG 2018BFG - The Brazil Flora Group (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527.) and are not present in the RBRG, which has lower elevations between ~500 and 700 m a.s.l.

However, other typical species from ombrophilous forests were recorded in the RBRG, such as Anthurium comtum, A. solitarium, Philodendron appendiculatum, and P. curvilobum aroids, and Asplenium mucronatum, Campyloneurum atlanticum, and C. herbaceum ferns. In this case, their occurrence is associated with the watercourses of this fragment which according to Bonnet et al. (2010)Bonnet A, Curcio GR, Lavoranti OJ & Galvão F (2010) Relações de epífitos vasculares com fatores ambientais nas florestas do Rio Tibagi, Paraná, Brasil. Biotemas 23: 37-47. and Barbosa et al. (2015)Barbosa DEF, Basílio GA, Silva FR & Menini Neto L (2015) Vascular epiphytes in a remnant of seasonal semideciduous forest in Zona da Mata of Minas Gerais Brazil. Bioscience Journal 31: 623-633., can attenuate the typical seasonality of the SSFs. It is worth mentioning that the majority of species were observed along these watercourses and were represented by only a few specimens. On the other hand, the specimens in the RPPNABV were widely distributed and more numerous, and such association was not evident. In other words, different features are exerting similar influences, but with distinct intensities.

The characteristics of each fragment can be responsible for both the exclusivity of some species and some families. For example, while Blechnaceae, Clusiaceae, Dryopteridaceae, Lomariopsidaceae, Lycopodiaceae, Nephrolepidaceae, Onagraceae and Sellaginelaceae were exclusively recorded in the RPPNABV, Cyclanthaceae, Dennstaedtiaceae and Marcgraviaceae only presented epiphytic species in the RBRG (Fig. 5).

Figure 5
Number of species and families of vascular epiphytes recorded at Reserva Biológica da Represa do Grama (RBRG) and Reserva Particular do Patrimônio Natural Alto da Boa Vista (RPPNABV) in the Serra do Relógio, Zona da Mata, Minas Gerais, Southeastern Brazil.

Considering that the majority of species in the SR are anemochoric, we would expect a more expressive sharing of species of this group between the CUs. However, this is not a guarantee that such species can colonize other sites. Features such as moisture, temperature, the phorophyte bark, and the presence of mycorrhizal fungi (important for some species), can be determinant for the colonization success of a site. Furthermore, these seeds may not even be able to break through the local barrier and reach neighboring fragments in very moist environments because they can get soaked in these conditions and are unable to float (Cascante-Marín et al. 2009Cascante-Marín A, Von Meijenfeldt N, de Leeuw HMH, Wolf JHD, Oostermeijer JGB & den Nijs JCM (2009) Dispersal limitation in epiphytic bromeliad communities in a Costa Rican fragmented montane landscape. Journal of Tropical Ecology 25: 63-73.; Einzmann & Zotz 2017Einzmann HJR & Zotz G (2017) Dispersal and establishment of vascular epiphytes in human-modified landscapes. AoB PLANTS 9: plx052. doi: 10.1093/aobpla/plx052; Victoriano-Romero et al. 2017Victoriano-Romero E, Valencia-Diaz S, Toledo-Hernández VH & Flores-Palacios A (2017) Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest. PLoS ONE 12: e0171614. doi: 10.1371/journal.pone.0171614). Thus, several species of the RPPNABV may be retained in this fragment, thus justifying the low number of shared anemochoric species between the areas. There was a total of 18 species (from 32) shared between both CUs which are anemochoric (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.19750303.v1>), but all can be considered generalists (as well as the zoochoric) with wide distribution in distinct phytophysiognomies of the Atlantic Forest and other phytogeographic domains or countries, as well as adapted to several environmental conditions (BFG 2018BFG - The Brazil Flora Group (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527.).

Even in recognizing the importance of the aforementioned environmental elements, some anthropogenic factors also deserve attention such as the historical use of each fragment, which can contribute to low floristic similarity between very close sites located at similar altitudes, as shown by Barbosa et al. (unpublished data). Both CUs were used in the past for coffee crops and selective logging, which directly affect the epiphytes and result in a local loss of species (Barthlott et al. 2001Barthlott W, Schmit-Neuerburg V, Nieder J & Engwald S (2001) Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology 152: 145-156.). In this context, the RBRG may have been more intensely exploited due to the lower elevations and have less steep relief, thus facilitating access to withdraw resources, and resulting in poorer epiphytic flora in comparison with RPPNABV.

