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ABSTRACT

Background: This research addresses two questions: (1) how El Niño Southern Oscillation (ENSO) affects climate variability and how it 
influences dengue transmission in the Metropolitan Region of Recife (MRR), and (2) whether the epidemic in MRR municipalities has any 
connection and synchronicity. 

Methods: Wavelet analysis and cross-correlation were applied to characterize seasonality, multiyear cycles, and relative delays between 
the series. This study was developed into two distinct periods. Initially, we performed periodic dengue incidence and intercity epidemic 
synchronism analyses from 2001 to 2017. We then defined the period from 2001 to 2016 to analyze the periodicity of climatic variables 
and their coherence with dengue incidence. 

Results: Our results showed systematic cycles of 3–4 years with a recent shortening trend of 2–3 years. Climatic variability, such as 
positive anomalous temperatures and reduced rainfall due to changes in sea surface temperature (SST), is partially linked to the changing 
epidemiology of the disease, as this condition provides suitable environments for the Aedes aegypti lifecycle. 

Conclusion: ENSO may have influenced the dengue temporal patterns in the MRR, transiently reducing its main way of multiyear variability 
(3–4 years) to 2–3 years. Furthermore, when the epidemic coincided with El Niño years, it spread regionally and was highly synchronized.
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FIGURE 1: Location of municipalities that compose the Metropolitan Region of Recife, Pernambuco, Brazil.

INTRODUCTION

Dengue is an arboviral disease, mainly vectored by Aedes 
aegypti (primary vector) and Aedes albopictus (secondary vector), 
caused by four distinct virus serotypes of the Flaviviridae family, 
genus Flavivirus (dengue virus (DENV)-1, DENV-2, DENV-3, and 
DENV-4)1. Infection with one of these serotypes induces lifelong 
immunity against the serotype and temporary immunity against 
the others2. However, secondary infections by distinct serotypes 
increase the risk of severe dengue3,4, particularly in susceptible 
populations5,6. This group is highly heterogeneous, composed of 
children under 10 years of age, cases of reinfection with DENV-2 
serotypes, and adult females7-9.

Currently, dengue mainly affects poor and vulnerable 
populations10. Endemic in more than 128 countries11,12 is a 
human arbovirus of quick spread13,14. Global estimates have 
shown significant challenges in the control and prevention of 
epidemics. Between 1990 and 2013, there were 10,000 deaths 
and 100 million cases of symptomatic dengue infections per 
year15. Approximately 4 billion people worldwide are at risk of 
being infected with dengue16, mainly in South America, Southeast 
Asia, and Central Africa17. Global warming may contribute to the 
geographic expansion of this disease into new areas17-20, including 
the Southeastern USA, high altitudes of Central Mexico, Northern 
Argentina, Australian hinterland regions, the Eastern coast of China 
and Japan, Southern Africa, and the Sahel region of West Africa. 
If this occurs, an estimated 60% of the global population will be 
at risk of dengue infection by 208017.

Climate variables are important regulators of Ae. Aegypti 
lifecycle, which affects the viral replication rate inside the vector, 
the mortality rate of affected populations, and the behavior of 

mosquitoes21-23. Several studies have revealed the relationships 
between climate variables and dengue transmission, with many 
showing the specific climatic conditions of each environment, 
such as the relationship between rainfall variability and local 
temperature with optimal viral transmission22,24,25. However, some 
uncertainties remain, such as the intensity and frequency of climate 
impacts associated with the El Niño Southern Oscillation (ENSO)26.

Other conditioning factors are also responsible for the 
establishment of the dengue epidemic27. For example, human 
mobility, population density, economy, sanitation conditions, 
and health assistance affect its real distribution within climate 
variables28,29. Thus, this study aims to answer two questions: (1) 
how ENSO affects climatic conditions and how it influences dengue 
dynamic transmission in the metropolitan region of Recife (MRR) 
and (2) whether the epidemic in MRR municipalities has any 
connection and synchronicity.

