Acessibilidade / Reportar erro

Meiotic behavior and diploidy in Schinus terebinthifolia (Anacardiaceae)

Abstract

The genus Schinus (Anacardiaceae) comprises 30 species found in Peru, Bolivia, Chile, Paraguay, Uruguay, Argentina and Brazil. Schinus terebinthifolia (Brazilian pepper tree) is socioeconomically important in the Brazilian state of Espírito Santo. Dried fruit is used as a pepper-like spice and natural populations are exploited. Studies on the meiotic behavior and pollen stainability from an ecological and evolutionary point of view are essential, since they can promote future sustainable management strategies for this species. The objective was to evaluate meiotic behavior and characteristics of pollen grains of individuals from a natural population of S. terebinthifolia localized in the municipality of Vitória, Espírito Santo state, Brazil. Young anthers were squashed in 1% acetocarmine dye to obtain the pollen mother cells. The pollen stainability with 1% acetocarmine, Lugol’s iodine solution and Sudan IV and pollen shape were used to assess the pollen potential viability, cytochemistry and morphology. All individuals had a gametic number of n = 7, a regular meiotic behavior and so the somatic number is 2n = 2x = 14 chromosomes. Median pollen stainability was 94%. Pollen grains are dispersed as monads, 3 - colporate and subspheroidal. The exine has striate-reticulate ornamentation. Pollen grains are starch positive and lipid negative. This is the first report of the occurrence of diploidy for the species. The high pollen stainability is the result of the occurrence of regular meiosis. The presence of starch as pollen reserve can increase the resistance of pollen grains to hostile environments in this species.

Key words
Brazilian pepper; diploidy; meiosis; pollen

Resumo

O gênero Schinus (Anacardiaceae) compreende aproximadamente 30 espécies sul americanas distribuídas no Peru, Bolívia, Chile, Paraguai, Brasil, Argentina e Uruguai. S. terebinthifolia (pimenta vermelha brasileira) é socioeconomicamente importante no estado do Espírito Santo, Brasil. Populações naturais vêm sendo exploradas devido à coleta não sustentável de frutos e sementes que são utilizados na indústria alimentícia. Estudos sobre o comportamento meiótico e a viabilidade polínica dessa espécie são essenciais sob o ponto de vista ecológico e evolutivo, pois estão relacionadas com o seu sucesso reprodutivo, promovendo estratégias de manejo sustentável. Objetivou-se avaliar o comportamento meiótico e as características polínicas de indivíduos de uma população natural de S. terebinthifolia localizada no município de Vitória-ES (Brasil). Anteras jovens foram esmagadas em carmim acético 1% para a obtenção das células-mãe dos grãos de pólen. A coloração com carmim acético 1%, solução de Lugol e Sudan IV e a forma dos grãos de pólen foram utilizadas para avaliar a viabilidade potencial, a citoquímica e a morfologia polínicas. Todos os indivíduos apresentam um número gamético de n=7 e um comportamento meiótico regular, sugerindo um número cromossômico somático de 2n=2x=14 cromossomos. Viabilidades polínicas de 94%, em média, foram observadas. Os grãos de pólen apresentaram-se dispersos como mônades, tricolporados e subesferoidais com ornamentação estriada-reticulada sendo amido positivos e lipídeo negativos. Esse é o primeiro relato da ocorrência de diploidia para a espécie. As elevadas viabilidades polínicas são resultantes da ocorrência de meiose regular. A presença de amido pode aumentar a resistência dos grãos-de-pólen dessa espécie a ambientes hostis.

Palavras-chave
aroeira vermelha; diploidia; meiose; pólen

Introduction

Schinus terebinthifolia Raddi (Anacardiaceae), also called Brazilian pepper-along with many regional names- is a pioneer species with a tropical and subtropical distribution (Lorenzi & Matos 2008Lorenzi H & Matos FJA (2008) Plantas medicinais no Brasil - nativas e exóticas. 2ª ed. Instituto Plantarum, São Paulo. 544p.). It is found in Argentina, Paraguay, Uruguay and in Brazil (Sabbi et al. 2010Sabbi LBC, Ângelo AC & Boeger MR (2010) Influência da luminosidade nos aspectos morfoanatômicos e fisiológicos de folhas de Schinus terebinthifolius Raddi (Anacardiaceae) implantadas em duas áreas com diferentes graus de sucessão, nas margens do Reservatório Irai, Paraná, Brasil. Iheringia. Série Botânica 65: 171-181.) it occurs from the southern state of Rio Grande do Sul to the northeastern state of Pernambuco. As a pioneer species it can be found in a variety of environmental conditions and can rapidly appear in almost any perturbed location, becoming an invasive species in many places (Correa 1926Correa MP (1926) Dicionário das plantas úteis do Brasil e das exóticas cultivadas. Vol. 1. Imprensa Nacional, Rio de Janeiro. 747p.). Introduced into the United States as an ornamental it quickly became established and spread in the state of Florida (Dawkins & Esiobu 2016Dawkins K & Esiobu N (2016) Emerging insights on Brazilian Pepper Tree (Schinus terebinthifolius): Invasion: the potential role of soil microorganisms. Frontiers in Plant Science 7: 1-13. ). Ecologically, the Brazilian pepper is found in almost all soils type and rainfall regimes (Falkenberg 1999Falkenberg DB (1999) Aspectos da flora e da vegetação secundária da restinga de Santa Catarina, Brasil. Florianópolis/SC. Insula 28: 1-30.).