It is further worth mentioning that several new species were found in this region in the last two decades (Sommer & Ferrucci 2004Sommer G & Ferrucci SM (2004) A new species of Cupania sect. Trigonocarpus (Sapindaceae) from Brazil. Botanical Journal of the Linnean Society 146: 217-221.; Lobão et al. 2006Lobão AQ, Forzza RC & Mello-Silva R (2006) Annonaceae da Reserva Biológica da Represa do Grama, Descoberto, MG, com uma nova espécie. Rodriguésia 57: 137-147.; Sobral & Couto 2006Sobral M & Couto F (2006) Four New Myrtaceae from Eastern Brazil. Novon 16: 520-529.; Fraga & Aymard 2007Fraga CN & Aymard AGC (2007) Tetracera forzzae (Dilleniaceae), uma nova espécie para a Zona da Mata de Minas Gerais, Brasil. Novon 17: 433- 435.; Sobral et al. 2012Sobral M, Grippa CR, Souza MC, Aguiar OT, Bertoncello R & Guimarães TB (2012) Fourteen new species and two taxonomic notes on Brazilian Myrtaceae. Phytotaxa 50: 19-50.), with new distribution records (Menini Neto et al. 2004Menini Neto L, Almeida VR & Forzza RC (2004) A família Orchidaceae na Reserva Biológica da Represa do Grama, Descoberto, Minas Gerais, Brasil. Rodriguésia 55: 137-156.; Almeida et al. 2005Almeida VR, Temponi LG & Forzza RC (2005) Araceae da Reserva Biológica da Represa do Grama, Descoberto, MG. Rodriguésia 56: 127-144.; Matozinhos & Konno 2008Matozinhos CN & Konno TUP (2008) Apocynaceae s.l. na Reserva Biológica da Represa do Grama, Descoberto, Minas Gerais, Brasil. Rodriguésia 59: 87-98.; Versieux & Wendt 2006Versieux LM & Wendt T (2006) Checklist of the Bromeliaceae of Minas Gerais, Brazil, with notes on taxonomy and endemism. Selbyana 27: 107-146.), and rare species for Minas Gerais state (Forzza et al. 2014Forzza RC, Pifano DS, Oliveira-Filho AT, Meireles LD, Faria PL, Salimena FR, Mynssen CM & Prado F (2014) Flora vascular da Reserva Biológica da Represa do Grama, Minas Gerais, e sua relação florística com outras florestas do sudeste brasileiro. Rodriguésia 65: 275-292.), also harboring Besleria brevicalyx G.E.Ferreira & Chautems (Gesneriaceae) (Ferreira et al. 2016Ferreira GE, Costa LG, Araújo AO, Hopkins MG & Chautems A (2016) Three new species of Besleria (Gesneriaceae) from the southeastern of Brazilian Atlantic Rainforest. Phytotaxa 263: 270-278.), endemic to the SR. Considering that 80% of the Atlantic Forest remnants have less than 50 ha (Ribeiro et al. 2009Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ & Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142: 1141-1153.), fragments having this extension can be considered rare and deserve attention. Therefore, our results corroborate the high importance of this region for preserving the biodiversity of Minas Gerais, according to the proposal of Drummond et al. (2005)Drummond GM, Martins CS, Machado ABM, Sebaio FA & Antonini Y (2005) Biodiversidade em Minas Gerais: um atlas para sua conservação. 2nd edition. Fundação Biodiversitas, Belo Horizonte. 222p.. However, despite the RBRG having its flora well-known (Forzza et al. 2014Forzza RC, Pifano DS, Oliveira-Filho AT, Meireles LD, Faria PL, Salimena FR, Mynssen CM & Prado F (2014) Flora vascular da Reserva Biológica da Represa do Grama, Minas Gerais, e sua relação florística com outras florestas do sudeste brasileiro. Rodriguésia 65: 275-292.), this is not true for the other fragments of the region, and further studies are necessary (Barbosa et al. 2021Barbosa DEF, Basílio GA, Pereira LC, Gonzaga DR, Chautems A & Menini Neto L (2021) Too many floristic inventories? New records in seasonal semi-deciduous forest in the Serra da Mantiqueira in Minas Gerais state answers this question. Rodriguésia 72: e01142020. DOI: 10.1590/2175-7860202172106
https://doi.org/10.1590/2175-78602021721...
).

The present study provided an increase in the knowledge of vascular epiphytes in Minas Gerais and confirmed the trend of the high richness of this sinusya in the SSF of this state, as observed in other studies. However, we recommend that more surveys be carried out in other areas outside the Zona da Mata of Minas Gerais in order to confirm this trend of richness on a wider scale or whether existing factors in small scales are preponderant. Furthermore, considering the current fragmentation degree of the Atlantic Forest, the importance of conserving the remaining remnants in Brazil is evident to maintain the species and the ecosystem services. Therefore, the creation of both public and private CUs should be encouraged.

