Runoff, Identification of Sensitive Zones in the Capivari Watershed - BA

Geisa Nascimento de Santana Luiz Artur dos Santos da Silva Rosangela Leal Santos Jesus Manuel Delgado-Mendez Claudia Bloisi Vaz Sampaio About the authors

Abstract

The watershed is an active environment, defined as an area of land surface drained by a primary river and its tributaries, which are bounded by water dividers. Among the processes that affect water movement in a watershed, the surface runoff stands out, responsible for the transport of soil particles (nutrients and pollutants) to the lower parts of the landscape. The objective of this study was to demonstrate the influence of land use and cover on surface runoff dynamics in the Capivari Basin in Bahia, Brazil. To reach that objective, the Curve Number method (SCS-CN) was employed, with the ALOS/PALSAR RTC Digital Elevation Model; IBGE soil data; data from government weather stations and local agribusiness; land use and land cover from the LC08_L1TP_216069_20170619 landsat8 OLI sensor, through the classifier Bhattacharya. The processing was carried out on a GIS platform, using SPRING and QGIS software. Highest levels of precipitation, the soil features and the higher slope affected the greatest vulnerability to runoff at the mouth, based on the proposed model, however, the most conserved Permanent Preservation Area (PPA) have been effective in maintaining the Capivari River in these areas. The areas considered most critical in terms of the risk of water erosion for the year 2017 were those in the middle of Capivari, because they presented high precipitation in some months, but do not present PPA in riparian forest areas or in hill tops, this increases the vulnerability of these regions to erosion. The proposed model was successful in identifying areas most vulnerable to runoff in the Capivari Basin.

Keywords:
Drainage basin; SCS-CN; Hydrology

INTRODUCTION

The hydrographic basin, or watershed, is a dynamic environment, with a chain of interdependence between its compartments (atmosphere, precipitation, vegetation cover, relief, soil and water), being defined as an area of the land surface drained by a main river and its tributaries, being delimited by the water dividers, or edges (BOTELHO, 2012BOTELHO, R. G. M. Planejamento ambiental em microbacia hidrográfica. Erosão e conservação dos solos: conceitos, temas e aplicações. 8ª ed. Rio de Janeiro: Bertrand Brasil, 2012.), or even, as an area of natural capture of precipitation water that converges the flow to a single exit point, its outlet (SAHA et al., 2022SAHA, S.; DAS, J.; MANDAL, T. Investigation of the watershed hydro-morphologic characteristics through the morphometric analysis: a study on Rayeng basin in Darjeeling Himalaya. Environmental Challenges, p. 100463, 2022. https://doi.org/10.1016/j.envc.2022.100463.
https://doi.org/10.1016/j.envc.2022.1004...
).

In the current scenario, of scarcity of water resources both in quantity and quality (FERREIRA et al., 2020FERREIRA, S. C. G.; DE LIMA, A. M. M.; CORRÊA, J. A. M. Indicators of hydrological sustainability, governance and water resource regulation in the Moju river basin (PA)-Eastern Amazonia. Journal of Environmental Management, v. 263, p. 110354, 2020. https://doi.org/10.1016/j.jenvman.2020.110354
https://doi.org/10.1016/j.jenvman.2020.1...
; KUMAR et al., 2021KUMAR, A.; KANGA, S.; TALOOR, A. K.; SINGH, S. K.; ĐURIN, B. Surface runoff estimation of Sind river basin using integrated SCS-CN and GIS techniques. HydroResearch, v. 4, p. 61-74, 2021. https://doi.org/10.1016/j.hydres.2021.08.001.
https://doi.org/10.1016/j.hydres.2021.08...
), it is essential to understand the processes that occur in a hydrographic basin, in addition to the environmental elements involved, considering that a developing society causes changes that influence the physical structure, affecting the contribution of sediment, the composition of biota, the hydraulic regime and the flow of substance and energy in these areas (FINOTTI et al., 2011FINOTTI, A. R.; CEMIN, G.; PÉRICO, E. Potencialidades do Sensoriamento Remoto e do Sistema de Informações Geográficas (SIG) no ensino de Hidrologia. Revista Geografia (Londrina), v. 20, n. 1, p. 51-65, jan. /abr. 2011. http://dx.doi.org/10.5433/2447-1747.2011v20n1p51.
http://dx.doi.org/10.5433/2447-1747.2011...
).

During a precipitation event, rainfall that reaches the land surface can undergo two main processes: infiltration or runoff (KUMAR et al., 2020; WANG et al., 2019). Surface runoff, in a watershed, is responsible for carrying soil particles (nutrients and pollutants) to the lower parts of the landscape, which tends to intensify as a result of inadequate land use and occupation (MINELLA et al., 2010MINELLA, J. P. G.; MERTEN, G. H.; REICHERT, J. M.; CASSOL, E. A. Processos e modelagem da erosão: da parcela à bacia hidrográfica. Manejo e conservação do solo e da água no contexto das mudanças ambientais. Rio de Janeiro: Embrapa Solos, p. 105-122, 2010. Available: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/34008/1/livro-manejo.pdf. Accessed: March 15, 2020.
https://ainfo.cnptia.embrapa.br/digital/...
), intensive agricultural practices and lack of adequate management in cultivated areas (COSTA et al., 2016COSTA, C. D. O.; ALVES, M. C.; DE PÁDUA SOUSA, A.; SILVA, H. R., GONZÁLEZ, A. P.; AVALOS, J. M. M. Produção e deposição de sedimentos em uma sub-bacia hidrográfica com solos suscetíveis à erosão. Irriga, v. 21, n. 2, p. 284-284, 2016. https://doi.org/10.15809/irriga.2016v21n2p284-299.
https://doi.org/10.15809/irriga.2016v21n...
).

The transported sediments are usually deposited in streams, reducing their drainage canal. It leads to flooding, affecting riparian areas and urban centers (BENDA et al, 2007BENDA, F.; ALVES, M. G.; CORRÊA, F. Estudo do risco de degradação por assoreamento dos corpos d’água superficiais utilizando SIG. Informática Pública, v. 9, n. 2, p. 55-69, 2007. Available: http://pbh.gov.br/informaticapublica/ANO9_N2_sum.html. Accessed: November 20, 2020.
http://pbh.gov.br/informaticapublica/ANO...
; ARAGÃO E GOMES, 2019ARAGÃO, J. P. G. V.; GOMES, E. T. A. Vulnerabilidades em manchas urbanas ao longo das margens fluviais do Capibaribe - Pernambuco/Brasil. Sociedade & Natureza, [S. l.], v. 31, 2019. https://doi.org/10.14393/SN-v31-2019-36389
https://doi.org/10.14393/SN-v31-2019-363...
), resulting in impacts felt both inside and outside the watershed. (FERNANDES et al., 2014FERNANDES, M.M.; CARVALHO, D.F.; CEDDIA, M.B.; FRANCELINO, M.R. Valoração ambiental do efeito externo da erosão em duas sub-bacias com diferentes percentuais de mata atlântica. Bioscience Journal [online], vol. 30, no. 2, p. 411-420, 2014. Available: https://seer.ufu.br/index.php/biosciencejournal/article/view/17989. Accessed: November 20, 2020.
https://seer.ufu.br/index.php/bioscience...
; OLIVEIRA et al., 2015OLIVEIRA, F. G.; SERAPHIM, O. J.; BORJA, M. E. L. Estimativa de perdas de solo e do potencial natural de erosão da bacia de contribuição da microcentral hidrelétrica do Lageado, Botucatu-SP. Energia na Agricultura, v. 30, n. 3, p. 302-309, 2015. https://doi.org/10.17224/EnergAgric.2015v30n3p302-309.
https://doi.org/10.17224/EnergAgric.2015...
; APARECIDO et al., 2016APARECIDO, C. F. F.; VANZELA, L. S.; VAZQUEZ, G. H.; LIMA, R. C. Manejo de bacias hidrográficas e sua influência sobre os recursos hídricos. Irriga, v. 21, n. 2, p. 239-239, 2016. https://doi.org/10.15809/irriga.2016v21n2p239-256.
https://doi.org/10.15809/irriga.2016v21n...
; VEIGA et al., 2019VEIGA, D. P. B. D., GUANDIQUE, M. E. G., & NARDOCCI, A. C. (2019). Uso do solo e qualidade da água em bacias hidrográficas do Estado de São Paulo, utilizando GIS e SWAT. Revista Ambiente & Água, v. 14, n. 5, 2019. https://doi.org/10.4136/ambi-agua.2325.
https://doi.org/10.4136/ambi-agua.2325....
; WANG et al, 2022WANG, L., ZHANG, G., & WANG, X. (2022). Undecomposed litter mixed in the soil can increase interrill erosion on hillslopes: A laboratory study. Soil and Tillage Research, v. 219, p. 105350, 2022. https://doi.org/10.1016/j.still.2022.105350
https://doi.org/10.1016/j.still.2022.105...
).

