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INTRODUCTION

Coagulase-negative staphylococci (CoNS) are currently 
the most prevalent microorganisms responsible for nosocomial 
infections related to indwelling medical devices(1). In prospective 
surveillance studies, CoNS were identified as the most common 
pathogens in nosocomial bloodstream infections of pediatric 
patients(2) (3). Among CoNS, the main isolated species from 
nosocomial infections is Staphylococcus epidermidis, in 
particular in relation with indwelling devices(1).

Coagulase-negative staphylococci infections are often 
difficult to treat due to multidrug resistance (MDR) and biofilm 
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Abstract
Introduction: Coagulase-negative staphylococci (CoNS) are the most prevalent pathogens in nosocomial infections and may 
serve as a reservoir of mobile genetic elements such as the staphylococcal cassette chromosome mec (SCCmec) encoding 
methicillin resistance. Molecular characterization of SCCmec types combined with advanced molecular typing techniques may 
provide essential information for understanding the evolution and epidemiology of CoNS infections. We therefore aimed to 
investigate the SCCmec distribution, multidrug-resistance (MDR), and biofilm formation in CoNS blood culture isolates from a 
hospital in Southern Brazil. Methods: We analyzed 136 CoNS blood culture isolates obtained during 2002-2004 from patients 
admitted to a tertiary care hospital in Brazil. SCCmec types I to V were determined using multiplex PCR. The clonal relationship 
of Staphylococcus epidermidis was determined using pulsed field gel electrophoresis (PFGE) and multilocus sequence typing 
(MLST). Molecular epidemiological data were interpreted along with data on biofilm formation, presence of the icaD gene, and 
MDR. Results: The most prevalent species were S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis 
harboring mainly SCCmec types II, III, and V. Overall, the presence of multiple SCCmec was associated with non-MDR, except 
for S. epidermidis. S. epidermidis isolates showed a high prevalence of icaD, but had low phenotypic biofilm formation. PFGE 
and MLST revealed high genetic diversity in the S. epidermidis population. Conclusions: Our results suggest a major shift in 
SCCmec types within a short period and reveal a different behavior of S. epidermidis with regard to the association between the 
presence of multiple SCCmec types and MDR profile.
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formation(4) (5) (6). This may result in infections with limited 
therapeutic options, increased risk of treatment failure, and 
high cost(6). Moreover, their high genetic diversity and constant 
presence on the human body makes CoNS a permanent reservoir 
of genetic material for more virulent staphylococcal species 
including Staphylococcus aureus(7).

The staphylococcal cassette chromosome (SCC) is a family 
of mobile genetic elements found in the genus Staphylococcus. 
SCCmec harbors the mec genes that encode for resistance to 
methicillin and almost all β-lactam antibiotics(8). Furthermore, 
the SCCmec element frequently harbors integrated insertion 
sequences, plasmids, and transposons that often encode additional 
resistance determinants(9). According to the current SCCmec 
classification scheme in methicillin-resistant Staphylococcus 
aureus (MRSA) (http://www.sccmec.org), a high number of 
non-typable and new previously unidentified SCCmec types in  
S. aureus have been detected in CoNS(9) (10) (11) (12) (13).The high 
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genetic diversity within SCCmec elements carried by CoNS 
makes the identification of SCCmec types in CoNS challenging 
and reflects a high degree of genetic flexibility(11) (14).

In addition to SCCmec classification, other molecular 
techniques are currently used to characterize CoNS. Pulsed field 
gel electrophoresis (PFGE) is considered the most discriminatory 
method to explore local epidemiological outbreaks(10) (15) (16), and 
multilocus sequence typing (MLST) is a more robust tool to 
identify population structure and global epidemiology(17) (18) (19).To 
date, there are few studies evaluating the molecular epidemiology 
of CoNS from Brazilian hospitals(16) (20) (21).

The aim of this study was to investigate the SCCmec 
distribution, MDR, and biofilm formation in CoNS blood culture 
isolates from a hospital in Southern Brazil. We also compared 
the SCCmec distribution with data from other studies from the 
same institution in order to observe possible modifications in 
the prevalence of this mobile genetic element. Furthermore, for 
S. epidermidis, we investigated the molecular epidemiology to 
reveal the possible spread of successful clones.

