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Introduction

Differences in individual growth curves reflect
partly genetic influences, with multiple genes contrib-
uting at different levels to the overall growth trajectory.
In the current post-genomic era, the understanding of
the genetic architecture of pig growth cannot be limited
simply to the detection of QTLs for body weights at
a specific age (Ai et al., 2012; Yoo et al., 2014). It can
be extended for a more general purpose by considering
whole growth trajectories over time as phenotypes.

Traditionally, the easiest way to consider the
whole growth trajectory directly in animal breeding
models is the two-step method, in which fitting the

ABSTRACT: Genome association analyses have been successful in identifying quantitative trait
loci (QTLs) for pig body weights measured at a single age. However, when considering the whole
weight trajectories over time in the context of genome association analyses, it is important to
look at the markers that affect growth curve parameters. The easiest way to consider them is
via the two-step method, in which the growth curve parameters and marker effects are esti-
mated separately, thereby resulting in a reduction of the statistical power and the precision of
estimates. One efficient solution is to adopt nonlinear mixed models (NMM), which enables a joint
modeling of the individual growth curves and marker effects. Our aim was to propose a genome
association analysis for growth curves in pigs based on NMM as well as to compare it with the
traditional two-step method. In addition, we also aimed to identify the nearest candidate genes
related to significant SNP (single nucleotide polymorphism) markers. The NMM presented a
higher number of significant SNPs for adult weight (A) and maturity rate (K), and provided a direct
way to test SNP significance simultaneously for both the A and K parameters. Furthermore, all
significant SNPs from the two-step method were also reported in the NMM analysis. The ontology
of the three candidate genes (SH3BGRL2, MAPK14, and MYL9) derived from significant SNPs
(simultaneously affecting A and K) allows us to make inferences with regards to their contribution
to the pig growth process in the population studied.
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Another interesting point in these analyses is the
identification of the candidate genes most closely related
to significant SNPs. There are studies considering this
gene identification for growth curve parameters in hu-
mans (Das et al., 2011a) and cattle (Crispim et al., 2015),
but for pig growth curves, this approach has not been
employed in previous studies.

In this context, we aimed to propose a genome
association analysis for growth curves in pigs based on
nonlinear mixed models and the traditional two-step
method. Additionally, we aimed to identify candidate
genes related to significant SNPs whose biological func-
tions can be useful in explaining the genetic basis of
postnatal growth in pigs.

individual growth curve (step 1) and genetic analysis

(step 2) are considered separately. However, the

Materials and Methods

growth-curve coefficients and genetic effects are not

estimated jointly in the same model, and this may
result in a reduction of statistical power and precision
of estimates (Varona et al., 1999; Blasco et al., 2003;
One efficient
solution is to adopt nonlinear mixed models, which
enables a joint modeling of the individual growth
curves and genetic effects. Although this class of
models has already been adopted for the traditional
(Varona et al., 1999; Blasco et al., 2003) and genomic
prediction of
breeding values, there are no reports about their use in

Ibafiez-Escriche and Blasco, 2011).

(Ibafiez-Escriche and Blasco, 2011)

genome association analyses.

Experimental population and phenotypic data

The phenotypic data was obtained from an ex-
periment carried out in Vicosa, in the state of Minas
Gerais, located in the geographic coordinates 20° 45'
14" S and 42° 52' 55" W, at 648 m altitude. A three-
generation resource population was raised and managed
as described by Hidalgo et al. (2013) and Verardo et al.
(2015). Briefly, two naturalized Piau breed grandsires
were crossed with 18 granddams from a commercial
line composed of Large White, Landrace, and Pietrain
breeds to produce the F1 generation, from which 11 F1
sires and 54 F1 dams were selected. These F1 individu-
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als were crossed to produce the F2 population, of which
345 animals were weighed at birth and at 21, 42, 63, 77,
105, and 150 days of age. The use of these animals was
reviewed and approved by the Bioethics committee of
the Department of Animal Science (DZO-UFV) in agree-
ment with the Guide to the Care and Use of Experimen-
tal Animals of the Canadian Council on Animal Care.