METHODS

Study Area

The MRR is located in the “Zona da Mata” region of the state 
of Pernambuco (Figure 1). It has 15 municipalities, approximately 
3,216,262 km², 4,054,866 inhabitants, and a population density of 
1,260.74 inhabitants/km², according to the Brazilian Institute of 
Geography and Statistics (IBGE). Regarding the local climate, from 
1980 to 2016, the MRR presented a mean annual accumulated 
precipitation of 858 mm (minimum) and 2,539 mm (maximum), 
with a mean annual value of approximately 1,625 mm. The rainy 
season occurs during the autumn/winter period. The monthly mean 
temperature varied from 28.49 °C to 30.88 °C, while the mean 
monthly minimum and maximum temperatures oscillated from 
20.66 °C to 23.34 °C and from 26.68 °C to 32.55 °C, respectively.
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Data – dengue and climatic variables

We defined two distinct periods for the analysis: from 2001 
to 2017 (analysis of the periodicity of the dengue incidence and 
intercity epidemic synchronism), and from 2001 to 2016 (due to 
availability of climatic data) to analyze the periodicity of climatic 
variables and their coherence with the incidence of dengue. The 
incidence rates per 100,000 people were calculated by municipality 
using the number of cases confirmed in the laboratory and by 
clinical-epidemiological criteria obtained through the Notifiable 
Diseases Information System (NDIS): http://www2. datasus. gov. br/
DATASUS/index. php?area=0203&id=29878153. The population 
census of 2010 and other years were obtained from the IBGE. 
Monthly climate data were obtained from databases with fill 
gaps30, including accumulated precipitation and the maximum 
and minimum temperatures. For municipalities without climate 
stations, the data from the closest stations were used. In the 
regional analysis, the incidence rates and climatic variables were 
given by the mean of the municipalities.

ENSO is an ocean-atmosphere climatic system that induces 
cyclical changes in climatic variables in several regions of the 
globe31. El Niño (positive phase of ENSO) occurs, on average, 
every 3–7 years32,33, with episodes typically lasting 9–12 months33, 
and is characterized by sea surface temperature (SST) above the 
mean in region 3.4 of the equatorial Pacific33. ENSO is the Earth’s 
strongest interannual climate cycle and is the main cause of climatic 
variability in Northeastern South America32,34. El Niño is classified 
into three categories: weak (0.5 to 0.9 SST anomaly), moderate (1.0 
to 1.4 SST anomaly), and strong (anomaly > 1.5 SST anomaly)33. SST 
was used here as a proxy for El Niño and not El Niño to analyze 
how ENSO influenced climatic variables and dengue incidence 
rates. SST data were obtained from the National Oceanic and 
Atmospheric Administration/Climate Prediction Center NOAA/
CPC: https://www.cpc.ncep.noaa.gov/data/indices/.

Periodicity – dengue, ENSO, and climatic variables

Wavelet analysis was used to investigate changes in the 
rhythmic pattern over time for climatic time series and dengue 
incidence rates. This technique is efficient for this approach 
because wavelet analysis is a spectral-specialized method that 
allows the analysis of the frequency of events at different scales 
of temporal variability35. In a complex series, statistical properties 
change over time, making them highly noisy and unsuitable for 
analysis using classic methods36. Before analysis, each monthly 
observation in the all-time series was transformed into square roots 
and standardized by the mean and long-term standard deviation. 
The Morlet wavelet, which is frequently used in the analysis of 
natural signals, consists of 1:

                                                                                                    (1)

where  ω0 denotes the dimensionless frequency. Here, we used   
ω0 = 6 to satisfy the admissibility condition.

A wavelet function must be able to decompose and represent 
another function at distinct frequency and time scales. Therefore, 
wavelets are a family of functions derived from a single function, 
denoted by the mother wavelet (equation 2):

                                                                                              (2)

where τ indicates the distance that  function ψa,τ(t) is translated 
on the t axis (position of time); a, denoted as a scale parameter, 
represents function dilation if a > 1 or contraction if a < 1 in the 
signal; 1/√a as a normalization factor, ensures that the  energy of 
ψa,τ(t)  is independent of a and τ parameters.

The mother wavelet is calculated using parameters 
a = 1 and τ = 0, in which it does not influence the function, and 
for any other a and τ values, daughter wavelets were obtained. 
The decomposition with the wavelet analysis function is 
called the wavelet transform of time series x(t) for a given 
mother wavelet, in this case, the Morlet wavelet. The wavelet 
transform decomposes a function defined in the domain into 
another function defined in the time and frequency domains, 
as determined by

                                                                                              (3)

where * denotes the complex conjugate and Wx(a,τ) are the 
wavelet coefficients. The purpose of wavelet transform is to be 
proportional and exact to the scale. Therefore, it studies the signal 
at different scales and moves by analyzing each part of the signal 
until all structures that are a part of the signal are found. Using 
the wavelet, it is possible to estimate the wavelet power spectrum 
(WPS) (equation 4), which is the decomposition of the variance 
between the scale parameter and the time location (t).

