Abstracts
OBJECTIVE: The objective of the present study was to investigate the thermal effects of Er,Cr:YSGG laser irradiation (1.5W/20Hz) on yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP). MATERIAL AND METHOD: Fifteen disks of Y-TZP (AS Technology TitaniumFIX, São José dos Campos, Brazil) with 5 mm diameter and 3 mm high standardized with CAD-CAM were used. The Y-TZP disks were randomized in three groups (n=5): Y-TZP-G1 = control (no laser treatment); Y-TZP-G2 = Y-TZP + Er,Cr:YSGG laser (air-water cooling proportion 80%/25%); Y-TZP-G3 = Y-TZP + Er,Cr:YSGG laser (air-water cooling proportion 80%/0%). A thermopar (SmartMether, Novus, Porto Alegre, RS, Brazil) was attached to a digital thermometer (SmartMether, Novus, Porto Alegre, RS, Brazil) fixed to the opposite irradiated surface. The temperature gradients (ΔT) were calculated (ΔT = Final Temperature - Initial Temperature) for each group. Values were statistically analyzed by one-way ANOVA at the 95% confidence level and compared by Tukey post-hoc test (α=0.05) for each material. One sample of each group was analyzed by confocal white light microscopy. RESULT: The ANOVA test showed significant differences for the factor "laser" (p<.001). The temperature gradients (ΔT value) showed the following results: Y-TZP-G1 = 0 ºC; Y-TZP-G2 = -1.4 ºC and Y-TZP-G3 = 21.4 ºC. The ΔT values (ºC) of the non-refrigerated group were higher than the refrigerated group. The roughness value (Ra) ranged from 4.50 to -33.65 µm. CONCLUSION: The water refrigeration for Er,Cr:YSGG irradiation is essential to avoid thermal increase in the Y-TZP.
Ceramics; temperature; confocal microscopy; dental implantation; lasers
OBJETIVO: O objetivo do presente estudo foi investigar os efeitos térmicos do laser de Er,Cr:YSGG (1,5W/20Hz) em zircônia tetragonal policristalina estabilizada com ítrio (Y-TZP). MATERIAL E MÉTODO: Quinze discos de Y-TZP (AS Technology Titanium FIX, São José dos Campos, Brasil) com 5 mm de diâmetro e 3 mm de altura padronizados com CAD-CAM (computer-aided design e computer-aided manufacturing) foram usados. Os discos de Y-TZP foram randomicamente distribuídos em três grupos (n=5): Y-TZP-G1 = controle (sem irradiação); Y-TZP-G2 = Y-TZP + Er,Cr:YSGG (proporção resfriamento ar-água 80%/25%); Y-TZP-G3 = Y-TZP + Er,Cr:YSGG (proporção resfriamento ar-água 80%/0%). Um termopar (SmartMether, Novus, Porto Alegre, RS, Brasil) acoplado a um termômetro digital (SmartMether, Novus, Porto Alegre, RS, Brasil) foi fixado na face oposta à superfície irradiada. Os gradientes de temperatura ΔT foram calculados (ΔT = Temperatura final - Temperatura inicial) para cada grupo. Os valores foram analisados estatisticamente por one-way ANOVA com 95% de confiança e comparados pelo teste Tukey (α=0,05). Uma amostra de cada grupo foi analisada por microscopia confocal de luz branca. RESULTADO: O teste ANOVA mostrou diferenças significativas para o fator "laser" (p< 0,001). Os gradientes de temperatura (valores de ΔT) apresentaram os seguintes resultados: Y-TZP-G1 = 0 ºC; Y-TZP-G2 = -1,4 ºC e Y-TZP-G3= 21,4 ºC. O valor de ΔT (ºC) do grupo sem refrigeração foi maior do que o grupo refrigerado. Os valores de rugosidade (Ra) variaram de 4,50 até -33,65 µm. CONCLUSÃO: A refrigeração com água para a irradiação do laser de Er,Cr:YSGG é essencial para evitar o aumento de temperatura de Y-TZP.