Acknowledgements

We wish to thank the “Programa de Pós-Graduação em Biodiversidade” of the Universidade Federal de Juiz de Fora, for logistic support; and the specialists who helped identify/confirm the species. This study was financed in part by the Coordenação de Aperfeiçoamento e Pessoal de Nível Superior - Brasil (CAPES) (finance code 001).

References

  • Almeida VR, Temponi LG & Forzza RC (2005) Araceae da Reserva Biológica da Represa do Grama, Descoberto, MG. Rodriguésia 56: 127-144.
  • Alves FE & Menini Neto L (2014) Vascular epiphytes in a forest fragment of Serra da Mantiqueira and floristic relationships with Atlantic high altitude areas in Minas Gerais. Brazilian Journal of Botany 37: 187-196.
  • Alvim FS, Furtado SG & Menini Neto L (2020) Diversity of vascular epiphytes in urban green areas of Juiz de Fora, Minas Gerais, Brazil. Floresta e Ambiente 27: e20190116. <https://doi.org/10.1590/2179-8087.011619>
  • Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN & Hoorn C (2018) Geological and climatic influences on mountain biodiversity. Nature Geoscience 11: 718-725.
  • APG IV - Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20.
  • Araújo KCT, Santos JL & Fabricante JR (2019) Epífitas vasculares do Parque Nacional Serra de Itabaiana, Sergipe, Brasil. Biotemas 32: 21-29.
  • Barbosa DEF, Basílio GA, Silva FR & Menini Neto L (2015) Vascular epiphytes in a remnant of seasonal semideciduous forest in Zona da Mata of Minas Gerais Brazil. Bioscience Journal 31: 623-633.
  • Barbosa DEF, Basílio GA, Furtado SG & Menini Neto L (2019) The importance of heterogeneity of habitats for the species richness of vascular epiphytes in remnants of Brazilian montane seasonal semideciduous forest. Edinburgh Journal of Botany 77: 99-118.
  • Barbosa DEF, Basílio GA, Pereira LC, Gonzaga DR, Chautems A & Menini Neto L (2021) Too many floristic inventories? New records in seasonal semi-deciduous forest in the Serra da Mantiqueira in Minas Gerais state answers this question. Rodriguésia 72: e01142020. DOI: 10.1590/2175-7860202172106
    » https://doi.org/10.1590/2175-7860202172106
  • Basílio GA, Barbosa DEF, Furtado SG, Silva F & Menini Neto L (2015) Community ecology of epiphytic Bromeliaceae in a remnant of Atlantic Forest in Zona da Mata, Minas Gerais State, Brazil. Hoehnea 42: 21-31.
  • Barthlott W, Mutke J, Rafiqpoor D, Kier G & Kreft H (2005) Global centers of vascular plant diversity. Nova Acta Leopoldina 92: 61-83.
  • Barthlott W, Schmit-Neuerburg V, Nieder J & Engwald S (2001) Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology 152: 145-156.
  • Bataghin FA, Barros F & Pires JSR (2010) Distribuição da comunidade de epífitas vasculares em sítios sob diferentes graus de perturbação na Floresta Nacional de Ipanema, São Paulo, Brasil. Revista Brasileira de Botânica 33: 531-542.
  • Bataghin FA, Fiori A & Toppa RH (2008) Efeito de borda sobre epífitos vasculares em Floresta Ombrófila Mista, Rio Grande do Sul, Brasil. O Mundo da Saúde 32: 329-338.
  • Benzing DH (1990) Vascular Epiphytes. Cambridge University Press, Cambridge. 354p.
  • Benzing DH (1998) Vulnerabilities of tropical forest to climate change: the significance of resident epiphytes. Climate Change 39: 519-540.
  • BFG - The Brazil Flora Group (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527.
  • Bianchi JS, Michelon C & Kersten RA (2012) Epífitas vasculares de uma área de ecótono entre as Florestas Ombrófilas Densa e Mista, no Parque Estadual do Marumbi, PR. Estudos de Biologia 34: 37-44.
  • Blum CT, Roderjan CV & Galvão F (2011) Composição florística e distribuição altitudinal de epífitas vasculares da Floresta Ombrófila Densa na Serra da Prata, Morretes, Paraná, Brasil. Biota Neotropica 11: 141-159.