DNA extraction, genotyping, and SNP quality control

Genomic DNA was extracted from the white cells
of parental, F1, and F2 animals; more details can be
found in Band et al., 2005b. The low-density customized
SNPChip with 384 markers was based on the Illumina
Porcine SNP60 BeadChip (San Diego, CA, USA, Ramos
etal., 2009). These SNPs were selected according to OTL
positions that had been previously identified in this pop-
ulation by using meta-analyses (Silva et al., 2011) and
fine mapping (Hidalgo et al., 2013; Verardo et al., 2015).
Thus, although a small number of markers have been
used, the customized SNPchip based on previously iden-
tified OTL positions ensures appropriate coverage of the
relevant genome regions in this population. From these,
66 SNPs were discarded because of a low-genotyping
call rate (< 0.95), and from the remaining 318 SNPs, 81
were discarded due to a minor allele frequency (MAF)
< 0.05. Thus, 237 SNP markers were distributed on
the Sus scrofa chromosomes (SSC) as follows: SSC1 (56),
SSC4 (54), SSC7 (59), SSC8 (30), SSC17 (25), and SSCX
(13). The average distance between markers within each
chromosome was equal to 5.17, 2.37, 2.25, 3.93, 2.68,
and 11.0 Mb, respectively, for SSC1, SSC4, SSC7, SSC8,
SSC17, and SSCX.

Proposed genome association analyses through
nonlinear mixed models (NMM)

The NMM are based on a mean curve that is fitted
to the population, so that the individual curves, incor-
porating the random effects of each individual, appear
as deviations from this mean curve. Similarly, particular
curves for fixed effects, like SNPs in genome association
analyses and other systematic effects (contemporary
groups), can also be directly accessed.

Five of the most widely used nonlinear regression
models (Brody, Gompertz, logistic, von Bertalanffy, and
Richards) to describe animal growth curves were fitted
to the phenotypic data (345 animals weighed at birth and
at 21, 42, 63, 77, 105, and 150 days of age) by using
the nlme (Linear and Nonlinear Mixed Effects Models) R (R
Development Core Team, 2015) software package. The
nonlinear logistic mixed model outperformed the oth-
ers in relation to the AIC (Akaike Information Criterion)
and BIC (Bayesian Information Criterion) criteria and
was chosen to describe the pig growth curves. The basic
form of the logistic model (Ratkowsky, 1983) is defined
as follows:

A,
wWo=——1  _ie, 1
Y [1+bexp( K,UJ Y )
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where w, is the weight of the animal 7 at age (t) j; A, is
the mature (adult) weight (kg); K, is the maturing rate (a
growth precocity measure, or the general growth rate);
b, is the integration parameter, which has no biological
interpretation but is essential to providing the sigmoid
shape of the curve; and e; is a residual term, assumed to
be independent and normally distributed, e; ~ N(0, c7).

In the context of NMM, the parameters (A, b, and
K) in (1) can be modeled by using a linear mixed model,
which considers the fixed and random effects of interest.
In the present study, the contemporary group (combina-
tion of sexes, batches, and halothane gene genotypes),
five principal components (PC,, PC,, ..., PC ) of the geno-
type matrix (M) and SNP were assumed to be fixed ef-
fects, while the individual animal effects were assumed
to be random effects. The fixed PC effects were used to
account for population-specific (substructures) variations
in the distribution of alleles on the SNPs under investiga-
tion. Such population substructures mainly arise as a con-
sequence of varying frequencies in minor alleles due to
systematic ancestry differences, and the presence of these
substructures can cause spurious SNP associations (Price
et al., 2006). Thus, by adding the PCs as fixed covariates in
the models that were used for genome association analy-
ses, we can point to groups of individuals that differ at the
level of minor allele frequencies (Patterson et al., 2006).