Consequently, it is essential to carry out surveys that help to find the factors that exert greater pressure on a watershed, providing managers with information on environmental quality and guiding decision-making for the effective management of the area (FELIPPE et al., 2016FELIPPE, M. F.; JUNIOR, A. P. M.; MENDES, L. C.; CARNEIRO, P. S.; GONTIJO, B. M. Conexões geo-históricas e contemporâneas entre ocupação territorial, degradação ambiental e rarefação hídrica na Bacia do Rio Doce. Revista Geografias, p. 203-222, 2016. https://doi.org/10.35699/2237-549X%20.
https://doi.org/10.35699/2237-549X%20....
). Thus, the present study aimed to indicate the influence of land use and cover on the dynamics of runoff in the Capivari basin.

METHODOLOGY

Characterization of the study area

The Capivari River runs in the Recôncavo of Bahia (Figure 1), its source is in Castro Alves and its outlet in São Felix. The drainage basin covers around 318 km² and a total of seven municipalities, namely: Castro Alves, Sapeaçu, Cabaceiras do Paraguaçu, Cruz das Almas, Governador Mangabeira, Muritiba and São Félix.

Figure 1
Location of the study area.

Climate and Vegetation

The climate of the basin is quite diverse, ranging from semi-arid to humid, with a predominance of sub-humid climate (Table 1) and this characteristic directly influences the distribution of precipitation and vegetation within the basin area.

Table 1
Climatic classification of cities in the Capivari Basin

The average annual precipitation in this basin varies widely, ranging from 770 mm in the semiarid region (Castro Alves) to 1300 mm in the humid region (São Felix), with a concentration of rainfall in autumn and winter. Most of the basin is covered by the Atlantic Forest, specifically Dense and Seasonal Semi-deciduous Forest (BAHIA, 2012), presenting some remnants with secondary species from this biome. In the semi-arid part of the basin, the dominant biome is the Caatinga.

Soil

The classification adopted in this research is that of Santos et al. (2018SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; CUNHA, T. J. F. Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018. Available: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos. Accessed: January 20, 2022.
https://www.embrapa.br/busca-de-publicac...
), where 4 (four) soil domains for the basin are described: Argissolo Vermelho-Amarelo Distrófico (Dystrophic Yellowish red Acrisols), Chernossolo Argilúvico (Molisols), Latossolo Amarelo Distrófico (Dystrophic yellow Ferralsols) e Planossolo Háplicos (Planosols).

The Acrisols are soils constituted by mineral material with low activity clay (SANTANA et al., 2002SANTANA, S. O.; SANTOS, R. D.; GOMES, I. A.; JESUS, R. M.; ARAUJO, Q. R.; MENDONÇA, J. R.; CALDERANO, S. B.; FARIA FILHO, A. F. Solos da região sudeste da Bahia: atualização da legenda de acordo com o Sistema Brasileiro de Classificação de Solos. Embrapa Solos-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E), 2002. Available: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPS/11825/1/solos_sudeste_bahia.pdf. Accessed: January 20, 2022.
https://ainfo.cnptia.embrapa.br/digital/...
), they usually present medium or sandy texture, varying, in their majority, from deep to very deep (SARTORI et al., 2005SARTORI, A.; LOMBARDI NETO, F.; GENOVEZ, A. M. Classificação hidrológica de solos brasileiros para a estimativa da chuva excedente com o método do Serviço de Conservação do Solo dos Estados Unidos Parte 1: Classificação. Revista Brasileira de Recursos Hídricos, v. 10, n. 4, p. 05-18, 2005. http://dx.doi.org/10.21168/rbrh.v10n4.p5-18
http://dx.doi.org/10.21168/rbrh.v10n4.p5...
).

The Yellowish red Acrisol has an arenic or thickened character, (SARTORI et al., 2005SARTORI, A.; LOMBARDI NETO, F.; GENOVEZ, A. M. Classificação hidrológica de solos brasileiros para a estimativa da chuva excedente com o método do Serviço de Conservação do Solo dos Estados Unidos Parte 1: Classificação. Revista Brasileira de Recursos Hídricos, v. 10, n. 4, p. 05-18, 2005. http://dx.doi.org/10.21168/rbrh.v10n4.p5-18
http://dx.doi.org/10.21168/rbrh.v10n4.p5...
). They occur in conditions of relief from relatively smooth to wavier, have a high susceptibility to erosion and have predominantly low chemical fertility (MARQUES et al., 2014MARQUES, F. A.; NASCIMENTO, A. F.; ARAÚJO FILHO, J. C.; SILVA, A. B. Solos do Nordeste. Recife/PE: Embrapa Solos, 2014. Available: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1003864/solos-do-nordeste. Accessed: January 20, 2022.
https://www.embrapa.br/busca-de-publicac...
).

The Molisols are rich in bases and with high activity clay, with a superficial horizon enriched with dark-colored organic matter, being developed from basic rocks, rich in iron-magnesium and/or limestone minerals (MARQUES et al., 2014MARQUES, F. A.; NASCIMENTO, A. F.; ARAÚJO FILHO, J. C.; SILVA, A. B. Solos do Nordeste. Recife/PE: Embrapa Solos, 2014. Available: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1003864/solos-do-nordeste. Accessed: January 20, 2022.
https://www.embrapa.br/busca-de-publicac...
). They are moderately permeable on the surface horizon and slowly on the B horizon, making this soil highly vulnerable to erosive processes (JARDIM, 2020JARDIM, A. M. D. R. F.; SILVA, J. R. I.; SILVA, M. J.; JÚNIOR, G. D. N. A.; SOUZA, R.; DE SOUZA, E. S. Modelagem da perda de solo por erosão hídrica em Planossolo Háplico. Brazilian Journal of Development, v. 6, n. 2, p. 6826-6834, 2020. https://doi.org/10.34117/bjdv6n2-107.
https://doi.org/10.34117/bjdv6n2-107....
; MARQUES et al., 2014). They have good natural fertility (OLIVEIRA et al., 2007OLIVEIRA, V. A. (Ccoord.) Manual técnico de Pedologia. 2º ed. Rio de Janeiro: IBGE, p. 316, 2007. Available: https://biblioteca.ibge.gov.br/visualizacao/livros/liv37318.pdf. Accessed: March 13, 2019.
https://biblioteca.ibge.gov.br/visualiza...
) with high basic saturation, high plasticity and high adherence. They still have drainage restrictions, difficult to a very hard consistency, difficulties in manipulating soil with agricultural machinery and tools (MARQUES et al., 2014).

Ferralsols are generally well-developed, deep and well-drained soils with a Ferralsol B horizon, with morphological, physical, chemical and mineralogical characteristics, uniform in profile. They almost always have cohesive horizons in their profile (BA and top of B) - with a hard or very hard dry consistency (MARQUES et al., 2014MARQUES, F. A.; NASCIMENTO, A. F.; ARAÚJO FILHO, J. C.; SILVA, A. B. Solos do Nordeste. Recife/PE: Embrapa Solos, 2014. Available: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1003864/solos-do-nordeste. Accessed: January 20, 2022.
https://www.embrapa.br/busca-de-publicac...
; SANTOS et al., 2018SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; CUNHA, T. J. F. Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018. Available: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos. Accessed: January 20, 2022.
https://www.embrapa.br/busca-de-publicac...
). They generally occupy areas of flat to soft undulating terrain (RODRIGUES et al., 2009RODRIGUES, M. G. F. NACIF P. G. S.; COSTA, O. V.; OLSZEVSKI, N. Solos e suas relações com as paisagens naturais no município de Cruz das Almas-BA. Revista de Biologia e Ciências da Terra, v. 9, n. 2, p. 193-205, 2009.. Available: https://www.redalyc.org/articulo.oa?id=50016937017. March 13, 2020.
https://www.redalyc.org/articulo.oa?id=5...
; MARQUES et al., 2014), usually situated in coastal areas (MOREAU et al., 2006MOREAU, A. M. S. d. S.; KER, J. C.; COSTA, L. M. D.; GOMES, F. H. Caracterização de solos de duas toposseqüências em tabuleiros costeiros do sul da Bahia. Revista Brasileira de Ciência do Solo, v. 30, n. 6, p. 1007-1019, 2006. http://dx.doi.org/10.1590/S0100-06832006000600010.
http://dx.doi.org/10.1590/S0100-06832006...
).