  • Bonnet A, Curcio GR, Lavoranti OJ & Galvão F (2011) Flora epifítica vascular em três unidades vegetacionais do Rio Tibagi, Paraná, Brasil. Rodriguésia 62: 491-498.
  • Bonnet A, Curcio GR, Lavoranti OJ & Galvão F (2010) Relações de epífitos vasculares com fatores ambientais nas florestas do Rio Tibagi, Paraná, Brasil. Biotemas 23: 37-47.
  • Breier TB (2005) O epifitismo vascular em florestas do sudeste do Brasil. Tese de Doutorado. Universidade Estadual de Campinas, Campinas. 139p.
  • Buzatto CR, Severo BMA & Waechter JL (2008) Composição florística e distribuição ecológica de epífitos vasculares na Floresta Nacional de Passo Fundo, Rio Grande do Sul. Iheringia, Série Botânica 63: 231-239.
  • Campanili M & Schaffer WB (2010) Mata Atlântica: patrimônio nacional dos brasileiros. Ministério do Meio Ambiente, Brasília. 408p.
  • Cascante-Marín A, Von Meijenfeldt N, de Leeuw HMH, Wolf JHD, Oostermeijer JGB & den Nijs JCM (2009) Dispersal limitation in epiphytic bromeliad communities in a Costa Rican fragmented montane landscape. Journal of Tropical Ecology 25: 63-73.
  • Couto DR, Fontana AP, Kollmann LJC, Manhães VC, Francisco TM & Cunha GM (2016) Vascular epiphytes in seasonal semideciduous forest in the state of Espírito Santo and the similarity with other seasonal forests in Eastern Brazil. Acta Scientiarum. Biological Sciences 38: 169-177. <https://doi.org/10.4025/actascibiolsci.v38i2.31320>
  • Debinski DM & Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conservation Biology 14: 342-55.
  • Ding Y, Liu G, Zang R, Zhang J, Lu X & Huang J (2016) Distribution of vascular epiphytes along a tropical elevational gradient: disentangling abiotic and biotic determinants. Scientific Reports 6: 1-10.
  • Drummond GM, Machado ABM, Martins CS, Mendonça MP & Stehmann JR (2008) Listas vermelhas das espécies da fauna e da flora ameaçadas de extinção em Minas Gerais. 2ed. Fundação Biodiversitas, Belo Horizonte. CD-Rom.
  • Drummond GM, Martins CS, Machado ABM, Sebaio FA & Antonini Y (2005) Biodiversidade em Minas Gerais: um atlas para sua conservação. 2nd edition. Fundação Biodiversitas, Belo Horizonte. 222p.
  • Einzmann HJR & Zotz G (2017) Dispersal and establishment of vascular epiphytes in human-modified landscapes. AoB PLANTS 9: plx052. doi: 10.1093/aobpla/plx052
  • Ferreira GE, Costa LG, Araújo AO, Hopkins MG & Chautems A (2016) Three new species of Besleria (Gesneriaceae) from the southeastern of Brazilian Atlantic Rainforest. Phytotaxa 263: 270-278.
  • Filgueiras TS, Nogueira PE, Brochado AL & Guala GF (1994) Caminhamento: um método expedito para levantamentos florísticos qualitativos. Caderno de Geociências 12: 39-43.
  • Forzza RC, Pifano DS, Oliveira-Filho AT, Meireles LD, Faria PL, Salimena FR, Mynssen CM & Prado F (2014) Flora vascular da Reserva Biológica da Represa do Grama, Minas Gerais, e sua relação florística com outras florestas do sudeste brasileiro. Rodriguésia 65: 275-292.
  • Fraga CN & Aymard AGC (2007) Tetracera forzzae (Dilleniaceae), uma nova espécie para a Zona da Mata de Minas Gerais, Brasil. Novon 17: 433- 435.
  • Freitas L, Salino A, Menini Neto L, Almeida TE, Mortara SR, Stehmann JR, Amorim AM, Guimarães EF, Coelho MN, Zanin A & Forzza RC (2016) A comprehensive checklist of vascular epiphytes of the Atlantic Forest reveals outstanding endemic rates. PhytoKeys 58: 65-79.
  • Furtado SG & Menini Neto L (2015a) Diversity of vascular epiphytes in urban environment: a case study in a biodiversity hotspot, the Brazilian Atlantic Forest. CES Revista 29: 82-101.
  • Furtado SG & Menini Neto L (2015b) Diversity of vascular epiphytes in two high altitude biotopes of the Brazilian Atlantic Forest. Revista Brasileira de Botânica 38: 295-310.