The contemporary group (CG) effects were con-
sidered to correct the phenotype for non-genetic effects
that can influence the significance of SNP effects, and
the individual random effects are included to correct
for the influence of observational units (in this case, the
animals) associated with the sampled phenotype. In fact,
these random effects work like a special residual term
that is specific to each growth curve parameter. In sum-
mary, NMM account simultaneously for both fixed and
random effects of the growth curve parameters, which
support the joint estimation of these parameters of in-
terest (for example, adult weight and maturity rate) to-
gether with SNP effects.

In view of these considerations, the genome asso-
ciation analysis model for growth curve parameters was
proposed by accommodating fixed and random effects
for the parameters A and K. This corresponds to a linear
model to explain variations in these parameters, within
a general nonlinear model that describes the growth be-
havior of the animals over time. The null model (i.e.,
without SNP effects) was defined as follows:

u,+CG+PC+E,
{l+ub exp[ (HK +CG+PC+§KI)t,.}}}

W (2)

i = ei]..

The model in (2) assumes that the parameters A
(adult weight), b (integration parameter), and K (matu-
rity rate) can be modeled, respectively, by the following
linear models: A, = u, + CG + PC + §,; b, = n,; and
K =p,+ CG + PC + ¢,. In these models, the term
represents the general mean of each parameter; CG and
PC indicate the fixed effects of the contemporary group
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and principal components (as a covariate), respectively;
and &, and ,, are the specific residual terms (random
individual effects) for the parameters A and K. These are
assumed to be jointly distributed as

oo

where 0 is a vector of zero means and X is a residual
covariance between these parameters:

Z: Gi\ 6A,K

Ouk ox ,
where ¢’ and o% are the specific residual variances of
each parameter, and o, . is the residual covariance be-
tween them.

At this point, it is worth emphasizing that another
advantage of NMM over the traditional two-step method
is this joint modeling of residual effects, since the cor-
relation between growth curve parameters exists and
must be incorporated, when modeling, into the genetic
models (Varona et al., 1999; Blasco et al., 2003; Ibafiez-
Escriche and Blasco, 2011). Note that for parameter b,
it was assumed that the model contained only a general
mean (ub) since this parameter showed no variation be-
tween individuals, contributing to several convergence
problems. Furthermore, this parameter does not have
biological interpretations like the A and K parameters.

The full model that was contrasted with the null
model presented in (2) was defined as follows:

n, +SNP+CG+PC+¢E,
{1+pbexp[—(uk+SNP+CG+PC'+E,Ki)}tI.].}

I’Vij: +e, .(3)

7

This model assumes that the parameters A and K
are also affected by SNP effects, in addition to the fixed
and random effects described in (2). It is important to
note that this model suggests that the same SNP marker
simultaneously affects both the adult weight (A) and ma-
turity rate (K) parameters. Thus, due to this significance,
one given SNP can be characterized as a relevant marker
which explains the growth process in pigs. On the other
hand, intermediary models that assume the SNP marker
separately affect A (model in 4) or K (model in 5) and can
also be proposed as follows:

W. < uA+SNP+CG+PC+EJAi e, (4)

i {1+ubexp[—(pK+CG+PC+§Kl):|tU_} i

pa +CG+PC+E,

W. =
{1 + ubexp[—(uK +SNP+CG+PC+Ey )tij

y

+e, (5)
I

To draw conclusions regarding the statistical sig-
nificance of each SNP, the models in (3), (4), and (5) were
compared with the null model in (2) by using the like-
lihood ratio test (LRT) under a general null hypothesis
(H,: there is no effect of the SNP marker), contrasted
with specific alternative hypotheses (H,,,: SNP effect si-

multaneously on A and K parameters; H ,: SNP effect
only on A parameter; H ,: SNP effect only on K param-
eter). The testing of hypotheses H ., H,, and H ; can be
performed, respectively, by the assessment of the follow-

ing LRT statistics:

max of the likelihood of model 2
max of the likelihood of model 3)'

LRT,, = —21n[

LRT, = _Zln(max of the likelihood of model 2} and

max of the likelihood of model 4

LRT. = Zln(max of the likelihood of model Zj
=

max of the likelihood of model 5

These LRT values are assumed to be chi-squared
(x?) distributed with D degrees of freedom, where D is
the difference between the number of parameters of the
two models compared.

