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ABSTRACT: The augmented block design is widely used in breeding programs, with non-replicated treatments
generally being selection units, and replicated treatments being standard cultivars. Originally, an intrablock analysis
(fixed model) was proposed. Although non-replicated treatments and/or blocks can be considered of random
nature, mixed linear models could be used instead. This work evaluated such an approach, using computer
simulation. Populations consisted of sets of randomly generated inbred lines. Molecular marker data were also
simulated to allow the estimation of the genetic covariance matrix. Different conditions were considered, varying
heritability and the coefficient b of Smith of soil heterogeneity. For each condition 100 simulations were performed,
considering four linear models, varying respectively the nature of the effects of blocks and non-replicated treatments
(fixed - F, or random - R): FF, FR, RF and RR. In relation to FF, the mixed models were more efficient under low
to intermediate heritability and high b. Mixed models could improve inference in breeding programs using the
augmented block design and the choice of the model should rely on the kind of selection. If this is truncated, the
RF model should be preferred; if it is not, then the RR model would be more suitable.
Key words: augmented design, mixed model, molecular marker

SIMULAÇÃO DE MODELOS MISTOS NO DELINEAMENTO
EM BLOCOS AUMENTADO

RESUMO: O delineamento em blocos aumentados é amplamente utilizado em programas de melhoramento,
geralmente com tratamentos não-repetidos correspondentes a unidades de seleção, e tratamentos repetidos
sendo cultivares comerciais. Originalmente, uma análise intrablocos (modelo fixo) foi sugerida. No entanto,
se os tratamentos não-repetidos e/ou blocos puderem ser considerados de natureza aleatória, modelos lineares
mistos poderiam ser utilizados. Este estudo objetivou a avaliação de tal abordagem, utilizando simulação.
Linhagens endogâmicas foram geradas aleatoriamente, bem como dados de marcação molecular, para estimar
a matriz de covariâncias genéticas. Variaram-se a herdabilidade e o coeficiente b de heterogeneidade de
solo de Smith; em cada condição, 100 simulações foram feitas, considerando 4 modelos lineares, variando
respectivamente a natureza dos efeitos de bloco e de tratamentos não-repetidos (fixo � F, ou aleatório � A):
FF, FA, AF e AA. Em relação ao modelo FF, os modelos mistos foram mais eficientes especialmente sob
herdabilidade baixa a intermediária e alto b. Modelos mistos podem melhorar a inferência em programas de
melhoramento utilizando o delineamento, e a escolha do modelo deve se basear no tipo de seleção. Se esta
for truncada, o modelo AF deveria ser preferido; se não for, então o modelo AA é mais apropriado.
Palavras-chave: delineamento aumentado, modelo misto, marcador molecular

1Part of the MS Thesis of the first author, presented to UFLA - Lavras, MG.

INTRODUCTION

The augmented designs were proposed by
Federer (1956) as an alternative under low availability of
genetic material for replication, and many treatments.
They are a modification of straightforward designs, by
adding treatments that appear only once in the
experiment (herein designated simply as �treatments�) to
the set of replicated treatments (�checks�). Among the
augmented designs, the augmented block design is
perhaps the most used, and inference has traditionally
been made by means of an intrablock analysis
(considering treatment and block effects fixed).

In plant breeding, this approach may be
unsuitable, for in many cases such design is used with

treatments being selection units sampled from a
population. Besides, recovery of information on
treatments among blocks (interblock approach) can
potentially improve the estimates, and this is achieved
by regarding block effects as random. Genetic variances
can be underestimated if the intrablock analysis is used
in the augmented block design (Bearzoti, 1994).
Therefore, the theory of mixed models (Henderson, 1984)
could be used to take into account the randomness of
the effects of treatments and/or blocks (Robinson, 1991).
The effects of checks could be considered fixed in plant
breeding, for they are generally standard released
varieties.