In the study area, the soil with the largest distribution is the Yellow Ferralsols, which is reported by Rodrigues et al. (2009RODRIGUES, M. G. F. NACIF P. G. S.; COSTA, O. V.; OLSZEVSKI, N. Solos e suas relações com as paisagens naturais no município de Cruz das Almas-BA. Revista de Biologia e Ciências da Terra, v. 9, n. 2, p. 193-205, 2009.. Available: https://www.redalyc.org/articulo.oa?id=50016937017. March 13, 2020.
https://www.redalyc.org/articulo.oa?id=5...
). They occupy areas where major farms are concentrated and have high levels of sand at horizon A, leading to greater vulnerability to erosion (Figure 2).

Figure 2
Soils present in the Capivari Basin

The Planosols, on the other hand, comprise the old Planosols, Solonetz-Solodized and Gray Hydromorphic with deep and abrupt textural change (SARTORI et al., 2005SARTORI, A.; LOMBARDI NETO, F.; GENOVEZ, A. M. Classificação hidrológica de solos brasileiros para a estimativa da chuva excedente com o método do Serviço de Conservação do Solo dos Estados Unidos Parte 1: Classificação. Revista Brasileira de Recursos Hídricos, v. 10, n. 4, p. 05-18, 2005. http://dx.doi.org/10.21168/rbrh.v10n4.p5-18
http://dx.doi.org/10.21168/rbrh.v10n4.p5...
). They have a significant accumulation of clay on the subsurface (horizon B planes) and are imperfectly poorly drained, presenting a pale color and dominant occurrence in smooth waves and flat relief (MARQUES et al., 2014MARQUES, F. A.; NASCIMENTO, A. F.; ARAÚJO FILHO, J. C.; SILVA, A. B. Solos do Nordeste. Recife/PE: Embrapa Solos, 2014. Available: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1003864/solos-do-nordeste. Accessed: January 20, 2022.
https://www.embrapa.br/busca-de-publicac...
; SANTOS et al., 2018SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; CUNHA, T. J. F. Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018. Available: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos. Accessed: January 20, 2022.
https://www.embrapa.br/busca-de-publicac...
). The restricted drainage of these soils and their high susceptibility to erosion plus the hardened to the extremely hard consistency of the plan a B horizon, make these soils not suitable for agricultural use, however, they are indicated for use with pastures (MARQUES et al., 2014).

Precipitation data

For the determination of the areas most susceptible to dynamic flow within the basin, rainfall data were acquired in the database of the Agência Nacional de Águas e Saneamento Básico (ANA, 2017), which is a National Water Agency in Brazil, and the Instituto Nacional de Meteorologia (INMET, 2017), which is the National Institute of Meteorology in Brazil, from different points inside and outside the study area (Figure 3).

Figure 3
Spatial distribution of rainfall data.

There are many gaps in government databases, most of which do not have the most up-to-date data, probably due to the disruption of data collection at some stations. Thus, in order to improve the accuracy of the data, a consultation was made with the agribusiness companies in the area, been issued a formal letter for the acquisition of the available data.

Previously acquired data was processed on spreadsheets, where the monthly total was calculated for all months of 2017. At the location of each collection point, data were added using QGIS, generating twelve vector files, with point values associated with the total precipitation for each month.

Observing the number and distribution of the points of the meteorological stations, it was decided to perform interpolations with the Spline method on ArcGIS, which presented a better smoothing of the edges compared to the Thissen method.

Cumulative infiltration determination - Curve Method Number

To estimate infiltration in the Capivari Basin, we used the model of the Curve Number (CN), which has an advantage on the achievement of satisfactory results using less information when compared to other models found in the literature. The other methods, in spite of excellent results, require an extensive database, often not available. This methodology is developed by the Soil Conservation Service (SCS) of the US Department of Agriculture (USDA), at the end of the 1950s, modeling direct flows, going through several updates over the years (MISHRA & SINGH, 2003MISHRA, S. K.; SINGH, V. Soil conservation service curve number (SCS-CN) methodology. Springer Science & Business Media, 2003. https://doi.org/10.1007/978-94-017-0147-1_1.
https://doi.org/10.1007/978-94-017-0147-...
; SARTORI et al., 2005SARTORI, A.; LOMBARDI NETO, F.; GENOVEZ, A. M. Classificação hidrológica de solos brasileiros para a estimativa da chuva excedente com o método do Serviço de Conservação do Solo dos Estados Unidos Parte 1: Classificação. Revista Brasileira de Recursos Hídricos, v. 10, n. 4, p. 05-18, 2005. http://dx.doi.org/10.21168/rbrh.v10n4.p5-18
http://dx.doi.org/10.21168/rbrh.v10n4.p5...
; SOULIS, 2021SOULIS, K. X. Soil conservation service curve number (SCS-CN) Method: Current applications, remaining challenges, and future perspectives. Water, v. 13, n. 2, p. 192, 2021. https://doi.org/10.3390/w13020192.
https://doi.org/10.3390/w13020192....
; CARVALHO & RODRIGUES, 2021CARVALHO, F., & RODRIGUES, S. C. (2021). Método Curve Number-pesquisas e discussões dos parâmetros valor CN e abstração inicial. Geografia Ensino & Pesquisa, 25, 31. https://doi.org/10.5902/2236499447861
https://doi.org/10.5902/2236499447861...
).

The method introduces the different soil types into hydrological groups, from their characteristics associated with more or less permeable to infiltration and from there, these soils are combined with different types of land use and cover, thus estimating infiltration. Because this is a method originally developed for US soils, it was necessary to adapt to the reality of Brazilian tropical soils. To estimate infiltration in the current study, the soil hydrological group was determined using the classification proposed by Sartori (2004SARTORI, A. Avaliação da Classificação Hidrológica do Solo para a Determinação do Excesso de Chuva do Método do Serviço de Conservação do Solo dos Estados Unidos. 2004. Dissertação (Mestre em Engenharia Civil) - Faculdade de Engenharia Civil, Arquitetura e Urbanismo - Universidade Estadual de Campinas, Campinas, 2004. Available: http://bdtd.ibict.br/vufind/Record/CAMP_89511a6cd855bac0af31abd5c8671638. Accessed: January 20, 2022
http://bdtd.ibict.br/vufind/Record/CAMP_...
) (Table 2).

Table 2
Soil hydrological group within the Capivari River basin.

The data needed for the Curve Number modeling were: the scene of the MDE ALOS/ PALSAR, 25745/6930 (ALOS PALSAR, 2011), the LC08_L1TP_216069_20171228 image of landsat8/OLI (USGS, 2017), the soil vector file in the IBGE scale 1:250,000 (IBGE, 2018) and the precipitation data from government meteorological stations and agricultural companies in the region.

The basin boundaries were determined from the DEM which, after radiometric correction and interpolation to remove empty points, was processed with r.watershed algorithm (EHLSCHLAEGER, 1989EHLSCHLAEGER, C. R. Using the A^ T search algorithm to develop hydrologic models from digital elevation data. In: Proceedings of the international geographic information system (IGIS) symposium, Baltimore, MD, 275-281, 1989.), generating both streamlines and basin boundaries. This polygonal vector was used as a cutting mask on all maps.

Land use and coverage (LULC) was determined using satellite image LC08_L1TP_216069_20170619_20170629_01_T1 (OLI sensor) obtained on June 19, 2017 (USGS, 2017). The pre-processing consisted of radiometric correction, atmospheric correction and rectangular cutout with limits higher than those of the basin. The supervised image classifier Bhattacharya (CÂMARA et al., 1996CÂMARA, G., SOUZA, R. C. M., FREITAS, U. M., & GARRIDO, J. (1996). SPRING: Integrating remote sensing and GIS by object-oriented data modelling. Computers & graphics, 20(3), 395-403. https://doi.org/10.1016/0097-8493(96)00008-8
https://doi.org/10.1016/0097-8493(96)000...
), was used to determine the following classes: Water Bodies, Agriculture, Riparian Forest, Secondary Forest, Pasture, Exposed Soil and Urban Area.

From the determination of the hydrological group of soils present in the Basin, the CN values were estimated for the classes of use and coverage proposed in this research (Chart 1 and Figure 4). To this end, the values suggested by Soares et al., (2017SOARES, M. R. G. D. J.; Fiori, C. O.; SILVEIRA, C. T. D.; Kaviski, E. Eficiência do método Curve Number de retenção de águas pluviais. Mercator (Fortaleza), v.16, 2017. https://doi.org/10.4215/rm2017.e16001.
https://doi.org/10.4215/rm2017.e16001....
) have been used as the basis and Tucci et al. (1993TUCCI, C. E. Escoamento superficial. Hidrologia: ciência e aplicação, v. 4, p. 391-437, 1993.).