Cerâmicas; temperatura ambiente; microscopia confocal; implantação dentária; lasers
References
- 1 Al-Nawas B, Kämmerer PW, Morbach T, Ladwein C, Wegener J, Wagner W. Ten-year retrospective follow-up study of the TiOblastTM dental implant. Clin Implant Dent Relat Res. 2012;14(1):127-34. http://dx.doi.org/10.1111/j.1708-8208.2009.00237.x
- 2 Albrektsson T, Sennerby L, Wennerberg A. State of the art of oral implants. Periodontol 2000. 2008;47:15-26. http://dx.doi.org/10.1111/j.1600-0757.2007.00247.x
- 3 Shibli JA, Mangano C, D'avila S, Piattelli A, Pecora GE, Mangano F, et al. Influence of direct laser fabrication implant topography on type IV bone: a histomorphometric study in humans. J Biomed Mater Res A. 2010;93:607-14.
- 4 Kohal RJ, Weng, D, Bächle M, Strub JR. Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment. J Periodontol. 2004;75(9):1260-6. http://dx.doi.org/10.1902/jop.2004.75.9.1262
- 5 Hisbergues M, Vendeville S, Vendeville P. Zirconia: established facts and perspectives for a biomaterial in dental implantology. J Biomed Mater Res B Appl Biomater. 2009;88(2):519-29. http://dx.doi.org/10.1002/jbm.b.31147
- 6 Delgado-Ruíz RA, Calvo-Guirado JL, Moreno P, Guardia J, Gomez-Moreno G, Mate-Sánchez JE, et al. Femtosecond laser microstructuring of zirconia dental implants. J Biomed Mater Res B Appl Biomater. 2011;96(1):91-100. http://dx.doi.org/10.1002/jbm.b.31743
- 7 Stübinger S, Homann F, Etter C, Miskiewicz M, Wieland M, Sader R. Effect of Er:YAG, CO(2) and diode laser irradiation on surface properties of zirconia endosseous dental implants. Lasers Surg Med. 2008;40(3):223-8. http://dx.doi.org/10.1002/lsm.20614
- 9 Gahlert M, Röhling S, Wieland M, Eichhorn S, Küchenhoff H, Kniha H. A comparison study of the osseointegration of zirconia and titanium dental implants. A biomechanical evaluation in the maxilla of pigs. Clin Implant Dent Relat Res. 2010;12(4):297-305. http://dx.doi.org/10.1111/j.1708-8208.2009.00168.x
- 10 Zembic A, Sailer I, Jung RE, Hämmerle CH. Randomized-controlled clinical trial of customized zirconia and titanium implant abutments for single-tooth implants in canine and posterior regions: 3-year results. Clin Oral Implants Res. 2009;20(8):802-8. Epub 2009 May 26. http://dx.doi.org/10.1111/j.1600-0501.2009.01717.x
- 11 Sailer I, Zembic A, Jung RE, Siegenthaler D, Holderegger C, Hämmerle CH. Randomized controlled clinical trial of customized zirconia and titanium implant abutments for canine and posterior single-tooth implant reconstructions: preliminary results at 1 year of function. Clin Oral Implants Res Mar. 2009;20(3):219-25. http://dx.doi.org/10.1111/j.1600-0501.2008.01636.x
- 12 Hauser-Gerspach I, Stübinger S, Meyer J. Bactericidal effects of different laser systems on bacteria adhered to dental implant surfaces: an in vitro study comparing zirconia with titanium. Clin Oral Implants Res Mar. 2010;21(3):277-83. http://dx.doi.org/10.1111/j.1600-0501.2009.01835.x
- 13 Shibli JA, Melo L, Ferrari DS, Figueiredo LC, Faveri M, Feres M. Composition of supra- and subgingival biofilm of subjects with healthy and diseased implants. Clin Oral Implants Res. 2008;19(10):975-82. http://dx.doi.org/10.1111/j.1600-0501.2008.01566.x
- 14 Lang, NP, Berglundh T. Periimplant diseases: where are we now? - consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol. 2011;38 (Suppl 11):178-81. http://dx.doi.org/10.1111/j.1600-051X.2010.01674.x
- 15 Shibli JA, Theodoro LH, Haypek P, Garcia VG, Marcantonio E Jr. The effect of CO(2) laser irradiation on failed implant surfaces. Implant Dent. 2014;13(4):342-51.