The computational improvement that the past
decade witnessed made the analysis of augmented
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designs straightforward. Scott & Milliken (1993) show an
example of a SAS routine that yields the analysis of
variance, hypothesis tests, intra and interblock estimation
of treatment effects in augmented block designs. Boyle
& Montgomery (1996) pointed out how intra and
interblock approaches could be dealt using GLM and
MIXED procedures of SAS software. Wolfinger et al.
(1997), using such procedures, show routines to recover
interblock and intervariety information when the nature
of block and variety effects are actually random. Duarte
(2000) presents a detailed study on the augmented block
design, highlighting statistical issues and its use in plant
breeding, showing many SAS routines to different
alternatives of analysis of such designs, including the
modeling of spatial residual dependence.

If treatment effects are regarded as random, e.g.
i f they are sampled genetic materials, and if
intergenotypic information is recovered, the predicted
treatment means tend to show a decreased dispersion
around the overall mean, in comparison to the dispersion
of intrablock means. This trend is known as �shrinkage�
effect, and reflects a more accurate distribution of genetic
effects, if the assumption of randomness is correct (see,
for instance, Duarte, 2000). The accuracy on estimating
such distribution could be further improved if the matrix
of covariances among genetic effects was known. In plant
breeding, if treatments are genetic materials, such matrix
could be constructed (apart, perhaps, from a constant
corresponding to the genetic variance) using relationship
information from molecular data, which can account for
genetic similarities among treatments. This can be
considered a simple way of marker-assisted selection,
and relatively low-cost and fast generating markers like
RAPD (random amplified polymorphic DNA) could be
used.

There are reports in the literature on the use of a
mixed model approach to analyze data of augmented
block designs (Duarte, 2000; Federer, 1998), but its
efficiency when covariances among treatments are not null
and can be estimated has not yet been studied. Computer
simulation is a powerful tool in such studies, for a wide
range of conditions could be covered, in situations where
an analytical approach has limitations.

This work aimed at the evaluation of the use of
mixed model theory in augmented block designs, when
treatments are selection units in a breeding program, and
genetic covariances are estimated using molecular data.

MATERIAL AND METHODS

Augmented block designs were simulated using
computational routines written with Delphi language,
version 3. Treatments consisted of inbred lines of a
fictitious diploid species with 200 independent genes
controlling the trait of interest, and 100 marker loci were
used to estimate the coefficients of genetic covariances
among lines.

The frequency of the favorable allele in the
population of lines of each gene was generated using a
uniform distribution with parameters 0.2 and 0.8. A given
line had a favorable allele with probability equal to the
frequency of the corresponding gene. Genotypes
regarding marker loci were simulated using the
assumption that, for a given pair of lines, the number of
marker loci with the same genotype had a binomial
distribution with parameters r and s, where r was the
number of markers (100) and s the genetic similarity in
that pair of l ines, considering the genes of the
hypothetical trait. This assumption reflected basically the
idea that similarities based on marker and trait loci are
related.

The number n of lines were 50, 100 and 200. In
each simulated condition, a different set of lines was used.
The effects of each gene were generated as outcomes
from an exponential distribution with parameter equal to
1, multiplied by -1 if the allele were not that favorable.
Genotypic value of a given inbred line was calculated as
the sum of the effects of all genes of that particular line.
The variance among such genotypic values was the
genetic variance across lines. Environmental variances
were then obtained in such a way to yield heritability values
(at the level of experimental plots) equal to 0.2, 0.5 and
0.8. This total environmental variance was partitioned into
two components, associated to the variation within and
among blocks, with magnitudes determined according to
the value of the coefficient of soil heterogeneity of Smith
(1938), represented by b, as suggested by Bearzoti (1997).
Three values of b were evaluated: 0.1, 0.5 and 0.9.

The number of blocks was dependent on the
number of lines, the former being 5% or 20% of the latter.
Therefore, considering the 3 sample sizes (number of
lines), the 3 values of the coefficient b, 2 amounts of
blocks, and the 3 heritability values, 54 situations were
analyzed. Each situation was simulated 100 times.

Every time a data set was generated, the
following models were considered: 1) fixed effects of
blocks and treatments (FF), corresponding to the
intrablock analysis; 2) random block effects and fixed
treatment effects (RF), corresponding to the analysis with
recovery of interblock information; 3) fixed block effects
and random treatment effects (FR), corresponding to the
analysis with recovery of intergenotypic information; and
4) random effects of blocks and treatments (RR),
recovering both interblock and intergenotypic information.
The effects of the checks were always taken as fixed.

