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EVALUATION OF VARIOUS
INFILTRATION MODELS

Many approaches have been presented
to solve the problem of infiltration of water into a
soil. Youngs (1995) reviews the historic
development of infiltration theory including the
classic solutions based on the Richards equation.
For a comprehensive review of analytical and
empirical solutions see Kutilek & Nielsen (1994).
A typical use of these parameterized solutions is
as fitting models for measured data sets. The
optimized parameters serve as a convenient,
condensed description of the data and are also
used for predictive purposes.

Uncertainty is inherent in model
predictions and is caused by several factors
including imperfectly known model parameters
and potential model error, e.g., errors due to
violation of assumptions made in the development
of the model. It would seem desirable to report, as
a rule, an estimate of uncertainty together with
any model prediction. While the model error will
in general be unknown, the parameter uncertainty
can be estimated in form of confidence intervals if
the parameters are obtained by fitting measured
data. This estimate is derived from the shape of
the objective function in the immediate vicinity of
the optimized parameter set and will be precise
for a linear fitting model with zero model error
and measurement errors that are uncorrelated and
normally distributed. Using the Monte-Carlo
method, it is possible to obtain the actual
distributions of optimized parameters that can be
used to evaluate the accuracy of estimated
confidence limits for nonlinear fitting models.

We compared infiltration equations in
terms of their fitting ability and accuracy of
estimated parameter confidence intervals.
Specifically, we tested six models for three
different levels of simulated measurement errors.
The objective was to identify the models that
provide the best parameter and uncertainty
estimates while converging fast and reliably.

Selection of infiltration equations was
necessarily somewhat arbitrary given their great
number, however, we included those that we
believe to be widely used. Empirical models
tested were those proposed by Mezencev (1948)
and by Horton (1940). Four models derived from
physical considerations were tested: Green &
Ampt (1911), Parlange et al (1982), Philip
(1957), and Swartzendruber (1987). Within the
framework of assumptions made in the
development of these models, their parameters
can be physically interpreted. However, when
applied to field-obtained infiltration data, the
physically based models are used in a manner
effectively similar to the empirical models
because a number of the assumptions are typically
violated (e.g., uniformity of medium properties
and of initial water content). Thus for the
purposes of this study, each model's parameter
vector was considered unknown and subjected to
the fitting procedure.

Reference data free of measurement
errors are prerequisite to generating data sets with
controlled 'measurement' errors. For this purpose,
cumulative infiltration I as a function of time t
was predicted using a one-dimensional numerical
scheme solving the Richards equation.
Assumptions inherent in the simulations include a
rigid homogeneous medium, isothermal
conditions, and a continuous air phase at
atmospheric pressure at all times.

The hydraulic properties of a given soil
determine the shape of the respective infiltration
curve, possible shapes ranging from significantly
curved over the time frame of interest to quickly
approaching steady state. To cover two points in
the soil hydraulic spectrum, reference data were
obtained for a sandy loam and for a clay. For
each, two I(f) reference data sets over 5 hr and 20
hr were obtained and represented by 70 and 140
(I, t) points, respectively. Points were selected so
as to be equal-spaced on a t0.5 -axis, thus
providing the highest density at the origin.

Fitting data sets over two different
periods (5 hr and 20 hr) was done to identify the



effect, if any, of the later part of the curve on
goodness of fit and on the length of confidence
intervals for optimized parameters. In addition, it
allowed comparison of optimized parameters
between long and short sets to identify time-
dependence of the parameters.

Soil water retention and conductivity
curves were described by van Genuchten's (1980)
relationships, Equations (1) through (3). Using
data given by van Genuchten (1980), qr, qs, a, n,
Ks, and l, were set equal to 0.0, 0.446, 0.152 m-1,
1.17, 3.417 10-5 m/hr, and 0.5, respectively, for
the clay. In case of the sandy loam, the hydraulic
parameters were set to 0.1346, 0.3213, 1.74 m-1,
1.8646, 3.5125 10-3 m/hr, and -0.4509,
respectively (Wendroth, 1993). Initial condition
was equilibrium with a negative soil-water
pressure head of 5 m and 15 m at the soil surface
for the sandy loam and clay, respectively.
Constant-head boundary conditions were applied
at the top and bottom of the modeled spatial
domain. Surface ponding depth was set to 5 cm
for both soil types. Pressure head at the bottom
was fixed at zero, simulating a stationary
groundwater table. For consistency with the
equilibrium initial condition, bottom depth was
15 m for the clay and 5 m for the sandy loam.