- 16 Schwarz F, Sculean A, Rothamel D, Schwenzer K, Gerog T, Becker J. Clinical evaluation of an Er:YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clin Oral Impl Res. 2005;16(1):44-52. http://dx.doi.org/10.1111/j.1600-0501.2004.01051.x
- 17 Takasaki AA, Aoki A, Mizutani K, Kikuchi S, Oda S, Ishikawa I. Er:YAG laser therapy for peri-implant infection: a histological study. Lasers Med Sci. 2007;22(3):143-57. http://dx.doi.org/10.1007/s10103-006-0430-x
- 18 Romanos GE, Gutknecht N, Dieter S, Schwarz F, Crespi R, Sculean A. Laser wavelengths and oral implantology. Lasers Med Sci. 2009;24(6):961-70. http://dx.doi.org/10.1007/s10103-009-0676-1
- 19 Stübinger S, Etter C, Miskiewicz M, Homann F, Saldamli B, Wieland M, et al. Surface alterations of polished and sandblasted and acidetched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants. 2010;25(1):104-11.
- 20 Kreisler M, Al Haj H, Götz H, Duschner H, d'Hoedt B. Effect of simulated CO2 and GaAlAs laser surface decontamination on temperature changes in Ti-plasma sprayed dental implants. Laser Surg Med. 2002;30(3):233-9. http://dx.doi.org/10.1002/lsm.10025
- 21 Romanos GE, Everts H, Nentwig GH. Effects of diode and Nd:YAG laser irradiation on titanium discs: a scanning electron microscope examination. J Periodontol. 2000;71:810-5. http://dx.doi.org/10.1902/jop.2000.71.5.810
- 22 Geminiani A, Caton, JG, Romanos, GE. Temperature increase during CO(2) and Er:YAG irradiation on implant surfaces. Implant Dent. 2011;20(5):379-82.
- 23 Quaranta A, Maida C, Scrascia A, Campus G, Quaranta M. Er:YAG Laser application on titanium implant surfaces contaminated by Porphyromonas gingivalis: an histomorphometric evaluation. Minerva Stomatol. 2009;58(7-8):317-30.
- 24 Azzeh MM. Er,Cr:YSGG laser-assisted surgical treatment of peri-implantitis with 1-year reentry and 18-month follow-up. J Periodontol. 2008;79(10):2000-5. http://dx.doi.org/10.1902/jop.2008.080045
- 25 Miller RJ. Treatment of the contaminated implant surface using the Er,Cr:YSGG laser. Implant Dent. 2004;13(2):165-70. http://dx.doi.org/10.1097/01.ID.0000127521.06443.0B
- 26 Subramani K, Wismeijer D. Decontamination of titanium implant surface and re-osseointegration to treat peri-implantitis: a literature review. Int J Oral Maxillofac Implants. 2012;27(5):1043-54.
- 27 Eriksson RA, Albrektsson T. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg. 1984;42(11):705-11. http://dx.doi.org/10.1016/0278-2391(84)90417-8
- 28 Meyle J. Mechanical, chemical and laser treatments of the implant surface in the presence of marginal bone loss around implants. Eur J Oral Implantol. 2012;5 (Suppl):S71-81.
- 29 Kreisler M, Al Haj H, d'Hoedt B. Temperature changes at the implant-bone interface during simulated surface decontamination with an Er:YAG laser. Int J Prosthodont. 2002;15(6):582-7.
Publication Dates
-
Publication in this collection
13 Dec 2013 -
Date of issue
Dec 2013
History
-
Received
07 Aug 2013 -
Accepted
14 Nov 2013