The alternatives RF, FR and RR had two
variants, considering that the variance components were
known, designated by RF(k), FR(k) and RR(k), and
considering that they were not known. This allowed the
accounting for the loss in precision due to the necessity
of estimation of such components. In those situations
where treatment effects were fixed, a parametric
constraint was used, considering the sum of such effects
equal to zero.
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In order to compare estimates (or predictions) of
treatment effects, iθ�  to the corresponding genotypic
values iθ  i = 1,2, ..., n), the following statistics were
calculated: mean square error (MSE); Spearman
correlation, that reflects the accuracy on the ranking of
lines, which is specially useful when selection is
truncated; and �elite bias�, defined as the bias in the
estimation of the percentage of treatments superior to the
best check. The magnitude of such bias is relevant when
selection is based in relation to standard cultivated
varieties (non-truncated selection).

When variance components were considered
unknown, they were estimated using restricted maximum
likelihood (REML) and the EM algorithm (Dempster et al.,
1977) associated to the mixed model equations of
Henderson (1984). Convergence was considered to have
been reached if, in a given iteration, the ratio(s) of the
variance component of the factor (block or treatment) and
residual variance component were different from that of
the previous iteration in a magnitude no greater (in
absolute value) than 10-8.

RESULTS AND DISCUSSION

The MSE values of the estimated genetic
effects, for all 54 configurations, are presented in Table
1. The RR(k) approach presented the smallest MSE
values in 34 situations (53.1%). Most of the remaining
20 configurations were conditions of high heritability (h2

= 0.8). Among all situations with h2 = 0.8, only one
presented the lowest MSE with RR(k) model,
corresponding to n = 50 lines, b = 0.9 and number of
blocks equal to 2. Three out of the 20 remaining
configurations had h2 = 0.5, b = 0.1 and number of
blocks equal to 0.2n. In such cases, however, the most
precise approach was RF(k), which also assumes
known variance components.

For the 17 situations with h2 = 0.8 and RR(k)
approach not being the most precise, it can be seen that
the MSE values of this model were more distant from the
lowest MSE with b = 0.1, that is, when a higher fraction
of environmental variance is due to the differences
among blocks. Comparing, for example, situations 43 and
47 in Table 1, which have similar conditions, except for
the value of b (0.1 and 0.9, respectively), in the former
the RR(k) model had an MSE about six times the
smallest, while in the latter this MSE was only 1.18 times
the smallest. A single case of b different from 0.1, in
which the RR(k) MSE was relatively high, was that with
h2 = 0.8, n = 50, b = 0.9 and 10 blocks. In this
configuration, the MSE of RR(k) was almost two times
the smallest MSE.

The reasons why RR(k) did not show the
smallest MSE, with high heritability, especially under
relatively higher block effects, are not evident, since this
approach theoretically yields the best linear unbiased
predictions of random effects. However, when one

estimates variance components, predictors are no longer
linear nor unbiased. A possible reason of reduction in
precision might have been that the genetic variance taken
as the parametric value was that among the actual 50,
100 or 200 lines, instead of the true population variance,
considering all infinite possible inbred lines. The
conditions under lower residual variation (higher h2) may
have been more sensitive to this approximation. And,
finally, even in the models where variance components
were known, covariance coefficients were still unknown,
and estimated via molecular information. So, it is not
rigorously true that the RR(k) model should be the most
precise ever.

The FR(k) approach had a trend very similar to
that of RR(k), with regard MSE values, being less precise,
in general. In 15 out of the 17 situations under high
heritability, the RF(k) model had the smallest MSE.
Therefore, there was a clear tendency of those
approaches with known variance components to be most
precise.

In an actual breeding program, variance
components are generally (if not always) unknown, and
so the comparison among FF, FR, RF and RR models is
particularly relevant, especially to see whether the use
of any mixed model (FR, RF or RR) shows any superiority
to the intrablock analysis originally proposed by Federer
(1956).