Following the general philosophy of the genome
association analyses, the models in (2), (3), (4), and (5)
were fitted (by the Maximum Likelihood Method in
the package nlme of R) separately for each of the SNP
markers considered, thus leading to the problem of
multiple independent statistical tests. Adjustments for
these multiple comparisons are needed to avoid spuri-
ous SNP associations due to the application of a large
number of tests. A strategy to correct for the simultane-
ous inference of many tests is the false discovery rate
(FDR), which provides a practical balance between the
true and false positive rates that were considered in
these tests. The FDR control is accomplished by using
a direct correction of original p-values, which shall be
called g-values. In the present study, the original p-val-
ues from LRT tests were transformed into g-values (the
FDR correction) by using the function g-value of the R/
bioconductor software. The 5 % significance level was
used as a threshold.

Genome association analyses through the tradition-
al two-step method

In the traditional two-step method, which is differ-
ent from the NMM, there are two distinct analyses; the
first one is related to individual fitting (independently for
each animal) of the nonlinear model in (1) and the sec-
ond one to the fitting of traditional genome association
analysis linear models while assuming the phenotypes
to be the estimates that were provided by the previous
analysis. These linear models which were considered in
the second step were determined as follows:

A =p,+SNP+CG+PC+&, and
K, i =g +SNP+CG+PC+&; , respectively, for adult
weight (A) and maturity rate (K). Note that the pheno-

types have been denoted by the estimation symbol (hat)
because they were previously estimated in the first step.
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The significance of each SNP was accessed via a
simple Student's t-test. Since these models were also fit-
ted independently for each SNP, the FDR correction was
also used to address the problem of multiple tests. The
previously mentioned linear models were implemented
by using the GWAS (Genome Wide Association Studies)
function of the package r#BLUP in the R software. The
original p-values that were reported in the output were
transformed into g-values (FDR correction) as they had
been previously done for NMM. Although the poorer
performance of the two-step method has already been
reported in the context of other mixed models in animal
breeding (Varona et al., 1999; Blasco et al., 2003; Ibafiez-
Escriche and Blasco, 2011), to date there has been no
mention of this performance when considering genome
association analysis models.

SNP derived candidate gene annotation

We exploited the biological mechanism of the pig
growth curve by taking into consideration the functions
of the annotated genes underlying the significant SNP
markers (g-value < 0.05). To track the genes that were
within or close to the markers, we used the package Map-
2NCBI (Hanna and Riley, 2014) of the R software based
on the Sscrofal0.2 assembly of the pig genome sequence.

Information about the identity and function of an-
notated genes at mapped SNP markers were obtained
from the chromosomal positions at the Ensembl Genome
Browser 2015 (http://www.ensembl.org/index.html). Lists
of the genes that are located closest to the significant SNPs
were extracted while allowing for a maximum distance of
1 Mb between the SNP and the annotated genes. Putative
genes that were identified for pig breeds were established
by a BLAST Homology search of known, identified human
gene transcripts, which were downloaded from the ge-
nome databanks of the National Center for Biotechnology
Information (NCBI) (http://www.ncbi.nlm.nih.gov/books/
NBK143764/). The biological function of these genes and
their possible relation to growth curve traits were inves-
tigated, and where no information was available for the
Sus scrofa genes, human, rat, and mouse biological func-
tion annotations were used to proceed with the in-silico
functional analyses. The Animal QTL database (Hu et al.,
2013) was accessed to verify previous OTL that were re-
ported for growth curve traits in the surrounding regions
of the significant SNPs. With this approach, it was pos-
sible to identify the biological mechanisms and functions
involving the identified genes as well as to highlight the
most relevant genes that are putatively associated with
growth curve parameters in pigs.