  • Furtado SG & Menini Neto L (2016) Vascular epiphytic flora of a high montane environment of Brazilian Atlantic Forest: composition and floristic relationships with other ombrophilous forests. Acta Botanica Brasilica 30: 422-436.
  • Furtado SG & Menini Neto L (2018a) Diversity high up: a cloud forest of the Serra da Mantiqueira as a vascular epiphyte hotspot. Rodriguesia 69: 263-279.
  • Furtado SG & Menini Neto L (2018b) Elevational and phytophysiognomic gradients influence the epiphytic community in a cloud forest of the Atlantic phytogeographic domain. Plant Ecology 219: 677-690.
  • Gentry AH & Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74: 205-233.
  • Geraldino HCL, Caxambú MG & Souza DC (2010) Composição florística e estrutura da comunidade de epífitas vasculares em uma área de ecótono em Campo Mourão, PR, Brasil. Acta Botanica Brasilica 24: 469-482.
  • Giulietti AM, Rapini A, Andrade MJG, Queiroz LP & Silva JMC (2009) Plantas raras do Brasil. Conservação Internacional, Belo Horizonte. 496p.
  • Guedes TB, Azevedo JAR, Bacon CD, Provete DB & Antonelli A (2020) Diversity, endemism, and evolutionary history of montane biotas outside the Andean Region. In: Rull V & Carnaval AC (eds.) Neotropical diversification: patterns and processes. Springer Nature, Fascinating Life Sciences, Cham. Pp. 299-328.
  • Hammer O, Harper DAT & Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleont Electr 4: 1-9.
  • Hargis H, Gotsch SG, Porada P, Moore GW, Ferguson B & Van Stan JT II (2019) Arboreal epiphytes in the soil-atmosphere interface: how often are the biggest “buckets” in the canopy empty? Geosciences 9: 342. <https://doi.org/10.3390/geosciences9080342>
  • Hietz P & Hietz-Seifert U (1995) Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. Journal of Vegetation Science 6: 487-498.
  • IBGE (2012) Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro. 271p.
  • Kaeser SS, Ulguim PSB, Furtado SG, Campos BC, & Menini Neto L (2020) Composição florística e ecologia de epífitas vasculares na praça central do município de Mar de Espanha, Minas Gerais, Brasil. Revista Brasileira de Arborização Urbana 15: 26-38.
  • Kelly DL, Tanner EVJ, Lughadha EMN & Kapos V (1994) Floristics and biogeography of a rain-forest in the Venezuelan Andes. Journal of Biogeography 21: 421-440. <https://doi.org/10.2307/2845760>
  • Kersten RA & Silva SM (2001) Composição florística e distribuição espacial de epífitas vasculares em floresta da planície litorânea da Ilha do Mel, Paraná, Brasil. Revista Brasileira de Botânica 24: 213-226.
  • Kersten RA (2010) Epífitas vasculares - histórico, participação taxonômica e aspectos relevantes, com ênfase na Mata Atlântica. Hoehnea 37: 9-38.
  • Kersten RA & Waechter JL (2011) Florística e estrutura de epífitas vasculares na transição entre as florestas ombrófilas densa e mista da vertente oeste da Serra do Mar paranaense, Brasil. In: Felfili JM, Eisenlohr PV, Melo MMRF, Andrade LA & Meira Neto JAA (orgs.) Fitossociologia no Brasil: métodos e estudos de casos. Editora UFV, Viçosa. Pp. 479-503.
  • Körner C (2004) Mountain biodiversity, its causes and function. Ambio Special Report 13: 11-17.
  • Krömer T, Kessler M, Gradstein SR & Acebey A (2005) Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. Journal of Biogeography 32: 1799-1809.
  • Küper W, Kreft H, Nieder J, Köster N & Barthlot TW (2004) Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. Journal of Biogeography 31: 1477-1487.
  • Lima RA, Dittrich VAO, Souza VC, Salino A, Breier TB & Aguiar OT (2011) Flora vascular do Parque Estadual Carlos Botelho, São Paulo, Brasil. Biota Neotropica 11: 173-214.
  • Lobão AQ, Forzza RC & Mello-Silva R (2006) Annonaceae da Reserva Biológica da Represa do Grama, Descoberto, MG, com uma nova espécie. Rodriguésia 57: 137-147.