                                                                                                       (4)

Intercity synchronicity and the influence of climatic factors 
on dengue transmission – wavelet coherence (WC) and 
phase analysis

The wavelet coherence (WC) is a mathematical technique of 
direct measurement between spectra of two-time series37, which 
can detect whether two signals simultaneously oscillate on specific 
time scales and frequencies and is applied in this study to quantify 
the statistical associations between two nonstationary time series. 
In addition, phase differences were measured to characterize the 
time function between the time series and reveal synchronous 
or asynchronous patterns over time38. WC and phase differences 
were determined for municipalities that were not contiguous and 
contiguous to Recife. Furthermore, other tests with similar criteria 
were applied to assess the intercity synchronism of two other sets 
of municipalities: the first in the North and the second in the South 
of Recife. The intention was to investigate outbreak patterns that 
could stem from underlying factors, such as human mobility. WC 
was calculated using equation 5:

                                                                                             (5)

, e 
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where  Wx,y (f , τ) = Wx (f , τ) Wy * (f , τ) express the cross-wavelet 
transform, Wx ( f , τ)  and Wy (f , τ)  represent the wavelet transform 
of series x(τ)  and y(τ) , respectively, and s is a smoothing operator, 
in time and frequency .

Coherence allows the estimation of how two nonstationary 
time series x(τ) and y(τ) are related at different frequencies over 
time. Rx,y (f , τ) varies from 0 to 1 and indicate a strong or weak 
relationship for low or high values, respectively, and have a perfect 
linear relationship when Rx,y (f , τ) = 1 between two signals at a 
given frequency and time.

Moreover, it was possible to calculate the phase difference 
with wavelet transforms and instantaneous time delay ΔT(τ)  
between the two temporal series x(τ) and y(τ); they are 
mathematically expressed in equations (6) and (7), respectively:

                                                                                             (6)

where I represents the imaginary part and R, the real part.

                                                                                                                      (7)

 Wavelet analysis was performed using Matlab R2020a (The 
Math- Works, Inc., Natick, Massachusetts, United States), properly 
licensed for student use, while toolboxes used in the analysis were 
acquired from Cazelles et al. (2005)39.

Quantifying the association between time series

Cross-correlation functions (CCF) were used to quantify how 
much time series were related due to a lag applied to one of them. 
Initially, each variable is decomposed to separate its components. 
An autoregressive integrated moving average (ARIMA) model was 
then adjusted for residuals, and statistical metrics were applied 
to validate the absence of autocorrelation and data stationarity. 
This method was obtained from time series analysis: Forecasting 
and Control40.

RESULTS

Interannual dengue variability in MRR

Figures 2 and 3 show the results of the continuous wavelet 
transform (CWT) performed on the dengue incidence series in each 
MRR municipality. Generally, the dengue dynamics in municipalities 
showed statistically significant spectral regions in seasonal and 
multiannual frequencies, with continuous and transient temporal 
patterns over time, varying from low to high power. Regarding 
multiannual cycles, statistically significant medium and strong 
spectral regions are dominant and continuous throughout the 
period in the 3–4 years band of time series of 13 municipalities 
(Figures 2 [A–H]; Figures 3 [J–K and M–O]) suggest an intense 
return of epidemics every 3–4 years. However, after 2010, some 
municipalities started showing a trend of shortening epidemic 
cycles of the main multiannual variability cyclical mode from 3–4 
years to 2–3 years. This change in the epidemiological pattern can 

be associated with intense factors that amplify epidemic cycles, 
such as the cross-protective immunity of the population group 
or climatic variability.