Results

To determine the nonlinear model that best de-
scribes the growth curve of the studied pig population,
the AIC and BIC goodness of fit measures were used. The
following values were obtained for these criteria: Brody
(AIC = 1297.36 and BIC = 1313.16), Gompertz (AIC =
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1291.42 and BIC = 1309.11), logistic (AIC = 1282.18
and BIC = 1301.01), von Bertalanffy (AIC = 1293.42
and BIC = 1310.00), and Richards (AIC = 1284.56 and
BIC = 1304.88). These results revealed the superiority
of the logistic model, which was chosen to describe the
pig growth curves in the subsequent analyses.

The list of significant SNPs based on nonlinear
mixed models (NMM) and the traditional two-step meth-
od that affect the adult weight (A) and maturity rate (K) in
pigs, as well as their genome positions and related genes,
(using the NCBI nomenclature) is shown in Table 1.

The NMM provided significant SNPs for param-
eter A, which were located on SSC1 and SSC7, whereas
for parameter K the SNPs were located on SSC1, SSC4,
SSC7, SSC8, and SSC17 (Table 1). On the other hand,
when using the two-step method, the significant SNP
for parameter A was located only on chromosome SSC1,
whereas for parameter K, the SNPs were located on
chromosomes SSC1 and SSC7 (Table 1). The number of
significant SNPs from NMM was higher than the num-
ber from the two-step approach, and the identification
of markers simultaneously affecting parameters A and
K (model in 3) provided extra information about chro-
mosome regions governing the growth trajectory in pigs.

Of the significant SNPs simultaneously affecting
A and K parameter estimates (i.e. using the NMM view-
point), we found the three genes SH3BGRL2, MAPK14,
and MYL9 in the chromosome regions of these SNPS.
In the same context, two SNPs (ALGA0026242 and
ALGA0047895) were identified from significant SNPs
that affected only the maturing rate parameter (K).

With the aim of visualizing the estimated effect
of each significant SNP on the whole growth trajectory
in pigs, genotypic curves for these markers were plot-
ted in Figure 1. We opted to show only significant mark-
ers that had simultaneously influenced the adult weight

Table 1 — Significant SNP associations for adult weight (A) and
maturity rate (K) across different genome association analyses
methods (nonlinear mixed models-NMM and two-step).

Method  Trait Marker gvalue Chr* Pos(bp)  Symbol**
ALGA0004774 0.0013 1 74040611 SH3BGRL2

A ALGAO040318 0.0005 7 35289714 MAPKI4
ALGA0004774 0.0017 1 74040611 SH3BGRL2
ALGA0026242 0.0100 4 80196806 DPT

NMM K ALGA0040318 0.0072 7 35289714 MAPK14
ALGA0047895 0.0124 8 25397346 MARCHI
ALGA0095662 0.0016 17 45268700 MYL9
ALGA0004774 0.0052 1 74040611 SH3BGRLZ2

A, K ALGA0O040318 0.0026 7 35289714 MAPK14
ALGA0095662 0.0224 17 45268700 MYL9

A ALGA0040318 0.0085 1 74040611 SH3BGRL2
ALGA0004774 0.0092 1 74040611 SH3BGRL2

K ALGA0040318 0.0096 7 35289714 MAPK14

*Chromosome; **The gene names are the following: SH3BGRL2 (SH3

Domain Binding Glutamate-Rich Protein), MAPK14 (Mitogen-Activated Protein
Kinase) and MYL9 (Myosin Regulatory Light Chain).

Two-Step
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(A) and maturity rate (K). Thus, we used the markers
ALGA0004774, ALGA0040318, and ALGA0095662 from
genome association analyses based on NMM as present-
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Figure 1 — Effects of significant SNPs (simultaneously on adult weight
and maturity rate) over the whole growth curve trajectory in pigs
based on genome association study using nonlinear mixed models.
The SNPs ALGA0004774, ALGA0040318 and ALGA0095662 are
presented in Figure 1A, B and C, respectively.

ed in Table 1 (trait A K). Each estimated curve was ob-
tained by using the following:

. fi, +SNPxX, ’
¢ {1+ﬁb exp[—(ﬁk +SNPxXg)th}

where the estimated SNP effect was reported by the fit-
ting of NMM and Xg, which represents each possible
genotype (0, 1, and 2; respectively for the genotypes
AA, AB, and BB according to A-B notation from Illumina
Porcine SNP60 BeadChip). This equation was applied
to each significant SNP, thus generating three different
curves, one for each genotype. The larger the difference
between these three curves, the larger the marker effect
on the growth curve of the animals.