Chart 1
Table of revised CN values for the Capivari Basin

Figure 4
Spatial distribution of CN index.

Using the CN values, the maximum retention (S) was calculated, which expresses the water absorption capacity of the soil relative to cover and use (Equation 1):

S = 25400 C N 254 Equation (1)

Next, the values of the theoretical runoff coefficient (α) were determined. Due to the fact that the slope influences the runoff rate, the coefficient α was determined as follows:

1. Slope class ranges were defined according to the classes found in the basin and the terrain classification proposed by Embrapa (1979);

2. Values were defined, called a d-Index, for each slope class. This value is a ratio proportional to the cosine of the slope expressed in degrees, where the steeper the slope, the closer the value is to 1. Capivari Basin d-Index values were defined by slope reclassification (Table 3);

Table 3
D-Index referring to the slope classes.

3. As the runoff coefficient (α) expresses the runoff ratio as a function of the CN and the D-Index (d), the value of α was determined from the following numerical expression (Equation 2):

α = d C N 100 Equation (2)

4. With the values of the maximum retention (S), the theoretical runoff coefficient and the appropriately specialized precipitation (P), the cumulative infiltration (F) was calculated in a GIS environment as follows (Equation 3):

F = S × P S + P × ( 1 ) Equation (3)

5. Runoff (Q) was determined in a GIS environment, according to the difference between the amount of precipitation (P) and infiltrated water (F) (Equation 4):

Q = P F Equation (4)

6. Finally, the runoff rate (C) was determined by the relation between runoff (Q) and precipitation (P), where the maximum value is 1 (100%) (Equation 5):

C = Q P Equation (5)

RESULTS AND DISCUSSION

The infiltration process is essentially important because at this rate decrease, there is an increase in the flow rate, making it essential to know the infiltration process for proper management within hydrographic basins (BRANDÃO et al., 2006BRANDÃO, V. S.; CECÍLIO, R. A.; PRUSKI, F. F.; SILVA, D. D. Infiltração de água no solo. Viçosa:. UFV, 2006.; KUMAR et al. 2021KUMAR, A.; KANGA, S.; TALOOR, A. K.; SINGH, S. K.; ĐURIN, B. Surface runoff estimation of Sind river basin using integrated SCS-CN and GIS techniques. HydroResearch, v. 4, p. 61-74, 2021. https://doi.org/10.1016/j.hydres.2021.08.001.
https://doi.org/10.1016/j.hydres.2021.08...
). In this sense, infiltration into the Capivari River basin was determined in 2017 (Figure 5), in order to understand the flow behavior and determine the most susceptible to water erosion areas.

Figure 5
Cumulative infiltration, for the months of 2017.

The low infiltration rate in the Capivari basin is closely related to the characteristics of the basin, which has less permeable soils (naturally or as a result of improper handling), in addition to the undulating relief that favors the runoff process. In addition to these factors, the tree vegetation would have a fundamental role in this process (SALOMÃO, 2012SALOMÃO, F. X. T. Controle e prevenção dos processos erosivos. In: Guerra, A. T.; Silva, A. S.; & Botelho, R. G. M. Erosão e conservação dos solos: conceitos, temas e aplicações. Editora Bertrand Brasil LTDA, Rio de Janeiro, 8ª ed., p. 229-268, 2012.; FERNANDES et al., 2014FERNANDES, M.M.; CARVALHO, D.F.; CEDDIA, M.B.; FRANCELINO, M.R. Valoração ambiental do efeito externo da erosão em duas sub-bacias com diferentes percentuais de mata atlântica. Bioscience Journal [online], vol. 30, no. 2, p. 411-420, 2014. Available: https://seer.ufu.br/index.php/biosciencejournal/article/view/17989. Accessed: November 20, 2020.
https://seer.ufu.br/index.php/bioscience...
; FELIPPE et al., 2016FELIPPE, M. F.; JUNIOR, A. P. M.; MENDES, L. C.; CARNEIRO, P. S.; GONTIJO, B. M. Conexões geo-históricas e contemporâneas entre ocupação territorial, degradação ambiental e rarefação hídrica na Bacia do Rio Doce. Revista Geografias, p. 203-222, 2016. https://doi.org/10.35699/2237-549X%20.
https://doi.org/10.35699/2237-549X%20....
; VIEIRA et al., 2016VIEIRA, C. D.; OLIVEIRA, A.E.F.; ALVES, W.G.; LEÃO, O.M.R. Análise da degradação ambiental na bacia hidrográfica do Rio Alcântara no município de São Gonçalo, leste metropolitana do Rio de Janeiro. Revista Equador, v. 5, n. 4, p. 93-105, 2016. Available: https://revistas.ufpi.br/index.php/equador/article/view/5190/3051. Accessed: January 10, 2021.
https://revistas.ufpi.br/index.php/equad...
; GUPTA et al., 2017GUPTA, M.; GOYAL, V. C.; TARANNUM, F.; PATIL, J. P. Designing a watershed scorecard as a performance evaluation tool for Ur River watershed, Tikamgarh District, Madhya Pradesh. International soil and water conservation research, v. 5, n. 4, p. 280-292, 2017. https://doi.org/10.1016/j.iswcr.2017.10.001.
https://doi.org/10.1016/j.iswcr.2017.10....
) is degraded in most of the basin.

The same characteristics that affect the lower infiltration rate of the basin, determine the higher runoff rate. Runoff is part of the hydrological cycle and is responsible for the presence, movement and transport of surface water (VENEZIANI, 2014VENEZIANI, Y. A abordagem da geomorfologia antropogênica e de modelagens hidrológica e hidráulica na bacia do Córrego Três Pontes (SP) para determinação de picos de vazão e da vulnerabilidade a inundações. Dissertação (Mestre em Geografia Física) - Faculdade de Filosofia, Letras e Ciências Humanas - USP, São Paulo, 2014. http://dx.doi.org/10.11606/D.8.2014.tde-30112015-133046.
http://dx.doi.org/10.11606/D.8.2014.tde-...
; KUMAR et al. 2021KUMAR, A.; KANGA, S.; TALOOR, A. K.; SINGH, S. K.; ĐURIN, B. Surface runoff estimation of Sind river basin using integrated SCS-CN and GIS techniques. HydroResearch, v. 4, p. 61-74, 2021. https://doi.org/10.1016/j.hydres.2021.08.001.
https://doi.org/10.1016/j.hydres.2021.08...
; WANG et al, 2022WANG, L., ZHANG, G., & WANG, X. (2022). Undecomposed litter mixed in the soil can increase interrill erosion on hillslopes: A laboratory study. Soil and Tillage Research, v. 219, p. 105350, 2022. https://doi.org/10.1016/j.still.2022.105350
https://doi.org/10.1016/j.still.2022.105...
). The aggravating factor related to this process is its intensity and speed (DE MARIA, 2010DE MARIA, I. C. Geotecnologias e modelos aplicados ao manejo e conservação do solo e da água. In: PRADO, R. B.; TURETTA, A. P. D.; DE ANDRADE, A. G. (org.) Manejo e conservação do solo e da água no contexto das mudanças ambientais. Rio de Janeiro: Embrapa Solos, p.95-104, 2010. Available: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/34008/1/livro-manejo.pdf. Accessed: March 15, 2020.
http://ainfo.cnptia.embrapa.br/digital/b...
), which contribute to the occurrence of erosion, floods, the spread of diseases and contamination of environments.

Precipitation, soil characteristics, use, cover and slope were important parameters in determining the runoff rate for the Capivari River basin, allowing to estimate runoff for each month of the year 2017 (Figure 6) as well as the rate runoff. Each parameter used in the modeling is interconnected with the amount of rainfall converted to runoff.

Figure 6
Runoff, for the months of 2017.

The precipitation, for example, directly influences the runoff rate (Figure 7) and concentrations of sediments and nutrients, leading to relevant interannual and seasonal differences (FERREIRA et al., 2018FERREIRA, C. S. S.; KEIZER, J. J.; SANTOS, L. M. B.; SERPA, D.; SILVA, V.; CERQUEIRA, M.; FERREIRA, A.J.D.; ABRANTES, N. Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale. Agriculture, Ecosystems & Environment, v. 256, p. 184-193, 2018. https://doi.org/10.1016/j.agee.2018.01.015.
https://doi.org/10.1016/j.agee.2018.01.0...
). In the studied basin, the behavior of precipitation reflects the variety of climates (semi-arid, sub-humid and humid), presenting a different behavior between these climatic zones.