Considering only those models with unknown
variance components in Table 1, the RR approach had
the smallest MSE (higher precision) in most of the
situations (53.7%), followed by RF (38.9%), similarly to
the trends observed with the counterparts with known
variance components. Again, most of the situations with
RR not being the most precise model had high
heritability (situations 37 to 54 of Table 1). However, in
4 of them heritability was equal to 0.5 and b was equal
to 0.1 (situations 19, 25, 31 and 32), similarly to what
happened with those models with known variance
components. These results suggest that under low
residual variation (high h2 and low b), prediction of
treatment effects is less precise in models where such
effects are random than those where they are fixed.
There is, however, even in such circumstances, an
increase in precision if interblock information is
recovered.

The values of the Spearman correlation among
predictions with the alternative models and the parametric
genetic effects are listed in Table 2. The rankings of the
models considering random effects of blocks and
treatments were expected to be the most accurate, since
these effects were actually randomly generated. Indeed,
the RR(k) approach had the highest Spearman
correlation in 92.6% of the cases (50 situations), many
of them even under high heritability. Therefore, these
results suggest that, for truncated selection, if the
variance components were known, the RR(k) approach
would be the most suitable.
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Table 1 - Average values of the Mean Square Error (MSE) of the predictions of genetic effects of inbred lines across 100
simulations of augmented block designs with n = 50, 100 or 200 lines, heritability h2 equal to 0.5, 0.5 or 0.8,
coefficient of Smith b equal to 0.1, 0.5 or 0.9, and number of blocks given through 0.05n or 0.2n. Each column
refers to a different model, varying the nature of the effect of blocks (1st letter) and of treatments (2nd letter): fixed (F)
or random (R)1.

1(k): Analysis with known variance components.

h2 n b B Block and treatment effects
     FF   FR(k)    RF(k)   RR(k)     FR     RF      RR