Based on the functional study of genes underly-
ing the significant SNP markers, a number of candidate
genes could be identified and these are shown in Table 1.

Discussion

Genome association analyses through nonlinear
mixed models and the two-step method

The growth of pigs is a process that depends,
among others, on genetic effects acting over time. The
inclusion of a time dimension in the model would al-
low us to address questions related to genetic effects
throughout the life span of the animals. We presented a
modeling framework that integrates growth curve analy-
ses and SNP association studies simultaneously under a
nonlinear mixed model (NMM) approach.

Table 1 shows that, when compared with the tra-
ditional two-step, NMM detected a higher number of sig-
nificant SNP associations for both the adult weight (A) and
maturity rate (K) traits. Furthermore, NMM also provides
a direct way to test the SNP significance simultaneously
for both A and K, and all significant SNPs that were identi-
fied for A and K by using the two-step method were also
detected in the NMM analysis. Thus, the two-step method
did not reveal new significant markers in relation to NMM.

In summary, the standard two-step method, when
considering growth curve analyses, has several drawbacks.
It depends on how well the fixed nonlinear model fits in
the first step, since the estimates provided are considered
to be the phenotypes in the second step (genome associa-
tion study). Thus, a non-satisfactory fit in the first step di-
rectly results in non-reliable phenotypes in the second step,
and consequently, in inaccurate estimates of SNP effects.
It does not provide an explicit estimate of individual-level
variations in the parameter estimates, which can be seen
as the random individual effect under an NMM approach.
Thus, ignoring the individual deviation estimates can lead
to underestimated standard errors of parameter estimates,
which in this case are the SNP effects.

One of the major advantages of the NMM approach
is that it can discern the influence of genotypes on rel-
evant loci over the growth curve trajectory, thus revealing
age-related changes due to genetic influences on body size

Sci. Agric. v.74, n.1, p.1-7, January/February 2017
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during post-natal growth development. It can have great
implications for the design of an efficient marker assisted
selection (MAS) program in pigs, since the information
on individual genotypes at relevant loci (Figure 1) can be
used as an extra-criterion for the estimated breeding val-
ues (EBV) with regards to the selection of the most desir-
able animals from a genetic viewpoint.

Generally, a marker assisted selection (MAS) strat-
egy can be achieved by ranking the animals by EBVs (or
one related selection index) for growth performance, and
the subsequent mating of selected males and females
can be targeted by using SNP-specific genotypes to fa-
cilitate the fixation of favorable alleles (after identifying
the gametic linkage disequilibrium phase). For example,
in Figure 1 it is possible to note the differences in the
curve shapes when considering the genotypes for each
one of the significant SNPs. Particularly for the SNPs
ALGA0004774 (Figure 1A) and ALGA0040318 (Figure
1B), the growth curve for the genotype AA outperformed
the other genotypes (AB and BB), while for the SNP
ALGA0095662, the genotype BB showed better results
in terms of the growth curve shape in pigs.

Although this type of interpretation (Figure 1C) is
valid and relevant for MAS, it has not been exploited in
the field of animal breeding. On the other hand, in hu-
man genetics, the SNP effect with genotype differentia-
tion trajectories over time has been studied to detect the
genetic influence on dynamic traits. Das et al. (2011a)
plotted and interpreted age-specific trajectories of the
body mass index (BMI) in different sexes for three geno-
types at each significant SNP that was detected from the
various chromosomes. Analogously, Das et al. (2011Db)
fitted mean curves for different genotypes and comput-
ed the additive and dominant SNP effects over time for
blood pressure in the different sexes. Both of these stud-
ies exploited the estimation of the SNP effect over time
by using polynomial random regression models (that are
theoretically linear) because disease trajectories over
time do not show a well-known longitudinal behavior.
In light of the present study, when working with growth
curves whose longitudinal profiles are proven to be sig-
moidal, the use of nonlinear mixed models can be seen
as a new insight into genome association analyses. Thus,
mainly in the field of animal breeding, the use of NMM
can increase knowledge of the genetic architecture of
other important economical and longitudinal traits such
as milk and egg production.