Figure 7
Monthly Runoff Rate, year 2017

The proposed model indicates the spring zone as the lowest flow propensity for 2017. This is primarily due to the flat terrain and lower precipitation, but the lack of adequate riparian vegetation (VIEIRA et al., 2016VIEIRA, C. D.; OLIVEIRA, A.E.F.; ALVES, W.G.; LEÃO, O.M.R. Análise da degradação ambiental na bacia hidrográfica do Rio Alcântara no município de São Gonçalo, leste metropolitana do Rio de Janeiro. Revista Equador, v. 5, n. 4, p. 93-105, 2016. Available: https://revistas.ufpi.br/index.php/equador/article/view/5190/3051. Accessed: January 10, 2021.
https://revistas.ufpi.br/index.php/equad...
; GUPTA et al., 2017GUPTA, M.; GOYAL, V. C.; TARANNUM, F.; PATIL, J. P. Designing a watershed scorecard as a performance evaluation tool for Ur River watershed, Tikamgarh District, Madhya Pradesh. International soil and water conservation research, v. 5, n. 4, p. 280-292, 2017. https://doi.org/10.1016/j.iswcr.2017.10.001.
https://doi.org/10.1016/j.iswcr.2017.10....
), the use of the soil with agricultural activities without proper management (BENDA et al., 2007BENDA, F.; ALVES, M. G.; CORRÊA, F. Estudo do risco de degradação por assoreamento dos corpos d’água superficiais utilizando SIG. Informática Pública, v. 9, n. 2, p. 55-69, 2007. Available: http://pbh.gov.br/informaticapublica/ANO9_N2_sum.html. Accessed: November 20, 2020.
http://pbh.gov.br/informaticapublica/ANO...
) and the semi-arid climate, influence the state of intermittent course of river in this area.

The most vulnerable area of the basin, as proposed, is the area near the mouth, and this result reflects the features of this area. Acrisols and Molisols from this part of the basin (Muritiba and São Felix) are highly susceptible to erosion (MARQUES et al. 2014MARQUES, F. A.; NASCIMENTO, A. F.; ARAÚJO FILHO, J. C.; SILVA, A. B. Solos do Nordeste. Recife/PE: Embrapa Solos, 2014. Available: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1003864/solos-do-nordeste. Accessed: January 20, 2022.
https://www.embrapa.br/busca-de-publicac...
). This is aggravated by the occurrence of these in the most sloping areas and with high rainfall rates.

However, despite this greater vulnerability, the areas near the mouth are those with the most preserved riparian vegetation, which indicates the high risk of silting up the river if this vegetation is replaced by other uses or cover (BENDA et al., 2007BENDA, F.; ALVES, M. G.; CORRÊA, F. Estudo do risco de degradação por assoreamento dos corpos d’água superficiais utilizando SIG. Informática Pública, v. 9, n. 2, p. 55-69, 2007. Available: http://pbh.gov.br/informaticapublica/ANO9_N2_sum.html. Accessed: November 20, 2020.
http://pbh.gov.br/informaticapublica/ANO...
; APARECIDO et al., 2016APARECIDO, C. F. F.; VANZELA, L. S.; VAZQUEZ, G. H.; LIMA, R. C. Manejo de bacias hidrográficas e sua influência sobre os recursos hídricos. Irriga, v. 21, n. 2, p. 239-239, 2016. https://doi.org/10.15809/irriga.2016v21n2p239-256.
https://doi.org/10.15809/irriga.2016v21n...
). Since then, this vegetation has been “the natural defense of the terrain against erosion” (SALOMÃO, 2012SALOMÃO, F. X. T. Controle e prevenção dos processos erosivos. In: Guerra, A. T.; Silva, A. S.; & Botelho, R. G. M. Erosão e conservação dos solos: conceitos, temas e aplicações. Editora Bertrand Brasil LTDA, Rio de Janeiro, 8ª ed., p. 229-268, 2012.).

Silva (2012SILVA, L. F. T. C.; BEZERRA, J. F. R. B. R.; GUERRA, A. J. T Implicações da mudança na cobertura vegetal em relação à erosão na sub-bacia hidrográfica do rio São Pedro-RJ. Revista Geonorte, v. 3, n. 10, p. 1-16, 2012. Available: https://periodicos.ufam.edu.br/index.php/revista-geonorte/article/view/1127/1019. Accessed: March 13, 2019.
https://periodicos.ufam.edu.br/index.php...
) talks about erosion as a common process. But it tends to be more prevalent in tropical regions given the high rate of precipitation compared to other regions of the planet. In addition, the removal of native vegetation to take advantage of timber or agricultural production tends to exacerbate this phenomenon.

According to the proposed model, the Medium Capivari area was considered a high-risk area in terms of water erosion. Given that it does not have a satisfactory vegetative cover in areas that are expected to be permanently preserved (BRASIL 2012), added to the undulating terrain and high levels of precipitation in some months of the year (April, May, June, July and September).

In this area, it is believed that the development of agricultural activities without careful manipulation, worsens the process of transport of sediments and pollutants to the bed of the Capivari River, given that the presence of a consistent horizon in the soils of this area restricts the infiltration process (RIBEIRO, 1998RIBEIRO, L. P. Os latossolos amarelos do Recôncavo baiano: gênese, evolução e degradação. Salvador - BA: CADCT/FAPEX, 1998.).

Vieira et al. (2016VIEIRA, C. D.; OLIVEIRA, A.E.F.; ALVES, W.G.; LEÃO, O.M.R. Análise da degradação ambiental na bacia hidrográfica do Rio Alcântara no município de São Gonçalo, leste metropolitana do Rio de Janeiro. Revista Equador, v. 5, n. 4, p. 93-105, 2016. Available: https://revistas.ufpi.br/index.php/equador/article/view/5190/3051. Accessed: January 10, 2021.
https://revistas.ufpi.br/index.php/equad...
) emphasize that vegetation removal influences the reduction in infiltration rates. With a decrease in infiltration, soil becomes more vulnerable to erosion, because the hydraulic force of the water stream is capable of transporting its particles and depending on the intensity of the stream, even within moderate soil gradients, it can have severe consequences (MAFRA, 2012MAFRA, N. M. C. Erosão e Planificação de Uso do Solo. In: PRADO, R. B.; TURETTA, A. P. D.; DE ANDRADE, A. G. (org.) Erosão e conservação dos solos: conceitos, temas e aplicações. 8ª ed. Rio de Janeiro: Bertrand Brasil, 2012.). This risk is heightened in this area, according to Ribeiro (1998RIBEIRO, L. P. Os latossolos amarelos do Recôncavo baiano: gênese, evolução e degradação. Salvador - BA: CADCT/FAPEX, 1998.), its soils have elevated levels of natural clay, which speeds up erosion processes and, as a result, these environments are degraded.

The greatest pressure exerted by occupancy in some areas, mostly through intensive agricultural activities without appropriate conservation practices, according to Mafra (2012MAFRA, N. M. C. Erosão e Planificação de Uso do Solo. In: PRADO, R. B.; TURETTA, A. P. D.; DE ANDRADE, A. G. (org.) Erosão e conservação dos solos: conceitos, temas e aplicações. 8ª ed. Rio de Janeiro: Bertrand Brasil, 2012.), was responsible for losses in soil productive potential, having erosive processes as a primary cause. This factor is linked to pollution and contamination of other environments in addition to siltation of streams and create imbalances that directly impact the overall equilibrium of sediment transport within the watershed (OLIVEIRA, 2007OLIVEIRA, V. A. (Ccoord.) Manual técnico de Pedologia. 2º ed. Rio de Janeiro: IBGE, p. 316, 2007. Available: https://biblioteca.ibge.gov.br/visualizacao/livros/liv37318.pdf. Accessed: March 13, 2019.
https://biblioteca.ibge.gov.br/visualiza...
).

The rate of runoff into Capivari Basin (Figure 7), whose highest value (100, showed in red) refers to water bodies where 100% of rain is drained. The highest computed value for all areas was 88.6% in July, while the lowest value was 10.7% in January. However, when we analyze the mean values, the highest flow occurred in June.