METHODS

Setting

We used a collection of 136 CoNS isolated from the blood 
culture of patients admitted at Santa Casa de Misericórdia de 
Porto Alegre Hospital, a tertiary care hospital in South Brazil, 
during the period of 2002 to 2004. The isolates were stored at 
-80°C on skimmed milk (Difco Skim Milk, Becton Dickinson), 
and for this study, each isolate was grown on blood agar 24 
hours prior to each test procedure.

Multidrug-resistant definition criteria

The antimicrobial susceptibility profile of each isolate 
was determined as described before.(22) MDR was defined as 
a resistant phenotype to at least one agent in three or more 
antimicrobial categories(23).

Biofilm formation in Staphylococcus epidermidis

Semi-quantitative determination of biofilm formation for  
S. epidermidis was performed as described previously(4) (24). All the  
S. epidermidis isolates were tested in polystyrene microtiter plates with 
three parallel runs using tryptic soy broth (TSB) with 1% glucose to 
induce biofilm formation. We determined the optical density (OD) of 
the crystal violet-stained adherent biofilm using a spectrophotometer 
(model MR580; Dynatech Laboratories, Inc.) at 570nm. For each 
parallel, the highest and the lowest values of OD were removed 
to exclude outliers, and the remaining values were averaged. The 
isolates were considered biofilm producers if they had an OD  
≥ 0.12. The cutoff value was chosen to distinguish between isolates 
that produced significant amounts of biofilm and those that did not, 
taking into account the OD values for the negative controls included 
in each experiment. The presence of the icaD gene was determined 
by polymerase chain reaction (PCR) as described previously(4). In 
both assays, S. epidermidis RP62A was used as a positive control 
and S. epidermidis ATCC 12228 and Staphylococcus haemolyticus 
51-03 were included as negative controls.

Determination of the SCCmec types  
among all the CoNS

Deoxyribonucleic acid (DNA) for PCR was extracted using 
the QIAamp DNA mini kit (Qiagen) as described by Oliveira  
et al.(25).The SCCmec types and subtypes I, II, III, IVa, IVb, IVc, 
IVd, and V and mecA were investigated using the multiplex PCR 
designed by Zhang et al.(26) with the following modifications: the 
PCR reaction mixtures contained 1.5mM MgCl2 and 1.15 unit 
of Platinum Taq DNA polymerase (Invitrogen Inc., Carlsbad, 
CA). The final concentrations of each pair of primers were I 
(0.096µM), II (0.064µM), III (0.08µM), IVa (0.208µM), IVb 
(0.184µM), IVc (0.156µM), IVd (0.56µM), and V (0.12µM). 
The positive control strain for each gene was as follows: 
type I (NCTC10442), type II (N315), type III (85/2082), 
type IVa (CA05), type IVb (8/6-3P), type IVc (MR108), type  
IVd (JCSC4469), and type V [WIS (WBG8318)-JCSC3624](5). 
Methicillin-resistant isolates that did not produce PCR  
products using any of the primers tested were considered non-
typable.

Pulsed field gel electrophoresis of the Staphylococcus 
epidermidis isolates

Agarose plugs (Certified Megabase Agarose, BioRad) 
containing chromosomal DNA were prepared as previously 
described(10); Lysozyme (Omega) and Lysostaphin (Sigma) were 
used in the lysis step. Restriction digestion of chromosomal 
DNA was performed using SmaI (New England Biolabs), 
and the fragments were separated using PFGE employing a 
CHEF-DRIII device (Bio-Rad) as previously described(10).The 
PFGE types were defined after analysis using the BioNumerics 
software version 7.1 (Applied Maths). Clustering was performed 
using the Dice similarity coefficient and the unweighted pair 
group method with arithmetic means (UPGMA) with 1.3% 
of tolerance and 0.8% optimization. The PFGE types were 
automatically assigned using a cutoff similarity value of 79%; 
the types obtained were represented by numbers.

Multilocus sequence typing of the Staphylococcus 
epidermidis isolates

Fragments of seven housekeeping genes were amplified 
by conventional PCR using the MLST scheme published by 
Thomas et al.(27).The alleles and sequence type (ST) numbers 
were assigned using the S. epidermidis MLST database (http://
sepidermidis.mlst.net). The most likely patterns of evolutionary 
descent in the collection were assessed using the eBurst 
algorithm (http://eburst.mlst.net).