1 0.1 10   442.91  238.21   435.14  237.43  300.56  436.88  297.56
2 2   541.55  263.17   533.07  262.89  338.61  550.34  335.81
3 0.5 10  1485.66  317.27  1325.30  316.03  351.54  1361.72  351.76
4 50 2  1496.51  309.32  1346.60  309.08  350.16  1411.18  347.39
5 0.9 10  2009.04  324.52  1567.63  319.75  370.36  1626.19  364.88
6 2  1868.18  370.39  1560.70  368.97  414.66  1658.49  406.90
7 0.1 20   461.23  265.82   449.90  265.02  440.77  452.11  354.44
8 5   601.199  260.90   582.40  260.68  392.28  598.17  345.47
9 100 0.5 20  1597.54  352.76  1387.57  351.09  420.04  1409.48  386.61
10 0.2 5  1609.29  325.43  1439.97  325.03  386.05  1471.42  360.37
11 0.9 20  1979.19  375.03  1569.38  368.60  431.03  1595.66  399.87
12 5  2032.83  353.82  1566.06  352.40  413.46  1677.57  383.54
13 0.1 40   470.80  253.13   463.32  252.95  404.41  464.03  345.80
14 10   609.20  240.80   591.83  240.66  367.44  601.08  328.50
15 200 0.5 40  1590.90  322.10  1395.86  319.44  387.70  1405.08  363.04
16 10  1734.79  344.89  1481.04  344.30  416.77  1529.82  396.22
17 0.9 40  2060.14  336.47  1589.24  330.42  395.16  1609.04  369.56
18 10  2087.43  344.11  1644.55  342.80  402.40  1694.74  382.11
19 0.1 10   126.04  128.74   122.70  127.61  237.74  123.18  212.52
20 2   151.90  126.83   149 .553  126.35  263.27  154.06  253.95
21 50 0.5 10   381.11  238.36   339.82  231.89  309.71  349.99  283.25
22 2   408.86  242.40   369.20  240.44  335.50  388.08  323.06
23 0.9 10   519.47  229.83   400.89  218.69  287.38  416.68  275.41
24 2   479.71  235.83   404.15  232.40  298.76  430.68  294.62
25 0.1 20   126.81  137.19   124.89  136.45  375.74  125.67  272.20
26 5   169.31  143.86   165.67  143.37  392.72  171.59  316.99
27 0.5 100 0.5 20   388.27  229.60   347.05  224.60  393.22  353.32  308.56
28 5   433.92  227.82   380.62  226.77  379.87  396.61  324.80
29 0.9 20   507.20  260.75   400.18  248.09     412 .410  405.69  321.81
30 5   531.92  240.81   416.59  236.64  383.96  439.07  327.20
31 0.1 40   116.90  141.15   115.28  140.38  382.99  115.40  297.84
32 10   164.94  154.49   160.92  154.21  384.80  162.67  320.20
33 200 0.5 40   412.41  252.66   365.21  247.58  417.71  368.82  351.28
34 10   431.49  219.66   374.64  218.69  358.10  385.70  317.12
35 0.9 40   519.16  251.31   408.22  240.67  384.62  411.35  326.80
36 10   544.66  256.17   435.60  252.20  401.88  445.78  359.34
37 0.1 10      40.89  58.57     40.34  58.15  210.88  40.54  174.56
38 2     57.84  72.47     57.18  72.07  295.34  57.98  269.00
39 0.5 10   114.66  126.97   105.08  120.84  239.19  106.90  206.09
40 50 2   116.83  112.89   106.58  109.93  283.68  110.53  255.33
41 0.9 10   146.83  264.89   126.58  234.93  149.68  118.53  135.33
42 2   137.14  119.15   114.27  113.21  270.38  122.39  255.94
43 0.8 0.1 20     36.19  341.11     35.60  215.80  54.40  35.56    53.78
44 5     58.68  70.21     57.54  69.55  371.27  58.48  284.29
45 100 0.5 20   113.68  135.38   102.27  129.05  417.97  104.37  288.33
46 5   121.43  118.42   108.18  116.25  389.58  111.14  295.05
47 0.9 20   132.33  137.25   105.17  124.46  364.75  106.41  251.42
48 5   149.63  132.58   123.82  127.15  368.66  129.30  293.54
49 0.1 40     38 .099  93.29     37.48  93.30  358.03  37.54  268.76
50 10     54.30  93.06     53.64  92.45  359.63  54.00  288.65
51 200 0.5 40   108.65  138.40      96.84  134.20  358.44  98.00  278.46
52 10   126.45  134.14   108.38  131.68  362.31  111.83  303.89
53 0.9 40   135.07  151.16   106.39  139.51  378.38  107.17  289.64
54 10   146.30  150.49   118.29  144.75  390.42  121.24  325.32
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Table 2 - Average values of the Spearman correlation among predictions and actual genetic effects of inbred lines across 100
simulations of augmented block designs with n = 50, 100 or 200 lines, heritability h2 equal to 0.5, 0.5 or 0.8,
coefficient of Smith b equal to 0.1, 0.5 or 0.9, and number of blocks given through 0.05n or 0.2n. Each column
refers to a different model, varying the nature of the effect of blocks (1st letter) and of treatments (2nd letter):
fixed (F) or random (R)1.