The solution h(z, t) was obtained from a
finite-element, Picard time-iterative model using
linear elements and a Galerkin formulation at
each time step. An adaptive-grid algorithm was
developed that periodically recreates the finite-
element grid, depending on the position of the
wetting front, to keep the highest node density at
the critical portion of the h(z)-curve. The number
of grid nodes may change over the course of a
simulation. For the cases presented here, it was
on the order of 1000 at all times. Total mass
balance errors were 1.62% and 0.69% for the
sand and clay simulations, respectively. The
adaptive-grid finite-element Richards-Equation
Solver RES-ID, written in C for UNIX, will be
documented and released into the public domain.

Six infiltration equations with either
two or three parameters were tested. The model
equations are listed in TABLE 1, together with
respective two-letter abbreviations.

Note that both the GA and the PA
model are nonexplicit expressions requiring
iterative solutions in t for each / to be predicted.
Since cumulative infiltration grows monotonically
with time, a bisection method was employed in

both cases to find the value of I whose argument t
matches the time for which the respective
prediction is to be made. The iterative nature of
the bisection process causes an increase in
computational cost by one or several orders of
magnitude, depending on the desired accuracy.

The six-parameter infiltration model by
Haverkamp et al. (1990, implicit equation;
recently, an explicit approximation has been
published by Barry et al., 1995) was also tested
but found to be poorly suited for fitting. The
model was excluded from this study because the
nonuniqueness problems resulting from the large
number of parameters prevented effective
parameter estimation.

Parameter optimization was performed
by squared-residual minimization using the
program LM-OPT (Clausnitzer & Hopmans,
1995), an implementation of the Levenberg-
Marquardt (LM) algorithm. The LM algorithm
combines the standard steepest-descent and
quadratic-extrapolation minimization methods
using a unitless parameter I that is updated after
each iteration. The l-updating procedures in LM-
OPT are extensions of the standard LM
procedure, aimed at improving efficiency by
reducing the number of iterations needed to reach
convergence at an optimum. LM-OPT was used to
minimize an objective function q defined as the
sum of normalized residuals according to

where ti, Ii, ri, and s2
i are the time and cumulative

infiltration, residual, and measurement variance,
respectively, at data point T. The total number of
data points is N. The predicted cumulative
infiltration is obtained from the model function
7(ti, p) utilizing the parameter vector p, which is
different for each of the infiltration equations of
TABLE 1. Each optimization was terminated once
there was less than 0.001 relative improvement in
the objective function q.

'Measured' data sets were generated
from each of the reference sets by imposing
normally distributed, independent 'measurement1

errors in I on the I(t) reference data. To identify
the effect of the magnitude of the measurement
errors, three values for the standard deviation of
the imposed errors, SE, were chosen for each soil.



These error levels SE were defined so that for any
two adjacent data points I(ti) and I(ti+1), I(ti) + ksE

would be approximately equal to I(ti+1) - ksE, with
k equal to three, two, or one. The corresponding
sE-values are 0.000007 m, 0.000014 m, and
0.000021 m for the clay, and 0.0001 m, 0.0002 m,
and 0.0003 m for the sandy loam. Five thousand
data sets were generated for each reference set
and error level. Setting variance values s2i equal
to the square of the respective sE-value, each
model equation was fitted to each of the error-
imposed data sets. Thus, 5000 optimized
parameter sets were obtained for each model
equation and given combination of reference data
and error level. Initial parameter estimates for
fitting the error-imposed data sets were obtained
by fitting each model equation to the respective
reference curve first.
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