The Brazilian pepper has medicinal and phytochemical value and so may also be economically important (Guerra et al. 2000Guerra MJM, Barreiro ML, Rodriguez ZM & Rubaicaba Y (2000) Actividad antimicrobiana de um extractofluido al 80% de Schinus terebinthifolius Raddi (copal). Revista Cubana de Plantas Medicinales 5: 23-5.; Amorim & Santos 2003Amorim MMR & Santos LC (2003) Tratamento da vaginoses bacterianas com gel vaginal de aroeira (Schinus terebinthifolius Raddi): ensaio clínico randomizado. Revista Brasileira de Ginecologia e Obstetrícia 25: 95-102. ). The essential oil extracts have medicinal uses including fungicidal, insecticidal, antibacterial and may help wounds heal (Degáspari et al. 2005Degáspari CH, Waszczynskyj N & Prado MRM (2005) Atividade antimicrobiana de Schinus terebinthifolius Raddi. Ciência e Agrotecnologia 29: 617-622. ; Ribas et al. 2006Ribas MO, Souza MH, Sartoretto J, Lanzoni TA, Noronha L & Acra LA (2006) Efeito de Schinus terebinthifolius Raddi sobre o processo de reparo tecidual das lesões ulceradas induzidas na mucosa bucal do rato. Revista Odonto Ciência, Faculdade Odonto / PUCRS 21: 245-252.; Lorenzi & Matos 2008Lorenzi H & Matos FJA (2008) Plantas medicinais no Brasil - nativas e exóticas. 2ª ed. Instituto Plantarum, São Paulo. 544p.; Santos et al. 2009Santos MRA, Lima RA, Silva AD, Fernandes CF, Lima DKS, Sallet LAP, Teixeira CAD & Facundo VA (2009) Atividade inseticida do óleo essencial de Schinus terebinthifolius Raddi sobre Acanthoscelides obtectus Say e Zabrotes subfasciatus Boheman. Boletim de Pesquisa e Desenvolvimento 48. Embrapa, Porto Velho. 16p.; Gundidza et al. 2009Gundidza M, Gweru N, Magwa ML, Mmbengwa V & Samie A (2009) The chemical composition and biological activities of essential oil from thr fresh leaves of Schinus terebinthifolius from Zimbabwe. African Journal of Biotechnology 8: 7164-7169. ; Santos et al. 2010Santos ACA, Rossato M, Serafini LA, Bueno M, Crippa LB, Sartori VC, Dellacassa E & Moyna P (2010) Efeito fungicida dos óleos essenciais de Schinus molle L. e Schinus terebinthifolius Raddi (Anacardiaceae). Revista Brasileira de Farmacognosia 20: 154-159. ; Silva et al. 2010Silva AB, Silva T, Franco ES, Rabelo SA, Lima ER, Mota RA, Câmara CAG, Pontes-Filho NT & Lima-Filho JV (2010) Antibacterial activity, chemical composition and cytotoxicity of leafs essential oil from brazilian pepper tree (Schinus terebinthifolius, Raddi). Brazilian Journal of Microbiology 41: 158-163. ). The species is also important in reforestation efforts where their wide environmental tolerances allow them to be used to reforest riparian areas and stabilize sand dunes (Ferreti et al. 1995Ferreti AR, Kageyama PY, Arboez GE, Santos JD, Barros M, Lorza RE & Oliveira C (1995) Classificação das espécies arbóreas em grupos ecológicos para revegetação com nativas no estado de São Paulo. Florestar Estatístico 3: 2-6.; Kageyama & Gandarra 2000). Brazilian pepper ecology-wide tolerance, high fecundity, competitive ability and pioneer species- also favors its use in areas with strong anthropic effects where soils have been damaged (Carvalho 1994Carvalho PER (1994) Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. Embrapa, Brasília. 640p. ).

Dried Brazilian pepper fruits are used as a food condiment locally called pink pepper with a slightly sweet, but peppery flavor and which has found an international market (Lenzi & Orth 2004Lenzi M & Orth AI (2004) Fenologia reprodutiva, morfologia e biologia floral de Schinus terebinthifolius Raddi (Anacardiaceae) em restinga da Ilha de Santa Catarina, Brasil. Biotemas 17: 7-89. ; Bertoldi 2006Bertoldi MC (2006) Atividade antioxidante in vitro da fração fenólica, das oleorresinas e do óleo essencial de pimenta rosa (Schinus terebinthifolius Raddi). Dissertação de Mestrado. Universidade Federal de Viçosa, Viçosa. 116p.). Most production of the Brazilian pepper is in the state of Espírito Santo (Mazza et al. 2011Mazza MCM, Mazza CAS, Nadolny GA & Carvalho PER (2011) Schinus terebinthifolius: aroeira pimenteira. In: Coradin L, Siminski A & Reis A (eds.) Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o future - Região Sul. Ministério do Meio Ambiente, Brasília. Pp. 226-242. ), typically in regions that were formerly mangroves and costal plains (restinga). The species has been constantly exploited economically through unsustainable extraction of its fruits and seeds that are commercialized for processing industries. Extractivism has been occurring without a standard procedure in the management of the species (Jesus & Gomes 2012).

Cytogenetic approaches, which regard the chromosome number contribute to the understanding of evolutionary processes in plants (Shan et al. 2003Shan F, Yan G & Plummer JA (2003) Karyotype evolution in the genus Boronia (Rutaceae). The Journal of the Linnean Society 142: 309-320. ). Moreover, the analysis of meiotic behavior has been widely used in the study of plants as they provide relevant information about the viability of a species (Lavinscky et al. 2007Lavinscky MP, Souza MM, Silva GS & Melo CAF (2007) Contributions of classical and molecular cytogenetic in meiotic analysis and pollen viability for plant breeding. Genetics and Molecular Research 16: gmr 16039582.). Palynology can provide insights into biodiversity because pollen grains vary in form. This variation is heritable and shows a high level of consistency within a táxon, although, interestingly, a wide range forms can sometimes be encountered at low levels of abundance within a single species (Blackmore 2007Blackmore S (2007) Pollen and spores: microscopic keys to understanding the earth’s biodiversity. Plant Systematics and Evolution 263: 3-12.).

Thus, cytogenetics and palynology are important tools for understanding intra- and inter-populational genetic variability. While the Brazilian pepper is common, few studies have attempted to examine cytogenetics and palynology of the genus Schinus. From the cytogenetic point of view, all reports in the literature show the occurrence of polyploidy for S. terebinthifolia. Chromosome count of 2n = 60 was demonstrated by Sarkar et al. (1973)Sarkar AK, Datta N, Chatterjee U & Datta R (1973) IOPB chromosome number reports XLII. International Association for Plant Taxonomy 22: 647-654. , and by Moore (1977)Moore RJ (1977) Index to plant chromosome numbers 1973-1974. Regnum vegetabile 96: 1-257. and 2n = 4x = 28 by Pedrosa et al. (1999)Pedrosa A, Gitaí G, Silva AEB, Félix LP & Guerra M (1999) Citogenética de angiospermas coletadas em Pernambuco. Acta Botanica Brasilica 13: 49-60. , Franco-Cairo et al. (2009)Franco-Cairo JPL, Guedes MLS & Oliveira ALPC (2009) Análises citogenéticas em espécies de Angiospermas de um ecossistema de restinga. In: 55º Congresso Brasileiro de Genética. Águas de Lindóia. Sociedade Brasileira de genética. CD., Luz et al. (2015)Luz LV, Silva ACF, Laughinghouse IV HD, Tedesco SB & Coelho APD (2015) Cytogenetic characterization of Schinus terebinthifolius Raddi (Anacardiaceae) accessions from Rio Grande do Sul, Brazil. Caryologia 68: 132-137. and Bitencourt (2016)Bitencourt C (2016) Citogenética e palinologia de Schinus terebinthifolia Raddi (Anacardiaceae). Trabalho de Conclusão de Curso. Universidade Federal de Santa Catarina, Curitibanos. 39p.. Only one reference about meiotic characteristics for this species is reported. Bitencourt (2016)Bitencourt C (2016) Citogenética e palinologia de Schinus terebinthifolia Raddi (Anacardiaceae). Trabalho de Conclusão de Curso. Universidade Federal de Santa Catarina, Curitibanos. 39p. described the occurrence of high meiotic index (95%) of tetraploid plants from Santa Catarina state- Brazil.