Statistical analysis

Comparisons between the prevalence of independent 
samples were performed using the binomial test. The 
associations of different variables were assessed using the 
Pearson Chi-square test, and when necessary, Fischer’s exact 
test. Eventually adjusted standardized residual analysis(28) was 
included to identify the associated variables. The significance 
level used was 5%.
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).RESULTS

Staphylococcal cassette chromosome mec

The species and SCCmec distribution among all the methicillin-
resistant CoNS (MR-CoNS) isolates are presented in Table 1. The 
10 methicillin-sensitive isolates were all S. epidermidis species. 
One hundred (79%) of the 126 methicillin-resistant isolates 
harbored at least one of the SCCmec types tested in this study.

Overall, MDR was seen among 106/136 (78%) isolates. 
There was a significant association between the presence 
of SCCmec and MDR (p = 0.005). However, an association 
between individual SCCmec types and positive MDR was 
significant only for type III (p < 0.001), and type V (p = 0.011). 
As the frequency of some SCCmec types were too low to 
perform solid statistical tests, and since we observed several 
combinations of SCCmec types in our isolates (Table 1), the 
types were divided into three categories: single, multiple, and 
non-typable. The association between the different categories 
and MDR is presented in Table 2. For CoNS as a whole and 
S. haemolyticus as single species, there was an association 
between the presence of single SCCmec and MDR, while  
S. epidermidis showed similar results but without significance. 
For Staphylococcus hominis and other less prevalent species, 
there were not enough isolates for reliable statistical calculation.

Biofilm formation

Twenty-eight (45%) of the 62 S. epidermidis isolates had an 
OD of ≥ 0.12 and were considered biofilm producers. Of these, 
26 (93%) were icaD positive and 2 (7%) were icaD negative. On 
the other hand, of the 34 non-biofilm producers, 24 (71%) were 
icaD positive and 10 (29%) were icaD negative. The overall 
prevalence of the icaD gene was 81% (50/62) and that of biofilm 
formation was 45% (28/62). No significant associations were 
found between biofilm production or the presence of icaD and 
the MDR phenotype (p = 0.494 and p = 0.389, respectively).

Pulsed field gel electrophoresis

PFGE analysis of 62 S. epidermidis isolates clustered 40 
(64%) isolates in 14 groups. The remaining 22 (36%) isolates 
were considered sporadic strains (Figure 1). The largest cluster 
(PFGE type 11; n = 7) showed a positive association with MDR  
(p = 0.037); 4 of these 7 isolates harbored SCCmec type III and were 
identified as ST6. The second largest cluster (PFGE type 7; n = 4) 
showed a positive association between biofilm formation and the 
presence of icaD (both p = 0.034). For the remaining PFGE types, 
there was no difference between the clustered and sporadic strains 
with regard to MDR (p = 0.055), biofilm formation (p = 0.223), or 
the presence of icaD (p = 0.741). PFGE types 5, 6, 8, and 12 were 
triplets, and the remaining 8 types found (1, 2, 3, 4, 9, 10, 13, 14) 
comprised only 2 isolates. Two pairs of isolates showed identical 
banding patterns (isolates BRA526/575 and BRA246/267).

Multilocus sequence typing

All the 62 S. epidermidis isolates were typed using MLST. 
In total, 29 different sequence types (ST) were identified, of 
which 12 are new (STs 499 to 510). Figure 2 illustrates the 
distribution of our isolates in S. epidermidis clonal complex 2 
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FIGURE 1 - Dendrogram of the PFGE profiles and main characteristics of the 62 Staphylococcus epidermidis isolates from Southern Brazil. Numbers 
in the horizontal upper bar and connection lines indicate similarity (percent). Isolates showing similarity ≥ 79% were considered genetically related. 
PFGE: pulsed-field gel electrophoresis; ID: identification; ST: sporadic strain; SCCmec: staphylococcal cassette chromosome mec; MDR: multidrug-resistant; 
IcaD: icaD gene; NT: non-typable; MSSE: methicillin susceptible Staphylococcus epidermidis.
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Strain ID	 ST	 PFGE type	 SCCmec	 MDR	 icaD	 Biofilm