By knowing how runoff behaves, you can see more clearly the most critical points in the watershed, helping to control degradation. It supports the planning and management of activities developed in these areas and allows the soil management, according to its weaknesses and potential (ANDRADE et al. 2010ANDRADE, A. G.; DE FREITAS, P. L.; LANDERS, J. Aspectos gerais do manejo e conservação do solo e da água e as mudanças ambientais. Embrapa Solos-Capítulo em livro técnico (INFOTECA-E), 2010. Available: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/859117/manejo-e-conservacao-do-solo-e-da-agua-no-contexto-das-mudancas-ambientais. Accessed: November 20, 2020.
https://www.embrapa.br/busca-de-publicac...
). This management, primarily, aims to mitigate the effects of water erosion, which is considered the largest contributor to soil degradation in tropical regions (DE MARIA 2010DE MARIA, I. C. Geotecnologias e modelos aplicados ao manejo e conservação do solo e da água. In: PRADO, R. B.; TURETTA, A. P. D.; DE ANDRADE, A. G. (org.) Manejo e conservação do solo e da água no contexto das mudanças ambientais. Rio de Janeiro: Embrapa Solos, p.95-104, 2010. Available: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/34008/1/livro-manejo.pdf. Accessed: March 15, 2020.
http://ainfo.cnptia.embrapa.br/digital/b...
).

According to DE Maria (2010), identifying areas most susceptible to erosion within the watershed is the basis for water quality improvement. With population growth, there is increased pressure on natural environments with increased demand for resources (MINELLA et al., 2010MINELLA, J. P. G.; MERTEN, G. H.; REICHERT, J. M.; CASSOL, E. A. Processos e modelagem da erosão: da parcela à bacia hidrográfica. Manejo e conservação do solo e da água no contexto das mudanças ambientais. Rio de Janeiro: Embrapa Solos, p. 105-122, 2010. Available: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/34008/1/livro-manejo.pdf. Accessed: March 15, 2020.
https://ainfo.cnptia.embrapa.br/digital/...
; RAMOS and REGO FILHO, 2010RAMOS, D. P.; REGO FILHO, L. M. Pedologia e Interpretações para o Manejo e a Conservação do Solo e da Água. In: PRADO, R. B.; TURETTA, A. P. D.; DE ANDRADE, A. G. (org.) Manejo e conservação do solo e da água no contexto das mudanças ambientais. Rio de Janeiro: Embrapa Solo, p. 85-94, 2010. Available: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/34008/1/livro-manejo.pdf. Accessed: March 15, 2020.
https://ainfo.cnptia.embrapa.br/digital/...
). On the other hand, the degradation of natural environments resulting from this situation influences the supply of these same resources.

In this sense, Minella et al. (2010MINELLA, J. P. G.; MERTEN, G. H.; REICHERT, J. M.; CASSOL, E. A. Processos e modelagem da erosão: da parcela à bacia hidrográfica. Manejo e conservação do solo e da água no contexto das mudanças ambientais. Rio de Janeiro: Embrapa Solos, p. 105-122, 2010. Available: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/34008/1/livro-manejo.pdf. Accessed: March 15, 2020.
https://ainfo.cnptia.embrapa.br/digital/...
) note that productive interests and the preservation of natural resources cannot be contradictory. Because soil and water preservation are important factors in securing a country's economic and social needs.

The urbanized areas within the basin showed high runoff values as most precipitation flows on the surface, due to the higher rate of waterproofing, except for parks, plazas and small permeable zones (TUCCI, 1993TUCCI, C. E. Escoamento superficial. Hidrologia: ciência e aplicação, v. 4, p. 391-437, 1993.).

This water is usually directed to pipelines that run into the lower reaches, usually rivers or creeks, but when this drainage is deficient, it can cause flooding (SALOMÃO, 2012SALOMÃO, F. X. T. Controle e prevenção dos processos erosivos. In: Guerra, A. T.; Silva, A. S.; & Botelho, R. G. M. Erosão e conservação dos solos: conceitos, temas e aplicações. Editora Bertrand Brasil LTDA, Rio de Janeiro, 8ª ed., p. 229-268, 2012.). It represents a source of disease proliferation and spread, which warrants the attention of municipal managers.

CONCLUSIONS

The highest precipitation rates, soil characteristics and the greatest slope at the mouth affected the greatest vulnerability to runoff, based on the proposed model. However, the most conserved Permanent Conservation Area (PPA) has acted effectively to sustain the Capivari River in these areas.

The areas considered as the most critical to the risk of water erosion in 2017 were those in the middle of Capivari basin. They had high precipitation in some months, but do not have an PPA in riparian forest areas or on hilltops. This further increases their vulnerability to erosion.

The proposed model was successful in identifying areas most sensitive to run off in the Capivari watershed.

ACKNOWLEDGMENTS

To the Graduate Program in Modeling in Earth and Environmental Sciences (PPGM) at Feira de Santana State University (UEFS); to the Coordination for the Improvement of Higher Education Personnel (CAPES), for the granting of a scholarship, modality I Financing code 001.