h2 n b B Block and treatment effects
FF FR(k) RF(k) RR(k) FR RF RR

1 0.1 10 0.509 0.556 0.513 0.557 0.469 0.514 0.471
2 2 0.476 0.511 0.480 0.511 0.428 0.477 0.429
3 0.5 10 0.332 0.352 0.340 0.356 0.291 0.342 0.294
4 50 2 0.337 0.357 0.350 0.358 0.290 0.343 0.294
5 0.9 10 0.307 0.341 0.348 0.360 0.289 0.340 0.308
6 2 0.287 0.321 0.313 0.328 0.265 0.309 0.272
7 0.1 20 0.512 0.560 0.513 0.561 0.409 0.512 0.420
8 5 0.462 0.514 0.466 0.514 0.378 0.465 0.383
9 100 0.5 20 0.324 0.370 0.342 0.375 0.276 0.340 0.280
10 0.2 5 0.311 0.364 0.323 0.365 0.278 0.321 0.281
11 0.9 20 0.297 0.344 0.322 0.360 0.267 0.322 0.282
12 5 0.285 0.340 0.315 0.342 0.269 0.306 0.274
13 0.1 40 0.498 0.570 0.502 0.571 0.398 0.502 0.393
14 10 0.466 0.558 0.471 0.559 0.386 0.468 0.384
15 200 0.5 40 0.328 0.405 0.343 0.411 0.279 0.342 0.281
16 10 0.324 0.417 0.347 0.418 0.287 0.341 0.287
17 0.9 40 0.301 0.376 0.334 0.395 0.261 0.332 0.274
18 10 0.290 0.369 0.322 0.372 0.246 0.318 0.249
19 0.1 10 0.710 0.725 0.713 0.727 0.606 0.712 0.611
20 2 0.662 0.684 0.664 0.685 0.566 0.658 0.567
21 50 0.5 10 0.538 0.571 0.560 0.580 0.471 0.557 0.484
22 2 0.542 0.573 0.561 0.575 0.468 0.551 0.474
23 0.9 10 0.478 0.520 0.523 0.539 0.441 0.516 0.459
24 2 0.470 0.513 0.494 0.520 0.428 0.485 0.437
25 0.1 20 0.710 0.727 0.713 0.729 0.500 0.711 0.519
26 5 0.678 0.714 0.684 0.715 0.492 0.678 0.504
27 0.5 100 0.5 20 0.522 0.567 0.538 0.573 0.413 0.535 0.427
28 5 0.510 0.568 0.530 0.569 0.422 0.523 0.428
29 0.9 20 0.490 0.542 0.530 0.567 0.409 0.527 0.430
30 5 0.475 0.542 0.519 0.552 0.401 0.511 0.415
31 0.1 40 0.710 0.741 0.712 0.742 0.491 0.712 0.488
32 10 0.678 0.728 0.682 0.729 0.488 0.681 0.487
33 200 0.5 40 0.536 0.600 0.553 0.610 0.406 0.552 0.406
34 10 0.515 0.597 0.538 0.599 0.407 0.534 0.406
35 0.9 40 0.488 0.567 0.529 0.587 0.386 0.527 0.394
36 10 0.493 0.583 0.528 0.588 0.397 0.525 0.398
37 0.1 10 0.855 0.858 0.857 0.860 0.680 0.856 0.694
38 2 0.838 0.843 0.840 0.846 0.644 0.838 0.652
39 0.5 10 0.732 0.741 0.744 0.749 0.619 0.742 0.637
40 50 2 0.738 0.753 0.752 0.759 0.600 0.746 0.609
41 0.9 10 0.698 0.753 0.722 0.659 0.700 0.726 0.709
42 2 0.689 0.712 0.714 0.723 0.585 0.707 0.593
43 0.8 0.1 20 0.863 0.527 0.865 0.528 0.593 0.843 0.822
44 5 0.835 0.843 0.838 0.844 0.560 0.835 0.576
45 100 0.5 20 0.724 0.747 0.740 0.758 0.512 0.737 0.542
46 5 0.723 0.756 0.738 0.759 0.534 0.734 0.549
47 0.9 20 0.691 0.718 0.723 0.741 0.506 0.721 0.542
48 5 0.704 0.735 0.732 0.745 0.526 0.726 0.544
49 0.1 40 0.856 0.838 0.858 0.840 0.526 0.858 0.526
50 10 0.843 0.827 0.845 0.828 0.523 0.843 0.522
51 200 0.5 40 0.727 0.748 0.744 0.760 0.495 0.742 0.498
52 10 0.717 0.755 0.741 0.760 0.504 0.736 0.502
53 0.9 40 0.691 0.725 0.724 0.746 0.481 0.723 0.496
54 10 0.697 0.738 0.730 0.751 0.486 0.727 0.491
1(k): Analysis with known variance components.
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Table 3 - Average values of �elite bias� across 100 simulations of augmented block designs with n = 50, 100 or 200 lines,
heritability h2 equal to 0.5, 0.5 or 0.8, coefficient of Smith b equal to 0.1, 0.5 or 0.9, and number of blocks given
through 0.05n or 0.2n. Each column refers to a different model, varying the nature of the effect of blocks (1st
letter) and of treatments (2nd letter): fixed (F) or random (R)1.