The most intense epidemic cycles occurred during three 
main periods (2002–2003, 2006–2012, and 2014–2017). In the 
first and third cycles, the epidemic spread across almost all MRR 
municipalities (Figure 2 and 3, graphs on the left). Regarding 
the seasonal module, three statistically significant regions, 
ranging from medium to high power, were computed: (2002–2003, 
2006–2012, and 2014–2017). The first was strongly predominant 
in municipalities shown in Figures 2 (A–C), Figure 2 (E), 
and Figures 3 (J and M–O); the second exhibited medium 
spectra in Figure 2 (F), Figures 3 (M and N) (2006–2012), 
and Figures 2 (D and E) (2008–2012); and the last exhibited 
dominant strong spectra in Figures 2 (B–E), Figures 2 and 
3 (H–J), and Figures 3 (L and N–O). In addition, there are 
trends in the recent increase in the magnitude of epidemics in 
most municipalities, mainly in Igarassu (Figure 2 [H]) and 
Goiana (Figure 3 [L]), where incidence rates have been the 
highest in recent years.

Intercity dengue synchronicity

The cross-spectrum wavelet (CSW) of dengue epidemiological 
time series in MRR municipalities is shown in Figures 4 and 5, and 
on the right, the phase difference distribution of the two-time 
series in the 3–4 year band. The CSW determines the coherent 
oscillations in a specific frequency and period, while the phases 
reveal the time synchronization or time lag of one signal with 
respect to the other for the main multiannual variability mode 
(3–4 years). In general, the results showed high coherence between 
time series with different intensities and variations in frequencies 
and time intervals.

Intercity epidemic synchronism is prominent when 
municipalities share administrative boundaries. The CSW 
analysis revealed that the municipalities of Recife and Olinda 
had more evident coherence and timing (Figure 4 [A]), 
especially for the dominant variability mode in both series 
(3–4 years). A second periodic band (2–3 years) also showed 
coherence and synchronization during the two main periods 
(2001–2005 and 2006–2012). Oscillations in the 3–4 years  
band of the municipalities of Paulista and Abreu e Lima  
(Figure 4 [C]) were synchronized until 2015. Initially, oscillating 
in phase, after 2006, the dengue epidemic in Paulista preceded 
Abreu and Lima by approximately 1 month.  Similarly, dengue 
in Paulista preceded dengue in Olinda (Figure 4 [B]) from 
2008 to 2014 and Recife from 2008 to 2016. This suggests 
that the epicenter was Paulista, which progressively spread to 
surrounding municipalities. However, this pattern was transitory 
and limited to neighboring municipalities.

Dengue, SST, rainfall, and temperature variability

The interannual maximum (A) and minimum temperature (B), 
precipitation (C), SST (D), and dengue (E) variabilities are shown 
in Supplementary Figure 1. The temperature and precipitation 
series showed continuous oscillations in the seasonal band, 
whereas SST and dengue had periodic high-power cycles in the 
multiannual frequencies of 2–3 years (2006–2016) and 3–4 years 
(throughout the period). Interannual changes in precipitation after 
2011 were also detected when the high power was interrupted, 
and the medium spectrum started dominating the seasonal band, 

Ferreira HS et al. | Impacts of ENSO on the dengue
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FIGURE 2: WPS of the monthly dengue incidence between 2001 and 2017 in the 15 MRR municipalities Left graph: time series of the number of cases by 
a municipality. Color codes indicate increasing intensity from blue to red. Broken black lines show statistically significant areas (threshold of 5% confidence 
interval). The panels on the right correspond to Spectrum Global (GS).

Rev Soc Bras Med Trop | on line | Vol.:55 | (e0671-2021) | 2022
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FIGURE 3: Color description, like the other parameters, is shown in Figure 2

Ferreira HS et al. | Impacts of ENSO on the dengue
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FIGURE 4. CSW of dengue incidence on the left, spectra ranging in intensity from blue (low coherence) to red (high coherence). Dashed lines identify periods 
whose coherence was statistically significant, and the solid black line delimits regions without border effects. On the right, the phase relationship in the 3-year 
band (red line: first municipality; blue line: second municipality; and black dotted line: phase difference between series).

Rev Soc Bras Med Trop | on line | Vol.:55 | (e0671-2021) | 2022
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FIGURE 5: Color description, like the other parameters, is shown in Figure 4.

suggesting a reduction in the mean accumulated monthly rainfall 
compared with the previous period. This reduction is befitted 
with the SST positive anomaly observed from 2011 to 2016  
(Figure 4 [C], graphics on the left). Furthermore, for the same 
period (2011–2016), a trend of increase in maximum temperatures 
were observed and a change in the epidemiological dengue 
incidence pattern in the regional scenario, with a trend of reduction 
in interepidemic periods.