In addition to all of the practical connotations of
pig breeding plans and MAS from genome association
analyses through NMM, the identified significant SNPs
can also be exploited while asking and addressing bio-
logical questions by identifying candidate genes behind
these SNPs as well as by interpreting their functions in
the genetics of pig growth.

SNP derived candidate gene annotation

In relation to the SH3BGRL2 (SH3 Domain Bind-
ing Glutamate-Rich Protein) gene located at SSC1 (Table
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1), Mazzocco et al. (2002) mentioned that some proteins
that are coded from this gene are highly homologous to
the N-terminal region of the SH3BGR protein and ap-
pear to be related to thioredoxin, one of whose functions
may be to promote the growth hormone in tissue-cul-
ture cells. In the context of growth related genes, several
studies have found significant QTL affecting the weight
and feed efficient traits in this same region of the SH3B-
GRL2 gene. Geldermann et al. (2010) found QTL for car-
cass weights when considering different F2 pig popula-
tions and Beeckmann et al. (2003) reported QTL related
to feed intake by using F2 families based on crosses of
Meishan, Pietrain, and Wild Boar.

The protein encoded by the MAPK14 (Mitogen-
Activated Protein Kinase) gene is a member of the MAP
(Mitogen-Activated Protein) kinase family. MAP kinases
act as an integration point for multiple biochemical sig-
nals and are involved in a wide variety of cellular pro-
cesses such as proliferation, differentiation, transcrip-
tion, regulation, and development. In this context, Evans
et al. (2003) identified significant QTL in the region of
the MAPKI14 gene for average daily gain (ADG) when
considering commercial populations based on Large
White, Landrace, Hampshire, Pietrain, and Meishan
pigs. Analogously, Fontanesi et al. (2014) also found sig-
nificant QTL for ADG when considering a population of
Italian Large White pigs.

Regarding the MYL9 (Myosin Regulatory Light
Chain) gene, Fan et al. (2011) reported an important role
of this gene in pathways involving bone and cartilage
development, muscle growth, and development while
considering different spatial and temporal stages. In this
same region, Onteru et al. (2013) reported significant
OTL for ADG when considering Yorkshire derived lines.
Similarly, Pierzchala et al. (2003) detected significant
QTLs for ADG in this region when using purebred pigs
of the three genetically diverse founder groups: Meis-
han, Pietrain, and European Wild Boar.

In summary, whereas the genome association anal-
yses is an unbiased search of the entire genome without
any assumptions about the role of a certain gene, the
candidate gene approach allows researchers to investi-
gate the validity of genes regarding the genetic basis of
a complex trait. Thus, when combining these two ap-
proaches in the same study, we have the advantage of
identifying candidate genes from the same population in
which significant markers were identified for the traits
of interest. Since the first critical step in conducting can-
didate gene studies is the choice of a suitable gene which
may plausibly play a relevant role in the traits studied,
the ontology of the three genes (SH3BGRL2, MAPKI14,
and MYL9) derived from significant SNPs (simultaneous-
ly affecting A and K in Table 1) allows us to make infer-
ences about their contribution to the pig growth process
in the population that was considered.

To validate the reported candidate genes, comple-
mentary studies like gene expression analyses and gene
re-sequencing should be considered in the future. These
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analyses could be carried out by considering contrasting
conditions, such as groups of animals that are genetically
different in relation to their growth curve shapes. These
groups can be selected, for example, by means of the
predicted genomic breeding values for the growth curve
parameter as presented by Silva et al. (2013).
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