BRA538	 340	 1	 III, IVd	 -	 -	 +
BRA544	 506	 1	 III, IVd	 -	 +	 -
BRA510	 340	 S	 III	 -	 +	 -
BRA359	 53	 S	 MSSE	 -	 +	 +
BRA582	 340	 S	 IVa	 +	 -	 -
BRA258	 500	 S	 MSSE	 -	 -	 -
BRA555	 500	 S	 MSSE	 -	 +	 -
BRA553	 507	 2	 MSSE	 -	 +	 +
BRA556	 508	 2	 III, IVd	 +	 +	 +
BRA509	 504	 S	 MSSE	 -	 +	 +
BRA543	 505	 S	 IVd	 -	 -	 -
BRA373	 2	 S	 III	 +	 +	 +
BRA378	 503	 S	 IVd	 +	 +	 +
BRA496	 2	 S	 III	 +	 +	 +
BRA354	 2	 3	 III	 +	 +	 -
BRA389	 23	 3	 V	 +	 +	 -
BRA618	 2	 S	 III	 +	 +	 +
BRA208	 2	 4	 V	 -	 -	 -
BRA320	 2	 4	 V	 -	 +	 -
BRA641	 20	 S	 III, IVa	 -	 +	 +
BRA372	 17	 S	 III	 +	 +	 -
BRA602	 72	 S	 MSSE	 -	 +	 +
BRA645	 2	 S	 II, III, V	 +	 +	 +
BRA694	 6	 S	 II, V	 -	 +	 -
BRA370	 193	 5	 MSSE	 -	 +	 -
BRA614	 59	 5	 IVa	 -	 +	 -
BRA363	 2	 5	 III	 +	 +	 +
BRA542	 81	 S	 IVd	 -	 -	 -
BRA530	 2	 6	 III	 +	 +	 -
BRA634	 2	 6	 NT	 +	 +	 -
BRA566	 2	 6	 NT	 +	 +	 -
BRA385	 237	 7	 III	 +	 +	 +
BRA595	 509	 7	 MSSE	 -	 +	 +
BRA532	 2	 7	 III, IVa	 +	 +	 +
BRA406	 2	 7	 NT	 +	 +	 +
BRA291	 2	 8	 V	 +	 +	 +
BRA379	 2	 8	 III	 +	 +	 +
BRA364	 501	 8	 IVd	 +	 +	 -
BRA234	 499	 9	 MSSE	 -	 +	 +
BRA524	 6	 9	 I, V	 +	 +	 +
BRA290	 20	 S	 III, IVa	 +	 +	 +
BRA513	 22	 10	 III	 +	 +	 -
BRA650	 22	 10	 III	 +	 +	 +
BRA240	 7	 S	 III	 +	 +	 +
BRA526	 6	 11	 III	 +	 -	 -
BRA575	 6	 11	 III	 +	 -	 -
BRA253	 101	 11	 IVa	 +	 -	 -
BRA384	 6	 11	 V	 +	 -	 -
BRA514	 6	 11	 III	 +	 +	 -
BRA539	 6	 11	 III	 +	 -	 +
BRA689	 510	 11	 III	 +	 +	 -
BRA557	 502	 S	 MSSE	 -	 +	 +
BRA246	 59	 12	 IVa	 +	 +	 -
BRA267	 59	 12	 III, IVa	 +	 +	 -
BRA205	 59	 12	 III, IVa	 -	 +	 -
BRA507	 23	 13	 NT	 +	 +	 -
BRA533	 23	 13	 NT	 +	 +	 -
BRA632	 23	 S	 NT	 +	 +	 -
BRA554	 2	 14	 IVd	 -	 +	 -
BRA608	 2	 14	 III	 +	 +	 +
BRA488	 307	 S	 III	 -	 +	 +
BRA531	 89	 S	 NT	 -	 -	 -
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FIGURE 2 - eBurst V3 analysis of Staphylococcus epidermidis CC2 after adding our MLST data to all the isolates available in the MLST database on 
April 2016. Each ST is represented by a dot, and lines connect single locus variants. The blue dot represents the founder of CC2, and the yellow dots 
represent subgroup founders. Green numbers represent new STs found in this study. Red squares represent STs reported in previous studies that were 
also found in this study. eBurst V3: algorithm eBurst version 3; CC2: clonal complex 2; MLST: multilocus sequence typing; ST: sequence type.

TABLE 2 - Association between MDR and SCCmec category in Brazilian CoNS nosocomial isolates from 2004.