REFERENCES

  • ALOS PALSAR. DEM Alos Palsar 2011, radiometrically terrain corrected. Available: https: //search.asf.alaska.edu/#/ Accessed: Oct. 20th2020.
    » https: //search.asf.alaska.edu/#/
  • ANA - AGÊNCIA NACIONAL DE ÁGUAS E SANEAMENTO BÁSICO (Brasília). Portal HidroWeb. Rede Hidrometeorológica Nacional. 2017. Available: https://www.snirh.gov.br/hidroweb/apresentacao Accessed: may, 10, 2019.
    » https://www.snirh.gov.br/hidroweb/apresentacao
  • ANDRADE, A. G.; DE FREITAS, P. L.; LANDERS, J. Aspectos gerais do manejo e conservação do solo e da água e as mudanças ambientais. Embrapa Solos-Capítulo em livro técnico (INFOTECA-E), 2010. Available: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/859117/manejo-e-conservacao-do-solo-e-da-agua-no-contexto-das-mudancas-ambientais Accessed: November 20, 2020.
    » https://www.embrapa.br/busca-de-publicacoes/-/publicacao/859117/manejo-e-conservacao-do-solo-e-da-agua-no-contexto-das-mudancas-ambientais
  • APARECIDO, C. F. F.; VANZELA, L. S.; VAZQUEZ, G. H.; LIMA, R. C. Manejo de bacias hidrográficas e sua influência sobre os recursos hídricos. Irriga, v. 21, n. 2, p. 239-239, 2016. https://doi.org/10.15809/irriga.2016v21n2p239-256.
    » https://doi.org/10.15809/irriga.2016v21n2p239-256.
  • ARAGÃO, J. P. G. V.; GOMES, E. T. A. Vulnerabilidades em manchas urbanas ao longo das margens fluviais do Capibaribe - Pernambuco/Brasil. Sociedade & Natureza, [S. l.], v. 31, 2019. https://doi.org/10.14393/SN-v31-2019-36389
    » https://doi.org/10.14393/SN-v31-2019-36389
  • BAHIA. Estatísticas dos Municípios Baianos: Território de Identidade nº21 recôncavo. Salvador: SEI, 2012. Available: https://www.sei.ba.gov.br/index.php?option=com_content&view=article&id=2441&Itemid= Accessed: November 20, 2020..
    » https://www.sei.ba.gov.br/index.php?option=com_content&view=article&id=2441&Itemid=
  • BENDA, F.; ALVES, M. G.; CORRÊA, F. Estudo do risco de degradação por assoreamento dos corpos d’água superficiais utilizando SIG. Informática Pública, v. 9, n. 2, p. 55-69, 2007. Available: http://pbh.gov.br/informaticapublica/ANO9_N2_sum.html Accessed: November 20, 2020.
    » http://pbh.gov.br/informaticapublica/ANO9_N2_sum.html
  • BOTELHO, R. G. M. Planejamento ambiental em microbacia hidrográfica. Erosão e conservação dos solos: conceitos, temas e aplicações. 8ª ed. Rio de Janeiro: Bertrand Brasil, 2012.
  • BRANDÃO, V. S.; CECÍLIO, R. A.; PRUSKI, F. F.; SILVA, D. D. Infiltração de água no solo. Viçosa:. UFV, 2006.
  • BRASIL. Decreto nº 12.651, de 25 de maio de 2012. Diário Oficial da República Federativa do Brasil, Brasília, DF, 17 out. 2012. Seção 1, p82. Available: https://www.jusbrasil.com.br/diarios/37352346/dou-secao-1-28-05-2012-pg-1 Accessed: November 20, 2020.
    » https://www.jusbrasil.com.br/diarios/37352346/dou-secao-1-28-05-2012-pg-1
  • CÂMARA, G., SOUZA, R. C. M., FREITAS, U. M., & GARRIDO, J. (1996). SPRING: Integrating remote sensing and GIS by object-oriented data modelling. Computers & graphics, 20(3), 395-403. https://doi.org/10.1016/0097-8493(96)00008-8
    » https://doi.org/10.1016/0097-8493(96)00008-8
  • CARVALHO, F., & RODRIGUES, S. C. (2021). Método Curve Number-pesquisas e discussões dos parâmetros valor CN e abstração inicial. Geografia Ensino & Pesquisa, 25, 31. https://doi.org/10.5902/2236499447861
    » https://doi.org/10.5902/2236499447861
  • COSTA, C. D. O.; ALVES, M. C.; DE PÁDUA SOUSA, A.; SILVA, H. R., GONZÁLEZ, A. P.; AVALOS, J. M. M. Produção e deposição de sedimentos em uma sub-bacia hidrográfica com solos suscetíveis à erosão. Irriga, v. 21, n. 2, p. 284-284, 2016. https://doi.org/10.15809/irriga.2016v21n2p284-299.
    » https://doi.org/10.15809/irriga.2016v21n2p284-299.
  • DE MARIA, I. C. Geotecnologias e modelos aplicados ao manejo e conservação do solo e da água. In: PRADO, R. B.; TURETTA, A. P. D.; DE ANDRADE, A. G. (org.) Manejo e conservação do solo e da água no contexto das mudanças ambientais. Rio de Janeiro: Embrapa Solos, p.95-104, 2010. Available: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/34008/1/livro-manejo.pdf Accessed: March 15, 2020.
    » http://ainfo.cnptia.embrapa.br/digital/bitstream/item/34008/1/livro-manejo.pdf
  • EHLSCHLAEGER, C. R. Using the A^ T search algorithm to develop hydrologic models from digital elevation data. In: Proceedings of the international geographic information system (IGIS) symposium, Baltimore, MD, 275-281, 1989.
  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Serviço Nacional de Levantamento e Conservação de Solos (Rio de Janeiro, RJ). In: Reunião Técnica de Levantamento de Solos, 10., 1979, Rio de Janeiro. Súmula… Rio de Janeiro, 1979. 83 p. (Embrapa-SNLCS. Micelânea, 1). Available: https://edepot.wur.nl/480004 Accessed: Oct. 22th2020.
    » https://edepot.wur.nl/480004
  • FELIPPE, M. F.; JUNIOR, A. P. M.; MENDES, L. C.; CARNEIRO, P. S.; GONTIJO, B. M. Conexões geo-históricas e contemporâneas entre ocupação territorial, degradação ambiental e rarefação hídrica na Bacia do Rio Doce. Revista Geografias, p. 203-222, 2016. https://doi.org/10.35699/2237-549X%20.
    » https://doi.org/10.35699/2237-549X%20.
  • FERNANDES, M.M.; CARVALHO, D.F.; CEDDIA, M.B.; FRANCELINO, M.R. Valoração ambiental do efeito externo da erosão em duas sub-bacias com diferentes percentuais de mata atlântica. Bioscience Journal [online], vol. 30, no. 2, p. 411-420, 2014. Available: https://seer.ufu.br/index.php/biosciencejournal/article/view/17989 Accessed: November 20, 2020.
    » https://seer.ufu.br/index.php/biosciencejournal/article/view/17989
  • FERREIRA, C. S. S.; KEIZER, J. J.; SANTOS, L. M. B.; SERPA, D.; SILVA, V.; CERQUEIRA, M.; FERREIRA, A.J.D.; ABRANTES, N. Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale. Agriculture, Ecosystems & Environment, v. 256, p. 184-193, 2018. https://doi.org/10.1016/j.agee.2018.01.015.
    » https://doi.org/10.1016/j.agee.2018.01.015.
  • FERREIRA, S. C. G.; DE LIMA, A. M. M.; CORRÊA, J. A. M. Indicators of hydrological sustainability, governance and water resource regulation in the Moju river basin (PA)-Eastern Amazonia. Journal of Environmental Management, v. 263, p. 110354, 2020. https://doi.org/10.1016/j.jenvman.2020.110354
    » https://doi.org/10.1016/j.jenvman.2020.110354
  • FINOTTI, A. R.; CEMIN, G.; PÉRICO, E. Potencialidades do Sensoriamento Remoto e do Sistema de Informações Geográficas (SIG) no ensino de Hidrologia. Revista Geografia (Londrina), v. 20, n. 1, p. 51-65, jan. /abr. 2011. http://dx.doi.org/10.5433/2447-1747.2011v20n1p51.
    » http://dx.doi.org/10.5433/2447-1747.2011v20n1p51.
  • GUPTA, M.; GOYAL, V. C.; TARANNUM, F.; PATIL, J. P. Designing a watershed scorecard as a performance evaluation tool for Ur River watershed, Tikamgarh District, Madhya Pradesh. International soil and water conservation research, v. 5, n. 4, p. 280-292, 2017. https://doi.org/10.1016/j.iswcr.2017.10.001.
    » https://doi.org/10.1016/j.iswcr.2017.10.001.
  • IBGE - Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário. 2006. Available: https://cidades.ibge.gov.br/xtras/uf.php?lang=&coduf=29&search=bahia Accessed: November 12, 2017.
    » https://cidades.ibge.gov.br/xtras/uf.php?lang=&coduf=29&search=bahia
  • IBGE - Instituto Brasileiro de Geografia e Estatística. Pedologia 1:250.000. 2018. Available: https://www.ibge.gov.br/geociencias/informacoes-ambientais/pedologia/10871-pedologia.html?=&t=acesso-ao-produto Accessed: November 12, 2018.
    » https://www.ibge.gov.br/geociencias/informacoes-ambientais/pedologia/10871-pedologia.html?=&t=acesso-ao-produto
  • INMET - INSTITUTO NACIONAL DE METEOROLOGIA (Brasília). Banco de Dados Meteorológicos. Dados da estação [83222] CRUZ DAS ALMAS,Bahia, ano 2017. Available: https://bdmep.inmet.gov.br/. Accessed: 10 maio 2019.
    » https://bdmep.inmet.gov.br
  • JARDIM, A. M. D. R. F.; SILVA, J. R. I.; SILVA, M. J.; JÚNIOR, G. D. N. A.; SOUZA, R.; DE SOUZA, E. S. Modelagem da perda de solo por erosão hídrica em Planossolo Háplico. Brazilian Journal of Development, v. 6, n. 2, p. 6826-6834, 2020. https://doi.org/10.34117/bjdv6n2-107.
    » https://doi.org/10.34117/bjdv6n2-107.
  • KUMAR, A.; KANGA, S.; TALOOR, A. K.; SINGH, S. K.; ĐURIN, B. Surface runoff estimation of Sind river basin using integrated SCS-CN and GIS techniques. HydroResearch, v. 4, p. 61-74, 2021. https://doi.org/10.1016/j.hydres.2021.08.001.
    » https://doi.org/10.1016/j.hydres.2021.08.001.
  • MAFRA, N. M. C. Erosão e Planificação de Uso do Solo. In: PRADO, R. B.; TURETTA, A. P. D.; DE ANDRADE, A. G. (org.) Erosão e conservação dos solos: conceitos, temas e aplicações. 8ª ed. Rio de Janeiro: Bertrand Brasil, 2012.