Pollen characteristics of S. terebinthifolia were described by Cruz-Barros & Granito (1997)Cruz-Barros MAV & Granito CR (1997) Flora polínica da reserva do Parque Estadual das Fontes do Ipiranga (São Paulo, Brasil). Família: 114- Anacardiaceae. Hoehnea 24: 175-178., Barros et al. (1999)Barros M de, Barth OM & Costa KMR (1999) Catálogo sistemético de pólen das plantas arbóreas do Brasil Meridional XXXII: Anacardiaceae. Leandra 14: 17-24., Takeda et al. (2000)Takeda IJM, Farago PV, Souza MKF & Gelinski VV (2000) Catálogo polínico do Parque Estadual de Vila Velha, Paraná - 1ª parte. Biological and Health Sciences 6: 71-73., Willard et al. (2004)Willard DA, Bernhardt CE, Weimer L, Cooper S, Gamez D & Jensen J (2004) Palynology. Atlas of pollen and spores of the Florida everglades 28: 125-227. and Bitencourt (2016)Bitencourt C (2016) Citogenética e palinologia de Schinus terebinthifolia Raddi (Anacardiaceae). Trabalho de Conclusão de Curso. Universidade Federal de Santa Catarina, Curitibanos. 39p.. These studies show that pollen intraspecific variations are common. Some differences in the pollen shape (prolate spheroidal, prolate, subprolate and oblate spheroidal) and ornamentation pattern (reticulate, striate, finely reticulate or reticulate-striate) were described. Information about pollen viability and cytochemistry for S. terebinthifolia are reported by Bitencourt (2016)Bitencourt C (2016) Citogenética e palinologia de Schinus terebinthifolia Raddi (Anacardiaceae). Trabalho de Conclusão de Curso. Universidade Federal de Santa Catarina, Curitibanos. 39p. that observed 68% of pollen stainability and starch and lipid positive pollen grains in tetraploid specimens. However, data about meiotic behavior for S. terebinthifolia not are existent in the literature. Meiosis is a mechanism highly conserved among sexually reproduction species and according to the studies revised by Jing et al. (2019)Jing JL, Zhang T, Wang YZ & He Y (2019) Advances towards how meiotic recombination is initiated: A comparative view and perspectives for plant meiosis research. International Journal of Molecular Sciences 20: 1-17. is an essential cell-division process for ensuring genetic diversity across generations. Moreover, the analysis of meiotic process associated with palynology is important for the evaluation of plant fertility and consequently, for the knowledge of its reproductive success.

The knowledge of reproductive aspects of individuals present in natural populations is important for the development of adequate management strategies associated with maintaining the balance of ecosystems, because meiotic instability caused by irregularities can affect the fertility of the plant and can lead to the decadence of a plant variety (Pagliarini 2001Pagliarini MS (2001) Citogenética aplicada ao melhoramento. In: Recursos genéticos e melhoramento - plantas. Nass LL, Valois ACC, Melo IS & Valadares-Inglis MC (eds.) Fundação MT, Rondonópolis. Pp. 871-910.) and an inadequate quantity or quality of pollen can reduce plant reproductive success- seed quantity or quality. (Ashman et al. 2004Ashman TL, Knight TM, Steets J, Priyanga A, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT & Wilson WG (2004) Limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85: 2408-2421.). Thus, considering the economic potential of S. terebinthifolia, its possible sustainable use and the scarcity of this studies about specimens from Espírito Santo, Brazil we will describe the meiotic behavior, the pollen potential viability and some morphological and cytochemistry descriptions of pollen grains from individuals from a natural population.

Material and Methods

Plant material

Schinus terebinthifolia Raddi is dioecious with pentameric, actinomorphic flowers. The male flower has 10 paired, stamen in two concentric rows, with yellow anthers. We collected inflorescences from five randomly chosen male plants in an area of mangroves on the Goiabeiras Campus of the Federal University of Espírito Santo, municipality of Vitória, Espírito Santo state, eastern Brazil (20o16’38”S, 40o18’27”W). Exsiccates for each specimens were deposited in the Herbaria VIES: K. Bernardi (VIES 025704), LBS. Calazans (VIES 48744, VIES 48745, VIES 48746 and VIES 48747).

Climate in the study region is tropical seasonal with a minimum temperature during the coldest month (July) of 12–18oC, and the highest temperature during the warmest month (February) is 31–34oC. Rainfall is greatest from October to January (average maximum rainfall in November at 230 mm) is when most rainfall occurs, while June has the least (60 mm) (Incaper 1999Incaper (1999) Mapa de Unidades Naturais EMCAPA/NEPUT. Available at <https://meteorologia.incaper.es.gov.br/Media/Hidrometeorologia/documentos/clima-dos-municipios.pdf#page=100>. Access on 02 May 2019.
https://meteorologia.incaper.es.gov.br/M...
).

Meiotic behavior

To obtain pollen mother cells (PMCs), male young floral buds from five individuals were fixed for 24 h in absolute ethanol: glacial acetic acid 3:1. For slide preparation, anthers from five flowers were squashed in 1% acetocarmine dye (Belling 1921Belling, J (1921) On counting chromosomes in pollen-mother cells. American Naturalist 55: 573-574.). Chromosome number was determined at the diakinesis stage of prophase I. Were examined 100 cells per slide undergoing meiosis to describe the stages and 10 slides per individual. Cells were photomicrographed from slides using Olympus BX-51 microscope with Digital Image System.

Pollen stainability

Pollen stainability and pollen shape were used as an indicative of pollen viability. Male inflorescences were collected prior to anthesis and immediately fixed in absolute ethanol: glacial acetic acid 3:1. Squash preparations were stained with 1% acetocarmine according to procedures described by Kearns & Inouye (1993)Kearns CA & Inouye DW (1993) Techniques for pollination biologist. University of Colorado, Niwot. 583p.. Stained pollen grains with well-preserved shapes were considered potentially viable. Grains that do not stain or are empty were considered unviable. Samples of 1000 pollen grains were analyzed from each individual and analyzed five slides per individual. We compared pollen viability among plants to examine how viability varied among plants, using Analysis of Variance. Statistical tests were carried out in R Development Core Team (2019).

Pollen morphology and cytochemistry

Pollen grains were obtained from mature anthers in pre-anthesis of five individuals. The polliniferous material was processed according to the acetolysis method established by Erdtman (1960)Erdtman G (1960) The acetolysis method. A revised description. Svensk Botanisk Tidskrift 54: 561-564. with modifications in the time and temperature of incubation in acetic anhydride: sulfuric acid solution. Fixed anthers were separated and placed in microtubes with glacial acetic acid for 10 min, followed by macerations and separation with a needle. The resultant material was centrifuged at 2,500 rpm for 10 min. The supernatant was collected and discarded, followed by addition of acetic anhydride: sulfuric acid 9:1 solution. After stirring, the material was washed in 85 ºC water for 2 min and then followed again by centrifugation at 2,500 rpm for 10 min. The supernatant was discarded, distilled water and two drops of ethyl alcohol were added. Stirring followed by centrifugation was repeated, and again the supernatant was discarded, followed by the addition of glycerine and distilled water 1:1 (v/v). Once again, stirred and centrifuged, discarding the supernatant leaving the pollen grains. Slides were mounted in glycerinated gelatin. The polar and equatorial diameter and exine thickness were measured in equatorial and polar view, respectively. Twenty-five measurement were taken at random from each individual. Terminology for pollen shape, exine ornamentation and other characteristics follows Erdtman (1952)Erdtman G (1952) Pollen morphology and plant taxonomy. Angiosperms. An introduction to palynology I. Almqvist and Wiksell, Stockholm. 539p. , Punt et al. (2007)Punt W, Hoen PP, Blackmore S, Nilsson S & Le Thomas A (2007) Glossary of pollen and spore terminology. review of palaeobotany and palynology 143:1-81. and Willard et al. (2004)Willard DA, Bernhardt CE, Weimer L, Cooper S, Gamez D & Jensen J (2004) Palynology. Atlas of pollen and spores of the Florida everglades 28: 125-227. .