								                     SCCmec	

					                      single	                             multiple	                    non-typable

Species	 MDR (n)	 n	 %	 AR	 n	 %	 AR	 n	 %	 AR	 p value

Staphylococcus epidermidis	 Pos (39)	 27	 69.2	 1.0	 6	 15.4	 -1.8	 6	 15.4	 0.7	 0.198
	 Neg (13)	 7	 53.8	 -1.0	 5	 38.5	 1.8	 1	 7.7	 -0.7

Staphylococcus haemolyticus	 Pos (36)	 26	 72.3	 2.3	 6	 16.5	 -3.1	 4	 11.2	 0.8	 0.008
	 Neg (5)	 1	 20.0	 -2.3	 4	 80.0	 3.1	 0	 0.0	 -0.8

Staphylococcus hominis	 Pos (13)	 9	 69.3	 -*	 1	 7.7	 -*	 3	 23.0	 -*	 -*
	 Neg (6)	 4	 66.6	 -*	 1	 16.7	 -*	 1	 16.7	 -*

Other species	 Pos (8)	 1	 12.5	 -*	 1	 12.5	 -*	 6	 75.0	 -*	 -*
	 Neg (6)	 1	 16.7	 -*	 0	 0.0	 -*	 5	 83.3	 -*

Total	 Pos (96)	 63	 (65.6)	 2.1	 14	 (14.6)	 -2.3	 19	 (19.8)	 -0.3	 0.045
	 Neg (30)	 13	 (43.3)	 -2.1	 10	 (33.4)	 2.3	 7	 (23.3)	 0.3

MDR: multidrug-resistant; SCCmec: staphylococcal cassette chromosome mec; CoNS: coagulase-negative staphylococci; AR: adjusted 
residual; Pos: positive; Neg: negative. AR value ≥ [2.0] was considered statistically significant; *Unreliable results due to low n.

(CC2). Fifty-two percent (32/62) of the isolates were identified 
as ST2 (n = 17), ST6 (n = 7), ST59 (n = 4), and ST23 (n = 4). 
The majority of these most frequent STs were MDR (84%), icaD 
positive (87%), and biofilm negative phenotypically (59%). STs 
2 and 6 were associated with SCCmec type III, and ST59 was 
found to be associated with SCCmec III and IVa (p < 0.05). The 
remaining isolates were assigned as singletons, pairs, or triplets 

of different STs. The new STs were mainly positive for icaD 
and biofilm formation, but not for MDR (Figure 1).

DISCUSSION

In this study, we determined the SCCmec characteristics of 
an old CoNS collection and compared it with a new one from 
the same institution but collected with a 6-8-year interval(5). 

Rev Soc Bras Med Trop 49(3):292-299, May-June, 2016
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We found that the types and combinations of SCCmec within 
the CoNS population had changed dramatically in this period. 
Upon comparing the results from the different periods, we 
observed an increase in the number of different SCCmec 
types and non-typable isolates and a decrease in the presence 
of multiple cassettes in the same isolate. Typing of the  
S. epidermidis isolates revealed a great genetic diversity, 
but some similarities in ST distribution were observed when 
compared with S. epidermidis isolates from other institutions 
in Brazil and around the world.

We conducted the same SCCmec multiplex PCR as that 
used in a former study(5)  to enable comparisons between CoNS 
isolates collected from the same hospital. Statistically significant 
differences were found in the prevalence of all the SCCmec types 
except for the subtype IVd. Overall, we observed a decreasing 
prevalence of SCCmec types II, III, and V over the years  
(p< 0.0001) and an increasing prevalence of SCCmec types I and 
IV (p < 0.0001). It is noteworthy that just one isolate harbored 
SCCmec type I and none of the isolates harbored types IVb 
and IVc (Table 1). A previous study in the same institution(5) 

reported the emergence of 2 and 4 isolates harboring SCCmec 
types IVb and IVc, respectively, and the presence of 14 isolates 
harboring type I. We consider the appearance of new SCCmec 
types that were previously not found in this hospital especially 
concerning because this reflects the ongoing horizontal gene 
transfer between species. Unfortunately, the SCCmec typing 
scheme used failed to classify 26 out of the 126 (20.6%) isolates, 
which is a large proportion of the CoNS isolates.

The acquisition and accumulation of resistance genes through 
mobile elements like SCCmec is enabled by integration into 
regions of the SCCmec element called the joining (J) regions(29). 
Antibiotic resistance determinants like tet (tetracycline), aacA-
aphD (aminoglycosides), or ermA (erythromycin) genes may be 
carried within J regions originating in MDR strains(14) (30). In our 
isolates, there was a strong association between the presence of 
SCCmec and MDR. However, when we grouped our results to 
analyze the presence of more than one SCCmec type in the same 
isolate (multiple), we observed that the presence of multiple 
SCCmec types is associated with non-MDR and the presence of 
a single SCCmec type is associated with MDR. Interestingly, no 
such associations were found when the S. epidermidis isolates 
were analyzed separately (Table 2).