Climatic variables and dengue incidence in MRR

Supplementary Figure 2 shows the coherence between SST 
and the climatic time series, SST, and dengue incidence. Highly 
coherent oscillations between SST and climatic variability in the 
seasonal band were observed. These oscillations are transitory 
in time and stand out in four main significant spectral regions 
(2001–2002, 2006–2011, 2012–2013, and 2015–2016). The same 
pattern was observed for seasonal variability between the SST and 
dengue. In the multiannual frequencies, periods of high coherence 

were detected between SST and maximum temperatures from 2011 
to 2016 (2–3 years band) and in the 4–6 years band (2010–2016). 
Only two regions showed high coherence in dengue incidence 
in the multiannual mode. The first is the periodicity of 1–2 years 
(2001–2003), and the second is the periodicity of 2–3 years from 
2014 to 2016. However, both regions are inside the influence cone, 
and some edge effects can influence this outcome. Therefore, new 
studies should cover the period prior to 2001 and posterior to 
2016 to provide more consistent evidence on the role of climatic 
variability induced by El Niño over dengue dynamics in the MRR. 
This approach avoids a possible edge effect on the results.

Statistical association between the climatic and dengue 
incidence time series 

The CCF between (i) climatic variables and dengue, (ii) SST 
and dengue, and (iii) SST and climatic variables were calculated. 
Significant correlations between SST and dengue incidence (lag 
of 9 months and r = 0.23), SST and rainfall (lag of 7 months and 

Ferreira HS et al. | Impacts of ENSO on the dengue
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r = -0.18), and SST and maximum temperature (lag of 2 months 
and r = 0.15) were observed. Furthermore, significant and positive 
correlations between rainfall and dengue incidence and significant 
and negative correlations between maximum temperature and 
dengue incidence were observed, suggesting that changes in 
precipitation could influence dengue dynamics.

DISCUSSION

A trend of shortening interepidemic intervals from 3–4 years 
to 2–3 years was observed, a pattern similar to that observed for 
the dynamics of dengue transmission in Brazil in the last years41. 
Our findings indicate that climatic variability caused by ENSO 
(positive phase) is one of the factors associated with the recent 
epidemiological changes in dengue transmission in the MRR, which 
is consistent with the results obtained by Atique et al. (2016)42. The 
context of the decrease in accumulated rainfall and the increase 
in maximum temperature induced by positive SST anomalies 
may provide more adequate conditions for the dengue vector 
lifecycle. These results are in line with those of Vincenti-Gonzalez 
et al. (2018)43, who found that biennial and triennial dengue cycles 
related to El Niño were caused by climate variability.

After controlling for the effects of seasonal variability and 
autocorrelation in the time series, it had demonstrated that 
monthly cumulative precipitation anomalies had a 7-month 
lag regarding the changes in SST. Similarly, SST had positively 
correlated with maximum temperature with a 2-month lag and 
an average increase in dengue incidence with a 9-month lag. 
Furthermore, the main epidemics in the region coincided with 
two moderate El Niño 0 events (2002 and 2010) and one El Niño 
+ 1 year (2015–2016 – strong El Niño). These results can be linked 
to long-term changes in atmospheric conditions, which have 
become potentially favorable to dengue outbreaks, as observed 
by Anyamba et al. (2019)44 during the strong 2015–2016 El Niño 
event, exceptionally favorable for vector-borne diseases, including 
dengue, and are in line with previous reports29,39.

Although these results indicate an increase in dengue incidence 
associated with a decrease in rainfall, it was also observed that the 
winter preceding an epidemic year showed strong predictive power 
for dengue, corroborating recently reported results25,45. This lag in the 
dengue response regarding rainfall may provide relevant information 
to intervention measures in the appropriate period, as reported by 
Stolerman et al. (2019)25, who detected critical climatic conditions 
until 9 months before the epidemic peak and highlighted that a large 
initial vector population combined with several reproduction cycles 
might lead to important outbreaks in the summer.