  • Lombardi JA & Gonçalves M (2000) Composição florística de dois remanescentes de Mata Atlântica do sudeste de Minas Gerais, Brasil. Revista Brasileira de Botânica 23: 255-282.
  • Luer CA (1986) Icones Pleurothallidinarum I. Systematics of the Pleurothallidinae (Orchidaceae). Monographs in Systematic Botany from the Missouri Botanical Garden, 15. Missouri Botanical Garden, Missouri. 81p.
  • Madison M (1977) Vascular epiphytes: their systematic occurrence and salient features. Selbyana 2: 1-13.
  • Mai P, Rossado A, Bonifacino JM & Waechter JL (2019) Catalogue of the vascular epiphytic flora of Uruguay. Acta Botanica Brasílica 33: 683-708.
  • Marcusso GM & Monteiro R (2016) Composição florística das epífitas vasculares em duas fisionomias vegetais no município de Botucatu, estado de São Paulo, Brasil. Rodriguésia 67: 553-569.
  • Martinelli G (2007) Mountain biodiversity in Brazil. Revista Brasileira de Botânica 30: 587-597.
  • Martinelli G & Moraes MA (2013) Livro vermelho da flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Andrea Jakobsson- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 1100p.
  • Martins PLSS, Furtado SG & Menini Neto L (2020) Could epiphytes be xenophobic? Evaluating the use of native versus exotic phorophytes by the vascular epiphytic community in an urban environment. Community Ecology 20: 1-11.
  • Matozinhos CN & Konno TUP (2008) Apocynaceae s.l na Reserva Biológica da Represa do Grama, Descoberto, Minas Gerais, Brasil. Rodriguésia 59: 87-98.
  • Mendieta-Leiva G, Ramos FN, Elias JPC, Zotz G, Acuña-Tarazona M, Alvim FS, Barbosa DEF, Basílio GA, Batke SP, Benavides AM, Blum CT, Boelter CR, Brancalion PHS, Carmona MJ, Carvalho LP, Rosa-Manzano E, Einzmann HJR, Fernández M, Furtado SG, Gasper AL, Guzmán-Jacob V, Hietz P, Irume MV, Jiménez-López DA, Kessler M, Kreft H, Krömer T, Machado GMO, Martínez-Meléndez N, Martins PLSS, Mello RM, Mendes AF, Menini Neto L, Mortara SR, Nardy C, Oliveira RP, Pereira ACA, Pillaca L, Quaresma AC, Quiel CR, Medina ES, Taylor A, Vega MS, Wagner K, Werneck MS, Werner FA, Wolf JHD, Zartman CE, Zuleta D & Jiménez-Alfaro B (2020) EpIG-DB: a database of vascular epiphyte assemblages in the Neotropics. Journal of Vegetation Science 31: 518-528. <https://doi.org/10.1111/jvs.12867>.
  • Menini Neto L, Almeida VR & Forzza RC (2004) A família Orchidaceae na Reserva Biológica da Represa do Grama, Descoberto, Minas Gerais, Brasil. Rodriguésia 55: 137-156.
  • Menini Neto L, Forzza RC & Zappi D (2009) Angiosperm epiphytes as conservation indicators in forest fragments: a case study from southeastern Minas Gerais, Brazil. Biodiversity and Conservation 18: 3785-3807.
  • Menini Neto L, Maradini AC, Moura FR, Lima P & Furtado SG (2019) Out of the frying pan into the fire: the community structure of epiphytes in Brazilian savanna after the passage of fire. Edinburgh Journal of Botany 77: 77-87.
  • Messias MCTB, Sousa HC, Scalon V, Roschel MB, Candido ES & Fujaco MAG (2017) Phanerogamic flora and vegetation of Itacolomi State Park, Minas Gerais, Brazil. Biota Neotropica 17: e20160236. <http://dx.doi.org/10.1590/1676-0611-BN-2016-0236>.
  • Mestre LAM, Aranha JMR & Esper MLP (2001) Macroinvertebrate fauna associated to the bromeliad Vriesea inflata of the Atlantic Forest (Paraná State, Southern Brazil). Brazilian Archives Biolology and Technology 44: 89-94.
  • Morelli MCM, Souza CR, Morel JD, Maia VA, Santos ABM, Miranda KF & Santos RM (2020) Can small-scale altitudinal gradients predict spatial and temporal patterns in tropical forests? Journal of Forestry Research 32: 1855-1865. <https://doi.org/10.1007/s11676-020-01259-8>.
  • Obermüller FA, Silveira M, Salimon CI & Daly DC (2012) Epiphytic (including hemiepiphytes) diversity in three timber species in the southwestern Amazon, Brazil. Biodiversity and Conservation 21: 565-575.