The ability to form biofilms is considered the most important 
pathogenic factor for S. epidermidis, and the icaD genes are 
recognized as one of the most important genes involved in biofilm 
formation(31). In our S. epidermidis isolates, despite the high 
prevalence of icaD (81%), we did not find a high prevalence of in 
vitro biofilm formation (45%). In addition, there was no statistical 
association between icaD presence and biofilm formation  
(data not shown). As suggested by Mertens and Ghebremedhin(32), 
the natural occurrence of insertion sequence elements like IS256 
might be one of the reasons for this divergence. Likewise, 
the presence of two isolates producing biofilms in absence 
of the icaD gene reinforces the fact that although icaD is 
important for the development of biofilm, other factors(31) and 
genes like aap and bhp(30) could be involved in the process.

As reported in other studies(15) (17), analysis of our  
S. epidermidis strains using two reliable typing methods 
revealed a high degree of genetic diversity; our isolates 
showed high Simpson’s indexes of diversity (SID) in PFGE  
(SID = 97.7%), and MLST (SID = 91.1%) (data not shown). 
PFGE analysis revealed several small clusters as well as a 
considerable number of sporadic strains, and MLST presented a 
range of different STs and several new alleles and STs (Figure 1 
and Figure 2). The proportion of different STs observed in this 
study (29 STs among 62 isolates) was higher than that previously 
reported by Mendes et al.(19) in 2012 (27 STs among 71 isolates) 
and Miragaia et al.(17) in 2007 (74 STs among 217 isolates). 
SCCmec typing also amplified all the SCCmec types searched 
and some different combinations of SCCmec types in individual 
strains, thus confirming the high variability of SCCmec types 
in S. epidermidis(10) (17).Finally, despite the presence of 4 closely 
related isolates revealed by PFGE, no large cluster indicating 
an epidemic outbreak was detected.

The only two major clusters found in our study were assigned 
by MLST and match two very common MLST types detected 
worldwide: ST2 (n = 17) and ST6 (n = 6). Furthermore, our 
MLST results agree with the increasing high prevalence of STs 
20, 22, 23, and 89 detected in several countries(10) (17) (19) (32) (34) (35).
Interestingly, we did not find any ST5 isolates, which is a very 
frequent type worldwide(17) (36), but we found two ST5 single 
locus variants (ST7 and ST17) (Figure 2). However, the second 
most common ST worldwide (ST23)(17) was among the four 
most prevalent ST in our collection. As suggested previously, 
the genetic diversity of S. epidermidis nosocomial isolates may 
be caused by the need to adapt to different environments in 
hospital settings, leading to increased frequency of horizontal 
gene transfer and dissemination of mobile genetic elements(12).

A comparison of the overall results generated by PFGE 
with the results of MDR, biofilm formation, and icaD presence 
revealed no difference between the clustered and sporadic 
strains. The high diversity of our isolates might be the reason 
for this result, since other studies have shown cluster isolates 
identified by PFGE with higher rates of antibiotic resistance and 
biofilm formation than non-cluster isolates(18) (32). Finally, there 
is currently a lack of data concerning the epidemiology of both 
nosocomial and community S. epidermidis isolates from Brazil. 
Further studies need to be conducted in order to determine if 
there exist two different populations in these two settings, as 
previously reported for S. epidermidis in Europe(33) (34).

This study has limitations. The multiplex PCR employed 
is easy to use, but the detection of only a single locus of each 
SCCmec type gives less discriminatory power to this assay when 
compared with that of the current recommended methodology 
(http://www.sccmec.org). Moreover, the isolates were not stratified 
according to the place of origin or period, and it is not possible 
to perform comparison between hospital wards. Novel typing 
studies with more recent isolates from the same institution and/or 
from the local community could be very useful in the elucidation 
of several epidemiological aspects of CoNS from South Brazil.

In conclusion, this study confirms that CoNS isolates have 
high genetic diversity despite being isolated from the same 
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institution. As a novelty, we observed a different behavior of S. 
epidermidis with regard to the association between the presence 
of multiple SCCmec types and a MDR profile when this specie 
was compared with other CoNS. In addition, we did not find an 
epidemic clone of this species using well-established molecular 
tools. A rapid shift in the prevalence of the SCCmec types from 
our study and to a previous study from the same hospital(5) 
performed 6-8 years after indicate a high degree of horizontal 
gene transfers, which confirm the hypothesis that CoNS is a 
permanent reservoir of genetic material that can be exchanged 
within and between Staphylococcal species.
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