1(k): Analysis with known variance components.

h2 n b B Block and treatment effects
FF FR(k) RF(k) RR(k) FR RF RR

1 0.1 10 0.104 0.037 0.100 0.035 -0.075 0.099 -0.066
2 2 0.165 -0.041 0.162 -0.040 -0.129 0.168 -0.126
3 0.5 10 0.178 -0.026 0.177 -0.025 -0.078 0.176 -0.084
4 50 2 0.231 -0.141 0.229 -0.141 -0.106 0.232 -0.104
5 0.9 10 0.203 -0.067 0.197 -0.061 -0.083 0.201 -0.067
6 2 0.265 -0.118 0.249 -0.117 -0.080 0.253 -0.079
7 0.1 20 0.056 0.039 0.056 0.036 -0.407 0.056 -0.024
8 5 0.174 0.023 0.175 0.022 -0.248 0.177 -0.151
9 100 0.5 20 0.101 -0.016 0.100 -0.011 -0.358 0.102 -0.123
10 0.2 5 0.224 -0.113 0.223 -0.114 -0.196 0.224 -0.151
11 0.9 20 0.109 -0.032 0.113 -0.024 -0.356 0.110 -0.123
12 5 0.234 -0.137 0.227 -0.135 -0.193 0.229 -0.124
13 0.1 40 0.046 0.020 0.047 0.020 -0.403 0.047  0.005
14 10 0.122 0.061 0.124 0.061 -0.284 0.125 -0.083
15 200 0.5 40 0.104 0.045 0.103 0.046 -0.340 0.104 -0.030
16 10 0.170 -0.032 0.166 -0.032 -0.259 0.166 -0.165
17 0.9 40 0.065 -0.004 0.067 -0.003 -0.392 0.068 -0.059
18 10 0.178 -0.030 0.169 -0.029 -0.276 0.169 -0.138
19 0.1 10 0.076 0.071 0.078 0.071 -0.023 0.077  0.041
20 2 0.085 0.025 0.083 0.028 -0.175 0.085 -0.157
21 50 0.5 10 0.109 0.036 0.100 0.034 -0.084 0.103 -0.049
22 2 0.187 0.026 0.182 0.026 -0.100 0.183 -0.089
23 0.9 10 0.099 0.036 0.092 0.039 -0.080 0.096 -0.055
24 2 0.178 -0.019 0.178 -0.018 -0.117 0.176 -0.110
25 0.1 20 0.049 0.043 0.047 0.043 -0.361 0.048  0.032
26 5 0.083 0.039 0.085 0.040 -0.331 0.085 -0.118
27 0.5 100 0.5 20 0.058 0.047 0.059 0.051 -0.394 0.058  0.003
28 5 0.126 0.024 0.128 0.025 -0.269 0.126 -0.134
29 0.9 20 0.068 0.041 0.062 0.038 -0.372 0.063 -0.002
30 5 0.148 0.022 0.146 0.024 -0.267 0.146 -0.138
31 0.1 40 0.033 0.035 0.033 0.035 -0.370 0.034  0.021
32 10 0.065 0.068 0.064 0.068 -0.301 0.067  0.003
33 200 0.5 40 0.062 0.038 0.062 0.042 -0.371 0.062  0.022
34 10 0.106 0.054 0.105 0.053 -0.271 0.107 -0.063
35 0.9 40 0.038 0.014 0.038 0.018 -0.418 0.037 -0.004
36 10 0.107 0.047 0.104 0.046 -0.296 0.103 -0.095
37 0.1 10 0.020 0.001 0.019 -0.000 -0.066 0.019  0.016
38 2 0.069 0.076 0.069 0.076 -0.090 0.069 -0.041
39 0.5 10 0.043 0.025 0.044 0.029 -0.028 0.044  0.010
40 50 2 0.095 0.069 0.092 0.070 -0.131 0.089 -0.066
41 0.9 10 0.096 0.079 0.082 0.060 -0.141 0.087 -0.056
42 2 0.120 0.050 0.115 0.055 -0.130 0.114 -0.110
43 0.8 0.1 20 0.028 0.069 0.028 0.070 -0.339 0.027  0.017
44 5 0.048 0.048 0.048 0.047 -0.326 0.048 -0.037
45 100 0.5 20 0.072 0.068 0.075 0.064 -0.343 0.073  0.043
46 5 0.118 0.091 0.119 0.092 -0.291 0.119 -0.036
47 0.9 20 0.019 0.025 0.028 0.033 -0.398 0.026  0.017
48 5 0.109 0.095 0.104 0.092 -0.282 0.105 -0.057
49 0.1 40 0.028 0.048 0.028 0.048 -0.350 0.029  0.034
50 10 0.027 0.069 0.028 0.070 -0.339 0.027  0.017
51 200 0.5 40 0.066 0.053 0.065 0.053 -0.341 0.065  0.049
52 10 0.059 0.069 0.055 0.071 -0.293 0.056  0.002
53 0.9 40 0.040 0.024 0.041 0.027 -0.386 0.041  0.024
54 10 0.103 0.092 0.098 0.100 -0.267 0.10  0.027
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Focusing only on the approaches with unknown
variance components, the RF model was generally
superior to the others, with regard Spearman correlation
(Table 2), having the highest values in 90.7% of the times
(49 situations). In the remaining situations, the RF
Spearman correlation was always close to the highest
value observed (situations 20, 26, 38, 43 and 44). These
results suggest that, for a wide range of conditions, if
selection is truncated, interblock information should be
recovered, the precision being at least comparable to the
intrablock analysis. However, taking the randomness of
the inbred lines into account seems unjustified, as well
as the generation of molecular data, if one has to
estimate variance components with the augmented block
design.