  • Oliveira-Filho AT & Fontes MA (2000) Patterns of floristic differentiation among Atlantic Forest in Southeastern Brazil and the influence of climate. Biotropica 32: 793-810.
  • Padilha PT, Elias GA, Santos R, Martins R & Citadini-Zanette V (2017) Vascular epiphytes respond to successional stages and microhabitat variations in a subtropical forest in southern Brazil. Brazilian Journal of Botany 40: 897-905.
  • Padilha PT, Santos Junior R, Custódio SZ, Oliveira LC, Santos R & Citadini-Zanette V (2015) Comunidade epifítica vascular do Parque Estadual da Serra Furada, sul de Santa Catarina, Brasil. Ciência e Natureza 37: 64-78.
  • Pereira LC, Barbosa DEF, Chautems A & Menini Neto L (2021) Gesneriaceae da Serra do Relógio, Descoberto, estado de Minas Gerais, Brasil. Hoehnea 48: e832019. <https://doi.org/10.1590/2236-8906-83/2019>.
  • Pereira Filho HR & Sartori MA (2013) Plano de Manejo da Reserva Particular do Patrimônio Natural Alto da Boa Vista - I e II. ICMBio 1: 1-289.
  • Perleberg TD, Garcia EN & Pitrez SR (2013) Epífitos vasculares em área com floresta estacional semidecidual, Pelotas, Rio Grande do Sul, Brasil. Ciência e Natureza 35: 65-73.
  • PPG I - The Pteridophyte Phylogeny Group (2016) A community-derived classification for extant lycophytes and ferns. Journal of Sytematics and Evolution 54: 563-603.
  • Ramos FN, Mortara SR, Monalisa-Francisco N, Elias JPC, Menini Neto L, Freitas L, Kersten R, Amorim AM, Matos FB, Nunes-Freitas AF, Alcântara S, Alexandre MHN, Almeida-Scabbia RJ, Almeida OJG, Alves FE, Alves RMO, Alvim FS, Andrade ACS, Andrade S, Aona LYS, Araújo AC, Araújo KCT, Ariati V, Assis JC, Azevedo CO, Barbosa BF, Barbosa DEF, Barbosa FR, Barros F, Basílio GA, Bataghin FA, Bered F, Bianchi JS, Blum CT, Boelter CR, Bonnet A, Brancalion PHS, Breier TB, Brion CT, Buzatto CR, Cabral A, Cadorin TJ, Caglioni E, Canêz L, Cardoso PG, Carvalho FS, Carvalho RG, Catharino ELM, Ceballos SJ, Cerezini MT, César RG, Cestari C, Chaves CJN, Citadini-Zanette V, Coelho LFM, Coffani-Nunes JV, Colares R, Colletta GD, Corrêa NM, Costa AF, Costa GM, Costa LMS, Costa NGS, Couto DR, Cristofolini C, Cruz ACR, Del Neri LA, Di Pasquo M, Dias AS, Dias LCD, Dislich R, Duarte MC, Fabricante JR, Farache FHA, Faria APG, Faxina C, Ferreira MTM, Fischer E, Fonseca CR, Fontoura T, Francisco TM, Furtado SG, Galetti M, Garbin ML, Gasper AL, Goetze M, Gomes-da-Silva J, Gonçalves MFA, Gonzaga DR, Silva ACG, Guaraldo AC, Guarino ESG, Guislon AV, Hudson LB, Jardim JG, Jungbluth P, Kaeser SS, Kessous IM, Koch NM, Kuniyoshi YS, Labiak PH, Lapate ME, Santos ACL, Leal RLB, Leite FS, Leitman P, Liboni AP, Liebsch D, Lingner DV, Lombardi JA, Lucas E, Luzzi JR, Mai P, Mania LF, Mantovani W, Maragni AG, Marques MCM, Marquez G, Martins C, Martins LN, Martins PLSS, Mazziero FFF, Melo CA, Melo MMF, Mendes AF, Mesacasa L, Morellato LPC, Moreno VS, Muller A, Murakami MMS, Cecconello E, Nardy C, Nervo MH, Neves B, Nogueira MGC, Nonato FR, Oliveira-Filho AT, Oliveira CPL, Overbeck GE, Marcusso GM, Paciencia MLB, Padilha P, Padilha PT, Pereira ACA, Pereira LC, Pereira RAS, Pincheira-Ulbrich J, Pires JSR, Pizo MA, Pôrto KC, Rattis L, Reis JRM, Reis SG, Rocha-Pessôa PC, Rocha CFD, Rocha FS, Rodrigues ARP, Rodrigues RR, Rogalski JM, Rosanelli RL, Rossado A, Rossatto DR, Rother DC, Ruiz-Miranda CR, Saiter FZ, Sampaio MB, Santana LD, Santos JS, Sartorello R, Sazima M, Schmitt JL, Schneider G, Schroeder BG, Sevegnani L, Silva Júnior VO, Silva FR, Silva MJ, Silva MPP, Silva RG, Silva SM, Singer RB, Siqueira G, Soares LE, Sousa HC, Spielmann A, Tonetti VR, Toniato MTZ, Ulguim PSB, van den Berg C, van den Berg E, Varassin IG, Silva IBV, Vibrans AC, Waechter JL, Weissenberg EW, Windisch PG, Wolowski M, Ayañez A, Yoshikawa VN, Zandoná LR, Zanella CM, Zanin EM, Zappi DC, Zipparro VB, Zorzanelli JPF & Ribeiro MC(2019) Atlantic epiphytes: a data set of vascular and non-vascular epiphyte plants and lichens from the Atlantic Forest. Ecology 100: e02541. <https://doi.org/10.1002/ecy.2541>.