For cytochemistry analysis, five slides per plant were stained using Lugol’s iodine solution and Sudan IV for starch and lipids (Baker & Baker 1979Baker HG & Baker I (1979) Starch in angiosperm pollen grains and its evolutionary significance. American Journal of Botany 66: 591-600. ). Dark- brown and red stained pollen grains were considered starch and lipid positives, respectively. Samples of 1000 pollen grains were analyzed from each individual.

Pollen was photographed using an Olympus CX41 microscope with digital camera. Image J software (Abramoff et al. 2004Abramoff MD, Magalhaes PJ & Ram SJ (2004) Image Processing with Image J. Biophotonics International 11: 36-42.) was used for pollen grains measurements. All analyses were carried out in the Botanical Sector of the Federal University of Espírito Santo in Vitória, Espírito Santo, Brazil.

Results

Meiotic behavior and pollen stainability

Meiocytes in all meiotic stages were clearly observed. Meiosis in S. terebinthifolia is typical and no irregularities were seen (Fig. 1). We identified meiotic divisions during zygotene (Fig. 1a), diakinesis (Fig. 1b), metaphase I (Fig. 1c), telophase I (Fig 1d), beside microspores tetrad (Fig. 1e). During diakinesis seven bivalents were noted (Fig. 1a) which allows us to infer that the somatic number of chromosomes is 2n = 2x = 14. Daughter nuclei in telophase I have n = 7 chromosomes (Fig. 1d). Viable (colored pollen grains, Fig. 1f) and empty pollen grains are, in fact, unviable grains were identified through staining.

Figure 1
a-f. Meiotic behavior and pollen viability in Schinus terebinthifolia – a. zygotene; b. diakinesis with seven bivalents; c. metaphase I; d. telophase I; e. tetrad; f. viable (colored, indicated by the arrow) and unviable (translucent grain, indicated by the arrowhead). Bars: a-e = 10µm; f = 20µm.

Pollen stainability varied among plants (F4,120 = 39.0, r2 = 0.80, P < 0.001. Plant viability varied from the low average of 75% in plant 4, to the high average of 97% in plant 5. Within plant with pollen potentially viable varied from 35% to 90% in plant 4 and from 94% to 100% in plant 5. Plant 4 had the lowest pollen stainability which was lower and different from all the rest, followed by plants 1, 2 and 3, which were all similar (with stainability from 90–95%) and plant 5 with the greatest viability. Overall, median pollen stainability was high, at 94%, and so typical pollen stainability is high, and even in the least potential viable plant, the median pollen stainability was 79%.

Pollen grain morphology and cytochemistry

Pollen in S. terebinthifolia are monads, subcircular, sub-spheroidal (prolate-spheroidal) and tricolporate, (Fig. 2a-d). The colpus tend to be relatively long and almost reach the poles when viewed from the pole (Fig. 2c). The exine is striate-reticulate (Figs. 2b-d). Pollen grains features of S. terebinthifolia are described in Table 1. Pollen is positive for starch since staining with Lugol’s iodine results in a dark brown color (Fig. 3a). They are lipid negative considering the test performed (Fig. 3b).

Figure 2
a-d. Photomicrographs of pollen grains of Schinus terebinthifolia – a. equatorial view indicating the exine and two apertures; b. equatorial view illustrating striate-reticulate ornamentation; c. polar view illustrating triangular shape with three, near polar, apertures; d. polar view indicating striate-reticulate ornamentation. Bars: 10 µm.
Figure 3
a-b. Photomicrographs of pollen grains of Schinus terebinthifolia – a. pollen stained with Lugol indicating starch positive; b. pollen stained with Sudan IV indicating lipid negative. Bars: 10 µm.
Table 1
Measurements of polar and equatorial diameters and exine thickness, P/E, shape, amb, apertures and exine ornamentation of Schinus terebinthifolia.

Discussion

Meiotic behavior, diploidy and pollen stainability

Meiocytes obtained in the present study enabled the observation of meiotic behavior and the determination of the chromosome number. In some cases, meiotic counts can be more accurate due to the reduced number of chromosome units (bivalents), natural spreading of bivalents in diakinesis, and large cell size of meiocytes (Guerra 2008Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenetics and Genome Research 120:339-350.) as was observed for S. terebinthifolia. Surprisingly, we found that the plants analyzed are diploid (2n = 2x = 14). This chromosome count is very different from the chromosome numbers described in previous studies. A chromosome count of 2n = 60 was demonstrated by Sarkar et al. (1973)Sarkar AK, Datta N, Chatterjee U & Datta R (1973) IOPB chromosome number reports XLII. International Association for Plant Taxonomy 22: 647-654. , and by Moore (1977)Moore RJ (1977) Index to plant chromosome numbers 1973-1974. Regnum vegetabile 96: 1-257. and 2n = 4x = 28 by Pedrosa et al. (1999)Pedrosa A, Gitaí G, Silva AEB, Félix LP & Guerra M (1999) Citogenética de angiospermas coletadas em Pernambuco. Acta Botanica Brasilica 13: 49-60. , Franco-Cairo et al. (2009)Franco-Cairo JPL, Guedes MLS & Oliveira ALPC (2009) Análises citogenéticas em espécies de Angiospermas de um ecossistema de restinga. In: 55º Congresso Brasileiro de Genética. Águas de Lindóia. Sociedade Brasileira de genética. CD., Luz et al. (2015)Luz LV, Silva ACF, Laughinghouse IV HD, Tedesco SB & Coelho APD (2015) Cytogenetic characterization of Schinus terebinthifolius Raddi (Anacardiaceae) accessions from Rio Grande do Sul, Brazil. Caryologia 68: 132-137. and Bitencourt (2016)Bitencourt C (2016) Citogenética e palinologia de Schinus terebinthifolia Raddi (Anacardiaceae). Trabalho de Conclusão de Curso. Universidade Federal de Santa Catarina, Curitibanos. 39p. for S. terebinthifolia.

Polyploidy has been very important for speciation and evolution in plants (Otto & Whitton 2000Otto SP & Whitton J (2000) Polyploid incidence and evolution. Annual Reviews in Genetics 34: 401-437. ). Severe environmental fluactuations and/or stress may bring about unreduced gamete formation in germline or mitotic errors in somatic tissues, enabling the establishment of new genomic states. However, fixation of any such variation should involve merchanisms that produce reproductively isolated lineages. This could be realized either through polyploidy that may lead to stable genomic states owing to their tolerance to post-polyploid genetic modification (Lavania 2020Lavania UC (2020) Plant speciation and polyploidy: in habitat divergence and environmental perspective. The Nucleus 63: 1-5.).