  • MARQUES, F. A.; NASCIMENTO, A. F.; ARAÚJO FILHO, J. C.; SILVA, A. B. Solos do Nordeste. Recife/PE: Embrapa Solos, 2014. Available: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1003864/solos-do-nordeste Accessed: January 20, 2022.
    » https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1003864/solos-do-nordeste
  • MINELLA, J. P. G.; MERTEN, G. H.; REICHERT, J. M.; CASSOL, E. A. Processos e modelagem da erosão: da parcela à bacia hidrográfica. Manejo e conservação do solo e da água no contexto das mudanças ambientais. Rio de Janeiro: Embrapa Solos, p. 105-122, 2010. Available: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/34008/1/livro-manejo.pdf Accessed: March 15, 2020.
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/item/34008/1/livro-manejo.pdf
  • MISHRA, S. K.; SINGH, V. Soil conservation service curve number (SCS-CN) methodology. Springer Science & Business Media, 2003. https://doi.org/10.1007/978-94-017-0147-1_1.
    » https://doi.org/10.1007/978-94-017-0147-1_1.
  • MOREAU, A. M. S. d. S.; KER, J. C.; COSTA, L. M. D.; GOMES, F. H. Caracterização de solos de duas toposseqüências em tabuleiros costeiros do sul da Bahia. Revista Brasileira de Ciência do Solo, v. 30, n. 6, p. 1007-1019, 2006. http://dx.doi.org/10.1590/S0100-06832006000600010.
    » http://dx.doi.org/10.1590/S0100-06832006000600010.
  • OLIVEIRA, V. A. (Ccoord.) Manual técnico de Pedologia. 2º ed. Rio de Janeiro: IBGE, p. 316, 2007. Available: https://biblioteca.ibge.gov.br/visualizacao/livros/liv37318.pdf Accessed: March 13, 2019.
    » https://biblioteca.ibge.gov.br/visualizacao/livros/liv37318.pdf
  • OLIVEIRA, F. G.; SERAPHIM, O. J.; BORJA, M. E. L. Estimativa de perdas de solo e do potencial natural de erosão da bacia de contribuição da microcentral hidrelétrica do Lageado, Botucatu-SP. Energia na Agricultura, v. 30, n. 3, p. 302-309, 2015. https://doi.org/10.17224/EnergAgric.2015v30n3p302-309.
    » https://doi.org/10.17224/EnergAgric.2015v30n3p302-309.
  • RAMOS, D. P.; REGO FILHO, L. M. Pedologia e Interpretações para o Manejo e a Conservação do Solo e da Água. In: PRADO, R. B.; TURETTA, A. P. D.; DE ANDRADE, A. G. (org.) Manejo e conservação do solo e da água no contexto das mudanças ambientais. Rio de Janeiro: Embrapa Solo, p. 85-94, 2010. Available: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/34008/1/livro-manejo.pdf Accessed: March 15, 2020.
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/item/34008/1/livro-manejo.pdf
  • RIBEIRO, L. P. Os latossolos amarelos do Recôncavo baiano: gênese, evolução e degradação. Salvador - BA: CADCT/FAPEX, 1998.
  • RODRIGUES, M. G. F. NACIF P. G. S.; COSTA, O. V.; OLSZEVSKI, N. Solos e suas relações com as paisagens naturais no município de Cruz das Almas-BA. Revista de Biologia e Ciências da Terra, v. 9, n. 2, p. 193-205, 2009.. Available: https://www.redalyc.org/articulo.oa?id=50016937017 March 13, 2020.
    » https://www.redalyc.org/articulo.oa?id=50016937017
  • SAHA, S.; DAS, J.; MANDAL, T. Investigation of the watershed hydro-morphologic characteristics through the morphometric analysis: a study on Rayeng basin in Darjeeling Himalaya. Environmental Challenges, p. 100463, 2022. https://doi.org/10.1016/j.envc.2022.100463.
    » https://doi.org/10.1016/j.envc.2022.100463.
  • SALOMÃO, F. X. T. Controle e prevenção dos processos erosivos. In: Guerra, A. T.; Silva, A. S.; & Botelho, R. G. M. Erosão e conservação dos solos: conceitos, temas e aplicações. Editora Bertrand Brasil LTDA, Rio de Janeiro, 8ª ed., p. 229-268, 2012.
  • SANTANA, S. O.; SANTOS, R. D.; GOMES, I. A.; JESUS, R. M.; ARAUJO, Q. R.; MENDONÇA, J. R.; CALDERANO, S. B.; FARIA FILHO, A. F. Solos da região sudeste da Bahia: atualização da legenda de acordo com o Sistema Brasileiro de Classificação de Solos. Embrapa Solos-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E), 2002. Available: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPS/11825/1/solos_sudeste_bahia.pdf Accessed: January 20, 2022.
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPS/11825/1/solos_sudeste_bahia.pdf
  • SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; CUNHA, T. J. F. Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018. Available: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos Accessed: January 20, 2022.
    » https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos
  • SARTORI, A. Avaliação da Classificação Hidrológica do Solo para a Determinação do Excesso de Chuva do Método do Serviço de Conservação do Solo dos Estados Unidos. 2004. Dissertação (Mestre em Engenharia Civil) - Faculdade de Engenharia Civil, Arquitetura e Urbanismo - Universidade Estadual de Campinas, Campinas, 2004. Available: http://bdtd.ibict.br/vufind/Record/CAMP_89511a6cd855bac0af31abd5c8671638 Accessed: January 20, 2022
    » http://bdtd.ibict.br/vufind/Record/CAMP_89511a6cd855bac0af31abd5c8671638
  • SARTORI, A.; LOMBARDI NETO, F.; GENOVEZ, A. M. Classificação hidrológica de solos brasileiros para a estimativa da chuva excedente com o método do Serviço de Conservação do Solo dos Estados Unidos Parte 1: Classificação. Revista Brasileira de Recursos Hídricos, v. 10, n. 4, p. 05-18, 2005. http://dx.doi.org/10.21168/rbrh.v10n4.p5-18
    » http://dx.doi.org/10.21168/rbrh.v10n4.p5-18
  • SILVA, L. F. T. C.; BEZERRA, J. F. R. B. R.; GUERRA, A. J. T Implicações da mudança na cobertura vegetal em relação à erosão na sub-bacia hidrográfica do rio São Pedro-RJ. Revista Geonorte, v. 3, n. 10, p. 1-16, 2012. Available: https://periodicos.ufam.edu.br/index.php/revista-geonorte/article/view/1127/1019 Accessed: March 13, 2019.
    » https://periodicos.ufam.edu.br/index.php/revista-geonorte/article/view/1127/1019
  • SOARES, M. R. G. D. J.; Fiori, C. O.; SILVEIRA, C. T. D.; Kaviski, E. Eficiência do método Curve Number de retenção de águas pluviais. Mercator (Fortaleza), v.16, 2017. https://doi.org/10.4215/rm2017.e16001.
    » https://doi.org/10.4215/rm2017.e16001.
  • SOULIS, K. X. Soil conservation service curve number (SCS-CN) Method: Current applications, remaining challenges, and future perspectives. Water, v. 13, n. 2, p. 192, 2021. https://doi.org/10.3390/w13020192.
    » https://doi.org/10.3390/w13020192.
  • TUCCI, C. E. Escoamento superficial. Hidrologia: ciência e aplicação, v. 4, p. 391-437, 1993.
  • USGS - United States Geological Survey. 2017. LANDSAT8/OLI, Scene LC08_L1TP_216069_20171228. Available: https://earthexplorer.usgs.gov Accessed: Oct. 20th2020.
    » https://earthexplorer.usgs.gov
  • VALE, J. R. B.; BORDALO, C. A. L. (2020). Caracterização morfométrica e do uso e cobertura da terra da bacia hidrográfica do Rio Apeú, Amazônia Oriental. Formação (Online), v. 27, n. 51, 2020. https://doi.org/10.33081/formacao.v27i51.6026
    » https://doi.org/10.33081/formacao.v27i51.6026
  • VEIGA, D. P. B. D., GUANDIQUE, M. E. G., & NARDOCCI, A. C. (2019). Uso do solo e qualidade da água em bacias hidrográficas do Estado de São Paulo, utilizando GIS e SWAT. Revista Ambiente & Água, v. 14, n. 5, 2019. https://doi.org/10.4136/ambi-agua.2325.
    » https://doi.org/10.4136/ambi-agua.2325.
  • VENEZIANI, Y. A abordagem da geomorfologia antropogênica e de modelagens hidrológica e hidráulica na bacia do Córrego Três Pontes (SP) para determinação de picos de vazão e da vulnerabilidade a inundações. Dissertação (Mestre em Geografia Física) - Faculdade de Filosofia, Letras e Ciências Humanas - USP, São Paulo, 2014. http://dx.doi.org/10.11606/D.8.2014.tde-30112015-133046.
    » http://dx.doi.org/10.11606/D.8.2014.tde-30112015-133046.
  • VIEIRA, C. D.; OLIVEIRA, A.E.F.; ALVES, W.G.; LEÃO, O.M.R. Análise da degradação ambiental na bacia hidrográfica do Rio Alcântara no município de São Gonçalo, leste metropolitana do Rio de Janeiro. Revista Equador, v. 5, n. 4, p. 93-105, 2016. Available: https://revistas.ufpi.br/index.php/equador/article/view/5190/3051 Accessed: January 10, 2021.
    » https://revistas.ufpi.br/index.php/equador/article/view/5190/3051
  • WANG, L., ZHANG, G., & WANG, X. (2022). Undecomposed litter mixed in the soil can increase interrill erosion on hillslopes: A laboratory study. Soil and Tillage Research, v. 219, p. 105350, 2022. https://doi.org/10.1016/j.still.2022.105350
    » https://doi.org/10.1016/j.still.2022.105350

  • FUNDING SOURCE

    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), granting of a scholarship, modality I Financing code 001.

Publication Dates

  • Publication in this collection
    22 Apr 2022
  • Date of issue
    2022

History

  • Received
    06 Dec 2021
  • Accepted
    09 Mar 2022
  • Published
    31 Mar 2022
Editora da Universidade Federal de Uberlândia - EDUFU Av. João Naves de Ávila, 2121 - Bloco 5M – Sala 302B, 38400902 - Uberlândia - Minas Gerais - Brasil, +55 (34) 3239- 4549 - Uberlândia - MG - Brazil
E-mail: sociedade.natureza@ig.ufu.br