  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ & Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142: 1141-1153.
  • Rommel C & Baights B (1999) Bromeliáceas como Ecosistemas. Plaza y Valdés, México. 123p.
  • Santana LD, Furtado SG, Nardy C, Leite FS & Menini Neto L (2017) Diversity, vertical structure and floristic relationships of vascular epiphytes in an urban remnant of the Brazilian Atlantic Forest. Hoehnea 44: 103-117.
  • Seidl CM, Basham EW, Andriamahohatra LR & Scheffers BR (2020) Bird’s nest fern epiphytes facilitate herpetofaunal arboreality and climate refuge in two paleotropic canopies. Oecologia 192: 297-309.
  • Schütz-Gatti AL (2000) O componente epifítico vascular na Reserva Natural Salto Morato, Guaraqueçaba - PR. . Universidade Federal do Paraná, Curitiba. 93p.
  • Sobral M & Couto F (2006) Four New Myrtaceae from Eastern Brazil. Novon 16: 520-529.
  • Sobral M, Grippa CR, Souza MC, Aguiar OT, Bertoncello R & Guimarães TB (2012) Fourteen new species and two taxonomic notes on Brazilian Myrtaceae. Phytotaxa 50: 19-50.
  • Sommer G & Ferrucci SM (2004) A new species of Cupania sect. Trigonocarpus (Sapindaceae) from Brazil. Botanical Journal of the Linnean Society 146: 217-221.
  • Stehmann JR, Forzza RC, Salino A, Sobral M, Costa DP & Kamino LHY (2009) Plantas da Floresta Atlântica. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 505p.
  • Stehmann JR & Sobral M (2009) Diagnóstico do conhecimento da diversidade botânica: fanerógamas. In: Drummond GM, Martins CS, Greco MB & Vieira F (eds.) Biota Minas: diagnóstico do conhecimento sobre a biodiversidade no estado de Minas Gerais - subsídio ao Programa Biota Minas. Fundação Biodiversitas, Belo Horizonte. Pp. 355-387.
  • Thiers B (continuously updated) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at <http://sweetgum.nybg.org/science/ih/>. Access on 1 August 2020.
    » http://sweetgum.nybg.org/science/ih/
  • Triana-Moreno LA, Garzón-Venegas NJ, Sánchez-Zambrano J & Vargas O (2003) Epífitas vasculares como indicadores de regeneración en bosques intervenidos de la amazonía Colombiana. Acta Biológica Colombiana 8: 31-42.
  • Versieux LM & Wendt T (2006) Checklist of the Bromeliaceae of Minas Gerais, Brazil, with notes on taxonomy and endemism. Selbyana 27: 107-146.
  • Victoriano-Romero E, Valencia-Diaz S, Toledo-Hernández VH & Flores-Palacios A (2017) Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest. PLoS ONE 12: e0171614. doi: 10.1371/journal.pone.0171614
  • Werneck MS, Sobral MEG, Rocha CTV, Landau EC & Stehmann JR (2011) Distribution and endemism of angiosperms in the Atlantic Forest. Natureza & Conservação 9: 188-193.
  • Wolf JHD & Alejandro FS (2003) Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. Journal of Biogeography 30: 1689-1707.
  • Zanin EM & Tusset C (2007) Vriesia friburgensis Mez.: distribuição vertical da espécie e fauna associada. Revista Brasileira de Biociências 5: 138-140.
  • Zotz G (2013) The systematic distribution of vascular epiphytes - a critical update. Botanical Journal of the Linnean Society 171: 453-481. <https://doi.org/10.1111/boj.12010>
  • Zotz G (2016) Plants on plants - The biology of vascular epiphytes. Springer, Berlin. 493p.

Supplementary Material

See supplementary material at <https://doi.org/10.6084/m9.figshare.19750303.v1>

Edited by

Area Editor: Dra. Cassia Sakuragui

Publication Dates

  • Publication in this collection
    11 July 2022
  • Date of issue
    2022

History

  • Received
    07 Mar 2021
  • Accepted
    29 Sept 2021
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br