The family Anacardiaceae is known for polyploidy in a variety of species and its evolution was at the tetraploid level. Moreover, the family has been little examined cytologically. Raven (1975)Raven PH (1975) The bases of angiosperm phylogeny: cytology. Annals of the Missouri Botanical Garden 62: 724-764. describes the basic chromosome number for the family as x = 7, with the majority of species being tetraploid (2n = 4x = 28). For example, other species in the genus Schinus in Argentina all were 2n = 4x = 28 (S. areira, S. fasciculatus, S. johnstoni, S. longifolius, S. o’donelli, S. patagonicus, S. praecox, S. roigiie, Schinus sp., Peñas et al. 2006Peñas MLL, Bernadello G, Steihel PE & Troiani HO (2006) Cytogenetic studies in Schinus species (Anacardiaceae). Arnaldoa 13: 270-275.). Cytogenetic analyses of 22 accession samples of S. terebinthifolia in Rio Grande do Sul were performed by Luz et al. (2015)Luz LV, Silva ACF, Laughinghouse IV HD, Tedesco SB & Coelho APD (2015) Cytogenetic characterization of Schinus terebinthifolius Raddi (Anacardiaceae) accessions from Rio Grande do Sul, Brazil. Caryologia 68: 132-137.. These authors determined a chromosome number of 2n = 4x = 48 indicating there is no intraspecific variability in S. terbinthifolia. The regularity of meiotic process that we found here, and the consistent count of 2n = 2x = 14 is surprising.

A general rule to the direction of events is that tetraploids or higher ploidy levels are always derived from diploids or low ploidy levels (Guerra 2008Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenetics and Genome Research 120:339-350.). However, according this author, the most intriguing question is the frequent observation of high chromosome numbers or high ploidy levels in clades characterized by basal traits while those with more derived characters are diploids or low polyploids, in an apparent contradiction of the diploid-derived-polyploid rule. This trend has been reported in some families as Rutaceae (Stace et al. 1993Stace HM, Armstrong JA & James SH (1993) Cytoevolutionary patterns in Rutaceae. Plant Systematics and Evolution 187: 1-28.) and Passifloraceae (Melo et al. 2001Melo NF, Cervi AC & Guerra M (2001) Karyology and cytotaxonomy of the genus Passiflora L. (Passifloraceae). Plant Systematics and Evolution 226: 69-84.). Therefore, further studies on the origin and evolution of polyploidy in S. terebinthifolia should be performed. Chromosome variations such as polyploidy, hybridization or dysploid change may provide the cytological basis for ecological differentiation, adaptation and isolation (Winterfield et al. 2020Winterfield G, Ley A, Hoffmann MH, Paule J & Röse M (2020) Dysploidy and polyploidy trigger strong variation of chromosome numbers in the prayer-plant family (Marantaceae). Plant Systematic and Evolution 306: 1-17.) and the identification of changes in the ploidy level is useful to know the evolutionary history of a species.

In plants, irregular meiosis is often responsible for unviability of the pollen grains due to the formation of unbalanced microspores (Souza et al. 2006Souza MM, Martins ER., Pereira TNS & Oliveira LO (2006) Reproductive studies on ipecac (Cephaelis ipecacuanha (BROT.) A. RICH; Rubiaceae): meiotic behaviour and pollen viability. Brazilian Journal of Biology 66: 151-159. ). Thus, pollen viability is a direct consequence of regular and consistent meiosis (Pagliarini 2002Pagliarini MS (2002) Meiotic behaviour of economically important plant species: the relationship between fertility and male sterility. Genetics and Molecular Biology 23: 997-1002. ). Here, with this first examination of meiosis and pollen potential viability in the state of Espírito Santo, our results are surprising and different from those chromosome reports carried out elsewhere. Also, here we observed several phases of meiosis in contrast to other studies that only observed tetrads at the final stage of meiosis (Bitencourt 2016Bitencourt C (2016) Citogenética e palinologia de Schinus terebinthifolia Raddi (Anacardiaceae). Trabalho de Conclusão de Curso. Universidade Federal de Santa Catarina, Curitibanos. 39p.).

Pollen stainability was extremely high in almost all individuals analyzed, typically greater than 90%. Determination of pollen viability can be done using cytological parameters, such staining techniques (Belhadj et al. 2007Belhadj S, Derridj A, Civeyrel L, Gers C, Aigouy T, Otto T & Gauquelin T (2007) Pollen morphology and fertility of wild Atlas pistachio (Pistacia atlantica Desf., Anacardiaceae). Grana 46: 148-156.), in vitro and in vivo germination (Perez et al. 2019Perez V, Herrero M & Hormaza JI (2019) Pollen performance in mango (Manguifera indica L. Anacardiaceae): andromonoecy and effect of temperature. Scientia Horticulturae 253: 439-446. ), measures of respiration of chemical conductivity, content of proline and capacity to effect seed set (Dafni & Firmage 2000Dafni A & Firmage D (2000) Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Systematics and Evolution 222: 113-132.). Although the histochemical test is quick, easy and inexpensive, it should not be the only method used to estimate pollen viability, since it does not supply information on the germinative capacity (Soares et al. 2016Soares TL, Souza EH, Costa MAPC, Oliveira e Silva S & Santos-Serejo JA (2016) Viability of pollen grains of tetraploid banana. Bragantia 75: 145-151.). Thus, it is recommended that several tests would be used simultaneously to reflect several componentes of pollen performance (Dafni & Firmage 2000Dafni A & Firmage D (2000) Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Systematics and Evolution 222: 113-132.). Although plants may have shown high pollen stainability will require further study.

Pollen morphology and cytochemistry

Pollen morphology and cytochemistry are useful taxonomic and ecological tools (Takahashi 1997Takahashi M (1997) Palynological approaches to the origin and early diversification of angiosperms. In: Iwatsuki K & Raven PH (eds.) Evolution and diversification of land plants. Springer-Verlag, Tokio/Berlin/Nova Iorque. Pp. 329. ). Both are strongly heritable features and very consistent within taxa (Santiago et al. 2004Santiago LJM, Louro RP, Emmerick M & Barth OM (2004) The pollen morphology of Phyllanthus (Euphorbiaceae) section Choretropsis. Botanical Journal of the Linnean Society 144: 243-250. ; Blackmore 2007Blackmore S (2007) Pollen and spores: microscopic keys to understanding the earth’s biodiversity. Plant Systematics and Evolution 263: 3-12.), but intraspecific variations can be observed.

In this work, pollen grains for all individuals showed uniformity in shape, exine sculpturing and aperture number. However, S. terebinthifolia pollen shape and ornamentation is variable when compared among different studies. Cruz-Barros & Granito (1997)Cruz-Barros MAV & Granito CR (1997) Flora polínica da reserva do Parque Estadual das Fontes do Ipiranga (São Paulo, Brasil). Família: 114- Anacardiaceae. Hoehnea 24: 175-178. for example, describe pollen of S. terebinthifolia var. acutifolia as prolate spheroidal (subspheroidal) with reticulate ornamentation. Others authors describe pollen of S. terebinthifolia Raddi as prolate, striate reticulate (Barros et al. 1999Barros M de, Barth OM & Costa KMR (1999) Catálogo sistemético de pólen das plantas arbóreas do Brasil Meridional XXXII: Anacardiaceae. Leandra 14: 17-24.); subprolate and reticulate (Takeda et al. 2000Takeda IJM, Farago PV, Souza MKF & Gelinski VV (2000) Catálogo polínico do Parque Estadual de Vila Velha, Paraná - 1ª parte. Biological and Health Sciences 6: 71-73.), subprolate with sculpture finely reticulate (Willard et al. 2004Willard DA, Bernhardt CE, Weimer L, Cooper S, Gamez D & Jensen J (2004) Palynology. Atlas of pollen and spores of the Florida everglades 28: 125-227. ) and oblate-spheroidal with striate-reticulate ornamentation (Bitencourt 2016Bitencourt C (2016) Citogenética e palinologia de Schinus terebinthifolia Raddi (Anacardiaceae). Trabalho de Conclusão de Curso. Universidade Federal de Santa Catarina, Curitibanos. 39p.). Intraspecific variability is actually expected at every scale in evolutionary ecology, but this raw material of natural selection can also be due to non-adaptative processes, e.g. genetic drift between small and isolated populations. Detecting intraspecific variability is usually the first step before discussing the adaptiveness of a given trait and linking ecological constraints and evolutionary changes (Bonhomme et al. 2013Bonhomme V, Prasad S & Gaucherel C (2013) Intraspecific variability of pollen morphology as revealed by elliptic fourier analysis. Plant Systematics and Evolution 299: 811-816.).