In order to evidence those situations where
recovery of interblock information is more noticeable,
especially with truncated selection, one could take only
those situations in Table 2 where the value of Spearman
correlation of RF model was at least (say) 0.02 superior
to that of FF model. There were 18 such cases, almost
all with b equal to 0.9. Two exceptions were observed,
with b equal to 0.5 (situations 9 and 16 of Table 2). This
agrees with the fact that recovery of interblock information
is more relevant when differences among blocks are
small (high b), as pointed out by Duarte (2000).

If, however, in a breeding program, the selection
is made in relation to a standard cultivated variety (non-
truncated selection), then the �elite bias� is of particular
interest (Table 3). Contrary to the trend observed with
Spearman correlation, the RR(k) model was superior
(smallest elite bias in absolute values) in a relatively low
frequency (29.6%, or 31 situations). However, it must be
noticed that such model showed an elite bias almost
always quite close to the smallest observed. In the cases
where this was not observed (situations 29, 32 and 35
of Table 3), the smallest value was observed with RR
model, which is different from RR(k) only in the sense
that variance components are estimated.

The RR approach presented the smallest elite
bias (in absolute values) in most of the cases (85.2%).
These results suggest that if selection is non-truncated,
then recovery of both interblock and intergenotypic
information is suitable, especially if genetic similarities are
accounted for using molecular data. The efficiency of the
recovery of intergenotypic information when selection is
non-truncated is related to the shrinkage effect, typical
to be observed with the random effects of mixed models,
yielding a more accurate distribution of such effects, in
relation to the ordinary least squares means (fixed
model). Results in Tables 2 and 3 suggest that the choice
of the model should be based on the type of selection
that is to be practiced.

The superiority of RR model, in relation to elite
bias, is more pronounced under intermediate to high
values of b. For instance, confronting situations 2, 4 and
6 of Table 3, under the same conditions but the value of
b, equal to 0.1, 0.5 and 0.9, it can be seen that the
difference of the RR elite bias from that of RF increases
from 0.04, in situation 2, to 0.13 and 0.17 in situations 4
and 6. Similar comparisons can be made, for example,
taking situations 8, 10 and 12. With high heritability, such
differences tend to diminish, but the same trend is
observed varying the value of b (see, for example, elite
bias of situations 50, 52 and 54, of RR and RF models).
Anyway, this suggests that with high precision (high
heritability and low b), non-truncated selection would also
be effective considering treatment effects as fixed. The
FR model was considerably poorer (Table 3), showing
high (in absolute values) and negative elite biases, which
would mean a high discard of elite lines.

The EM algorithm used in this study was
extremely slow to converge, especially in the RR model,
in which three variance components were to be estimated
(residual, block and treatment). This suggests that this
algorithm should be optimized to fit mixed models such
as those of this study, or alternative numerical procedures
should be investigated.
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