Acessibilidade / Reportar erro

Evaluation of surface roughness and morphological analysis of glass ionomer cements: influence of storage in artificial saliva

Abstract

Introducion

The development of glass ionomer cements brought advantages to direct restorative procedures due to properties such as chemical adhesion to dental structure and fluoride release. Nevertheless, oral environment may provide conditions which can alter material surface.

Objective

To evaluate surface roughness and surface morphology of four glass ionomer cements (Ketac Molar Easy Mix, Vitremer, Vitro Molar e Maxxion) when immersing on different artificial saliva.

Material and method

Ten specimens of each material were fabricated and surface roughness was measured before and after immersion on neutral and acid artificial saliva for 28 days using a rugosimeter (Surftest SJ–40) and microscopy analysis by scanning electron microscopy. Roughness data were analyzed statistically by Kruskal-Wallis test, Wilcoxon test and Mann Whitney test, at 5% significance level.

Result

Roughness values were statistically higher after immersion on neutral and acid artificial saliva for all materials, except for Vitromolar that did not presented no statistical difference between roughness values before and after immersion on neutral saliva. The Maxxion R presented statistically higher roughness values compared to all materials after immersion on neutral and acid artificial saliva.

Conclusion

The superficial roughness of glass ionomer cement increased after immersion on neutral and acid artificial saliva for most of the materials. Acid storage solution promoted a greater increase in surface roughness after immersion of the specimens for Maxxion and Vitro Molar.

Descriptors:
Glass ionomer cements; properties of surface; saliva

Universidade Estadual Paulista Júlio de Mesquita Filho Rua Humaitá, 1680 - Caixa Postal 331, 14801-903 Araraquara,São Paulo,SP, Tel.: (55 16) 3301-6376, Fax: (55 16) 3301-6433 - Araraquara - SP - Brazil
E-mail: adriana@foar.unesp.br