In some studies, polyploidy has been shown to influence pollen morphology (Yan et al. 1997Yan T, Ferguson AR, Mcneilage MA & Murray BG (1997) Numerically unreduced (2n) gametes and sexual polyploidization in Actinidia. Euphytica 96: 267-272. ; Ortiz 1997Ortiz R (1997) Occurrence and inheritance of 2n pollen in Musa. Annals of Botany 79: 449-453. ; Cavalcante et al. 2000Cavalcante HC, Schifino-Wittmann MT & Dornelles ALC (2000) Meiotic behaviour and pollen fertility in an open-pollinated population of Lee mandarin [Citrus clementina X (C. paradise X C. tangerina)]. Scientia Horticulturae 86: 103-114. ). In the plant family Malvaceae, chromosome number is associated with the number of apertures in the pollen grains (Modiolastrum spp., n = 5, with 3 to 5 apertures, Modiola spp., n = 9, with 6 apertures, Tropidococcus spp. n = 12, with 12 apertures; Cuadrado 2003Cuadrado GA (2003) Palynology of the genera Modiola, Modiolastrum and Tropidococcus (Malvaceae). Bonplandia 12: 67-82. ). Shape, size and number of apertures also varied in Lippia alba (Verbenaceae) depending on polyploidy level. Diploid plants (2n = 2x = 30) had triangular grains with three apertures, while tetraploid plants (2n = 4x = 60) had triangular and quadrangular grains with three and four apertures (Pierre 2008Pierre PMO (2008) Poliploidia em acessos de Lippia alba (Mill.) N.E.Br (Verbenaceae). PhD Thesis. Universidade Federal de Lavras, Lavras. 113p.). Other species in the genus Lippia also had a relationship between chromosome number and pollen morphology (Sousa et al. 2013Sousa SM, Pierre PMO, Torres GA, Davide LC & Viccini LF (2013) Relationships between pollen morphology and chromosome numbers in Brazilian species of Lippia L. (Verbenaceae). Anais da Academia Brasileira de Ciências 85: 147-157. ). With S. terebinthifolia, similarity in number of apertures was despite polyploidy (in all studies were observed tricolporate pollen grains) and variations in pollen shape and exine ornamentation were observed.

Pollen in the Phanerogamae (seed-producing plants) can be divided into having starch or lipids as their energy reserves. We found that in S. terebinthifolia, pollen stored energy as starch. This was in contrast to studies in which both starch and lipids were used for storage in this species (Bitencourt 2016Bitencourt C (2016) Citogenética e palinologia de Schinus terebinthifolia Raddi (Anacardiaceae). Trabalho de Conclusão de Curso. Universidade Federal de Santa Catarina, Curitibanos. 39p.). Cytochemistry techniques can be used to obtain information about cytological localization of the substances (Nepi & Fanchi 2000). However, these are qualitative techniques that can be influenced of the type of fixation on the preservation cellular compounds (Nepi & Franchi 2000Nepi M & Franchi GG (2000) Cytochemistry of mature angiosperm pollen. Plant Systematics and Evolution 222: 45-62.), stain time and stain concentration (Konyar & Dane 2013Konyar SV & Dane F (2013) Cytochemistry of pollen development in Campsis radicans L. Seem (Bignoniaceae). Plant Systematics and Evolution 299: 87-95.). Thus, these results can be considered as technical limitations of the method. Typically, pollen with starch reserves are dispersed by the wind or animals that do not consume the pollen and these grains are relatively large (Zona 2001Zona S (2001) Starchy pollen in Commelinoid monocots. Annals of Botany 84: 109-116.). The Brazilian pepper tends to be pollinated by flies, bees and wasps that collect and consume pollen grains (Lenzi & Orth 2004Lenzi M & Orth AI (2004) Fenologia reprodutiva, morfologia e biologia floral de Schinus terebinthifolius Raddi (Anacardiaceae) em restinga da Ilha de Santa Catarina, Brasil. Biotemas 17: 7-89. ). Starch in pollen can also have other functions, such as protecting the grain against dessication (Franchi et al. 1996Franchi GG, Belani L, Nepi M & Pacini E (1996) Types of carboydrate reserves in pollen: localization, system, distribution and ecophysiological significance. Flora 191: 143-159. ). Thus, plants that are quickly pollinated following anthesis should not store starch because they are not likely to become dessicated. On the other hand, wind-pollinated plants or when pollination is not rapid after anthesis, starch offers a source of sacarose and other oligosaccharides for protection against drying. In S. terebinthifolia, pollination is not necessarily rapid and can occur hours after anthesis (Lenzi & Orth 2004Lenzi M & Orth AI (2004) Fenologia reprodutiva, morfologia e biologia floral de Schinus terebinthifolius Raddi (Anacardiaceae) em restinga da Ilha de Santa Catarina, Brasil. Biotemas 17: 7-89. ).

The meiotic behavior was described for the first time for S. terebinthifolia. Moreover, the Brazilian pepper is surprising in that plants in Espírito Santo analyzed in the present study were all diploid, while elsewhere the species was found to be polyploid. The specimens presented regular meiotic behavior and pollen stainability was very high, being potential indicators of fertility for this species.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001. The authors would like to thank the Federal University of Espírito Santo, especially the Department of Biological Sciences, and the University of Vila Velha, for financial support for translation; and Professor Marcelo Moretti, for his help and support. Special thanks to James J. Roper, who translated the text and suggestions to improve the manuscript. MLG is grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq ("Bolsa de Produtividade de Pesquisa").