Our results add to the growing scope of evidence that suggests 
regional signals of the effects of ENSO on dengue transmission 
dynamics29,46,47,48,49. However, there are uncertainties regarding 
the impact of ENSO on MRR, which has future intensification 
scenarios34. These scenarios show a decreasing tendency in rainfall 
and an increasing tendency in local temperatures. If confirmed 
later, the dengue epidemiological situation in the region will 
worsen. In addition to climatic determinants, the incidence of 
dengue depends on immunological factors50,51. In addition to 
the permanent immune response after infection by one strain, 
the cross-protection given to other dengue virus serotypes may 
also influence the length of interepidemic periods50,41. This cross-
protection can last from 2 to 3 months52 and confer temporary 

immunity to population groups recently exposed to major 
epidemics. As El Niño showed larger predictive power for dengue, 
we believe that this would provide information for a control 
intervention that has been rarely explored by health authorities. 
This approach goes against the practice of dengue epidemiological 
control in Brazil, where local interventions are limited to spring 
and summer.

Strong intercity synchronicity was observed between the 
dengue time series, especially during the epidemic connected 
to the ENSO (2002, 2010, and 2015/2016). A similar dynamic 
was reported by Cazzeles et al. (2005)39 in Thailand. In our 
results, synchronicity was clearer among municipalities that 
shared administrative boundaries or were in the context of the 
urban conurbation, as in Recife and Olinda’s case. It was notably 
consistent with the dengue dynamics in the state capital, even 
in more distant municipalities such as Goiana. Therefore, the 
state capital is a possible source of origin or an articulator of 
dengue epidemics in the MRR when atmospheric conditions 
are favorable. Similar results have been reported in Southern 
Taiwan, where the epidemic has spread from large cities to 
smaller cities39,53. Associated with atmospheric conditions, 
adjacent processes such as the spatial hierarchy of population 
structure54 and human mobility55-58 could play an important 
role in the spread of the epidemic. When this synchrony is 
regionally strong, it could have important consequences: a 
health system collapse58 and an increase in disability-adjusted 
lost life Years-DALY59.

 Synchronous and periodic epidemics in different 
population groups have other important implications regarding 
epidemiological control. For example, epidemic eradication 
becomes easier when synchronized, either through vaccination 
or control and prevention actions. In contrast, prevention and 
control challenges are more expensive when asynchronous 
because of the risk of reintroduction in places where it has been 
eradicated or controlled60, especially in endemic locations such 
as metropolitan regions. However, periodicity can be related 
to inefficient control and prevention actions41. Therefore, 
determining epidemic synchronism and regularity at the 
metropolitan scale shows how the disease evolves and can be 
connected between municipalities. However, it is imperative to 
expand the analysis to other scales because viruses and vectors 
can be transported from all distances61-63.

This study provided evidence that ENSO influence over climatic 
variability has changed atmospheric conditions in the long term 
by decreasing rainfall and increasing temperatures. This can have 
influenced the dengue temporal patterns in the MRR through 
transient reduction of its main way of multiyear variability (3–4 
years) to 2–3 years. Furthermore, when the epidemic coincided 
with El Niño years, it was widespread among municipalities and 
tightly synchronized. These findings are in line with previous 
studies that found evidence that ENSO is associated with changes 
in dengue epidemiology24,39,42,44, which is synchronized between 
different regions64. The results of this study provide an adequate 
basis for information to intensify combat and epidemiological 
control mechanisms when initial El Niño conditions are being 
established. Such results can also be used to support the control 
of Zika and Chikungunya virus, as they are all transmitted by the 
same vector, Ae. Aegypti.

Rev Soc Bras Med Trop | on line | Vol.:55 | (e0671-2021) | 2022
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SUPPLEMENTARY FIGURE 1: Maximum interannual temperature variability (A), minimum temperature (B), rainfall (C), SST (D), and dengue panels on the left 
correspond to time series standardized by the long-term mean and standard deviation, and on the right, wavelet power spectra ranging in intensity from dark 
blue (low-power) to red (high-power). The dashed black lines indicate that the wavelet power spectral regions were statistically significant.

Revista da Sociedade Brasileira de Medicina Tropical
Journal of the Brazilian Society of Tropical Medicine SUPPLEMENTARY MATERIAL

SUPPLEMENTARY FIGURE 2: WC analysis between SST and rainfall (A), SST and Maximum temperature (B), SST, minimum temperature (C), SST, and dengue 
(D). The color description, similar to that of the other parameters, is shown in Figure 4.