References

  • Abramoff MD, Magalhaes PJ & Ram SJ (2004) Image Processing with Image J. Biophotonics International 11: 36-42.
  • Amorim MMR & Santos LC (2003) Tratamento da vaginoses bacterianas com gel vaginal de aroeira (Schinus terebinthifolius Raddi): ensaio clínico randomizado. Revista Brasileira de Ginecologia e Obstetrícia 25: 95-102.
  • Ashman TL, Knight TM, Steets J, Priyanga A, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT & Wilson WG (2004) Limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85: 2408-2421.
  • Baker HG & Baker I (1979) Starch in angiosperm pollen grains and its evolutionary significance. American Journal of Botany 66: 591-600.
  • Barros M de, Barth OM & Costa KMR (1999) Catálogo sistemético de pólen das plantas arbóreas do Brasil Meridional XXXII: Anacardiaceae. Leandra 14: 17-24.
  • Belhadj S, Derridj A, Civeyrel L, Gers C, Aigouy T, Otto T & Gauquelin T (2007) Pollen morphology and fertility of wild Atlas pistachio (Pistacia atlantica Desf., Anacardiaceae). Grana 46: 148-156.
  • Belling, J (1921) On counting chromosomes in pollen-mother cells. American Naturalist 55: 573-574.
  • Bertoldi MC (2006) Atividade antioxidante in vitro da fração fenólica, das oleorresinas e do óleo essencial de pimenta rosa (Schinus terebinthifolius Raddi). Dissertação de Mestrado. Universidade Federal de Viçosa, Viçosa. 116p.
  • Bitencourt C (2016) Citogenética e palinologia de Schinus terebinthifolia Raddi (Anacardiaceae). Trabalho de Conclusão de Curso. Universidade Federal de Santa Catarina, Curitibanos. 39p.
  • Blackmore S (2007) Pollen and spores: microscopic keys to understanding the earth’s biodiversity. Plant Systematics and Evolution 263: 3-12.
  • Bonhomme V, Prasad S & Gaucherel C (2013) Intraspecific variability of pollen morphology as revealed by elliptic fourier analysis. Plant Systematics and Evolution 299: 811-816.
  • Carvalho PER (1994) Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. Embrapa, Brasília. 640p.
  • Cavalcante HC, Schifino-Wittmann MT & Dornelles ALC (2000) Meiotic behaviour and pollen fertility in an open-pollinated population of Lee mandarin [Citrus clementina X (C. paradise X C. tangerina)]. Scientia Horticulturae 86: 103-114.
  • Correa MP (1926) Dicionário das plantas úteis do Brasil e das exóticas cultivadas. Vol. 1. Imprensa Nacional, Rio de Janeiro. 747p.
  • Cruz-Barros MAV & Granito CR (1997) Flora polínica da reserva do Parque Estadual das Fontes do Ipiranga (São Paulo, Brasil). Família: 114- Anacardiaceae. Hoehnea 24: 175-178.
  • Cuadrado GA (2003) Palynology of the genera Modiola, Modiolastrum and Tropidococcus (Malvaceae). Bonplandia 12: 67-82.
  • Dafni A & Firmage D (2000) Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Systematics and Evolution 222: 113-132.
  • Dawkins K & Esiobu N (2016) Emerging insights on Brazilian Pepper Tree (Schinus terebinthifolius): Invasion: the potential role of soil microorganisms. Frontiers in Plant Science 7: 1-13.
  • Degáspari CH, Waszczynskyj N & Prado MRM (2005) Atividade antimicrobiana de Schinus terebinthifolius Raddi. Ciência e Agrotecnologia 29: 617-622.
  • Erdtman G (1952) Pollen morphology and plant taxonomy. Angiosperms. An introduction to palynology I. Almqvist and Wiksell, Stockholm. 539p.
  • Erdtman G (1960) The acetolysis method. A revised description. Svensk Botanisk Tidskrift 54: 561-564.
  • Falkenberg DB (1999) Aspectos da flora e da vegetação secundária da restinga de Santa Catarina, Brasil. Florianópolis/SC. Insula 28: 1-30.
  • Ferreti AR, Kageyama PY, Arboez GE, Santos JD, Barros M, Lorza RE & Oliveira C (1995) Classificação das espécies arbóreas em grupos ecológicos para revegetação com nativas no estado de São Paulo. Florestar Estatístico 3: 2-6.
  • Franchi GG, Belani L, Nepi M & Pacini E (1996) Types of carboydrate reserves in pollen: localization, system, distribution and ecophysiological significance. Flora 191: 143-159.
  • Franco-Cairo JPL, Guedes MLS & Oliveira ALPC (2009) Análises citogenéticas em espécies de Angiospermas de um ecossistema de restinga. In: 55º Congresso Brasileiro de Genética. Águas de Lindóia. Sociedade Brasileira de genética. CD.
  • Guerra MJM, Barreiro ML, Rodriguez ZM & Rubaicaba Y (2000) Actividad antimicrobiana de um extractofluido al 80% de Schinus terebinthifolius Raddi (copal). Revista Cubana de Plantas Medicinales 5: 23-5.
  • Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenetics and Genome Research 120:339-350.
  • Gundidza M, Gweru N, Magwa ML, Mmbengwa V & Samie A (2009) The chemical composition and biological activities of essential oil from thr fresh leaves of Schinus terebinthifolius from Zimbabwe. African Journal of Biotechnology 8: 7164-7169.
  • Incaper (1999) Mapa de Unidades Naturais EMCAPA/NEPUT. Available at <https://meteorologia.incaper.es.gov.br/Media/Hidrometeorologia/documentos/clima-dos-municipios.pdf#page=100>. Access on 02 May 2019.
    » https://meteorologia.incaper.es.gov.br/Media/Hidrometeorologia/documentos/clima-dos-municipios.pdf#page=100
  • Jesus NB de & Gomes LJ (2012) Conflitos socioambientais no extrativismo da Aroeira (Schinus terebinthifolius Raddi), Baixo São Francisco-Sergipe/Alagoas. Ambiente & Sociedade XV: 55-73.
  • Jing JL, Zhang T, Wang YZ & He Y (2019) Advances towards how meiotic recombination is initiated: A comparative view and perspectives for plant meiosis research. International Journal of Molecular Sciences 20: 1-17.
  • Kageyama P & Gandara FB (2000) Revegetação de áreas ciliares. In: Rodrigues RR & Leitão Filho HF. (eds.) Matas Ciliares: conservação e recuperação. Editora Universidade de São Paulo-USP, São Paulo. Pp. 1-40.
  • Kearns CA & Inouye DW (1993) Techniques for pollination biologist. University of Colorado, Niwot. 583p.
  • Konyar SV & Dane F (2013) Cytochemistry of pollen development in Campsis radicans L. Seem (Bignoniaceae). Plant Systematics and Evolution 299: 87-95.
  • Lavania UC (2020) Plant speciation and polyploidy: in habitat divergence and environmental perspective. The Nucleus 63: 1-5.
  • Lavinscky MP, Souza MM, Silva GS & Melo CAF (2007) Contributions of classical and molecular cytogenetic in meiotic analysis and pollen viability for plant breeding. Genetics and Molecular Research 16: gmr 16039582.
  • Lenzi M & Orth AI (2004) Fenologia reprodutiva, morfologia e biologia floral de Schinus terebinthifolius Raddi (Anacardiaceae) em restinga da Ilha de Santa Catarina, Brasil. Biotemas 17: 7-89.
  • Lorenzi H & Matos FJA (2008) Plantas medicinais no Brasil - nativas e exóticas. 2ª ed. Instituto Plantarum, São Paulo. 544p.
  • Luz LV, Silva ACF, Laughinghouse IV HD, Tedesco SB & Coelho APD (2015) Cytogenetic characterization of Schinus terebinthifolius Raddi (Anacardiaceae) accessions from Rio Grande do Sul, Brazil. Caryologia 68: 132-137.
  • Mazza MCM, Mazza CAS, Nadolny GA & Carvalho PER (2011) Schinus terebinthifolius: aroeira pimenteira. In: Coradin L, Siminski A & Reis A (eds.) Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o future - Região Sul. Ministério do Meio Ambiente, Brasília. Pp. 226-242.
  • Melo NF, Cervi AC & Guerra M (2001) Karyology and cytotaxonomy of the genus Passiflora L. (Passifloraceae). Plant Systematics and Evolution 226: 69-84.
  • Moore RJ (1977) Index to plant chromosome numbers 1973-1974. Regnum vegetabile 96: 1-257.
  • Nepi M & Franchi GG (2000) Cytochemistry of mature angiosperm pollen. Plant Systematics and Evolution 222: 45-62.
  • Ortiz R (1997) Occurrence and inheritance of 2n pollen in Musa Annals of Botany 79: 449-453.
  • Otto SP & Whitton J (2000) Polyploid incidence and evolution. Annual Reviews in Genetics 34: 401-437.
  • Pagliarini MS (2001) Citogenética aplicada ao melhoramento. In: Recursos genéticos e melhoramento - plantas. Nass LL, Valois ACC, Melo IS & Valadares-Inglis MC (eds.) Fundação MT, Rondonópolis. Pp. 871-910.
  • Pagliarini MS (2002) Meiotic behaviour of economically important plant species: the relationship between fertility and male sterility. Genetics and Molecular Biology 23: 997-1002.
  • Pedrosa A, Gitaí G, Silva AEB, Félix LP & Guerra M (1999) Citogenética de angiospermas coletadas em Pernambuco. Acta Botanica Brasilica 13: 49-60.
  • Peñas MLL, Bernadello G, Steihel PE & Troiani HO (2006) Cytogenetic studies in Schinus species (Anacardiaceae). Arnaldoa 13: 270-275.
  • Perez V, Herrero M & Hormaza JI (2019) Pollen performance in mango (Manguifera indica L. Anacardiaceae): andromonoecy and effect of temperature. Scientia Horticulturae 253: 439-446.
  • Pierre PMO (2008) Poliploidia em acessos de Lippia alba (Mill.) N.E.Br (Verbenaceae). PhD Thesis. Universidade Federal de Lavras, Lavras. 113p.
  • Punt W, Hoen PP, Blackmore S, Nilsson S & Le Thomas A (2007) Glossary of pollen and spore terminology. review of palaeobotany and palynology 143:1-81.
  • R Core Team. R: a language and environment for statistical computing Vienna, Austria (2019) Disponível em <https://www.r-project.org/>. Access on 22 April 2019.
    » https://www.r-project.org/
  • Raven PH (1975) The bases of angiosperm phylogeny: cytology. Annals of the Missouri Botanical Garden 62: 724-764.
  • Ribas MO, Souza MH, Sartoretto J, Lanzoni TA, Noronha L & Acra LA (2006) Efeito de Schinus terebinthifolius Raddi sobre o processo de reparo tecidual das lesões ulceradas induzidas na mucosa bucal do rato. Revista Odonto Ciência, Faculdade Odonto / PUCRS 21: 245-252.
  • Sabbi LBC, Ângelo AC & Boeger MR (2010) Influência da luminosidade nos aspectos morfoanatômicos e fisiológicos de folhas de Schinus terebinthifolius Raddi (Anacardiaceae) implantadas em duas áreas com diferentes graus de sucessão, nas margens do Reservatório Irai, Paraná, Brasil. Iheringia. Série Botânica 65: 171-181.
  • Santiago LJM, Louro RP, Emmerick M & Barth OM (2004) The pollen morphology of Phyllanthus (Euphorbiaceae) section Choretropsis. Botanical Journal of the Linnean Society 144: 243-250.
  • Santos MRA, Lima RA, Silva AD, Fernandes CF, Lima DKS, Sallet LAP, Teixeira CAD & Facundo VA (2009) Atividade inseticida do óleo essencial de Schinus terebinthifolius Raddi sobre Acanthoscelides obtectus Say e Zabrotes subfasciatus Boheman. Boletim de Pesquisa e Desenvolvimento 48. Embrapa, Porto Velho. 16p.
  • Santos ACA, Rossato M, Serafini LA, Bueno M, Crippa LB, Sartori VC, Dellacassa E & Moyna P (2010) Efeito fungicida dos óleos essenciais de Schinus molle L. e Schinus terebinthifolius Raddi (Anacardiaceae). Revista Brasileira de Farmacognosia 20: 154-159.
  • Sarkar AK, Datta N, Chatterjee U & Datta R (1973) IOPB chromosome number reports XLII. International Association for Plant Taxonomy 22: 647-654.
  • Shan F, Yan G & Plummer JA (2003) Karyotype evolution in the genus Boronia (Rutaceae). The Journal of the Linnean Society 142: 309-320.
  • Silva AB, Silva T, Franco ES, Rabelo SA, Lima ER, Mota RA, Câmara CAG, Pontes-Filho NT & Lima-Filho JV (2010) Antibacterial activity, chemical composition and cytotoxicity of leafs essential oil from brazilian pepper tree (Schinus terebinthifolius, Raddi). Brazilian Journal of Microbiology 41: 158-163.
  • Soares TL, Souza EH, Costa MAPC, Oliveira e Silva S & Santos-Serejo JA (2016) Viability of pollen grains of tetraploid banana. Bragantia 75: 145-151.
  • Sousa SM, Pierre PMO, Torres GA, Davide LC & Viccini LF (2013) Relationships between pollen morphology and chromosome numbers in Brazilian species of Lippia L. (Verbenaceae). Anais da Academia Brasileira de Ciências 85: 147-157.
  • Souza MM, Martins ER., Pereira TNS & Oliveira LO (2006) Reproductive studies on ipecac (Cephaelis ipecacuanha (BROT.) A. RICH; Rubiaceae): meiotic behaviour and pollen viability. Brazilian Journal of Biology 66: 151-159.
  • Stace HM, Armstrong JA & James SH (1993) Cytoevolutionary patterns in Rutaceae. Plant Systematics and Evolution 187: 1-28.
  • Takahashi M (1997) Palynological approaches to the origin and early diversification of angiosperms. In: Iwatsuki K & Raven PH (eds.) Evolution and diversification of land plants. Springer-Verlag, Tokio/Berlin/Nova Iorque. Pp. 329.
  • Takeda IJM, Farago PV, Souza MKF & Gelinski VV (2000) Catálogo polínico do Parque Estadual de Vila Velha, Paraná - 1ª parte. Biological and Health Sciences 6: 71-73.
  • Willard DA, Bernhardt CE, Weimer L, Cooper S, Gamez D & Jensen J (2004) Palynology. Atlas of pollen and spores of the Florida everglades 28: 125-227.
  • Winterfield G, Ley A, Hoffmann MH, Paule J & Röse M (2020) Dysploidy and polyploidy trigger strong variation of chromosome numbers in the prayer-plant family (Marantaceae). Plant Systematic and Evolution 306: 1-17.
  • Yan T, Ferguson AR, Mcneilage MA & Murray BG (1997) Numerically unreduced (2n) gametes and sexual polyploidization in Actinidia Euphytica 96: 267-272.
  • Zona S (2001) Starchy pollen in Commelinoid monocots. Annals of Botany 84: 109-116.

Edited by

Area Editor: Dr. Simone Teixeira

Publication Dates

  • Publication in this collection
    00 00 2021
  • Date of issue
    2021

History

  • Received
    07 Dec 2020
  • Accepted
    09 Mar 2021
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br