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Abstract 

Brazil has the most populous and biodiverse semi-arid region in the world (Brazilian 

Semi-arid - SAB). However, in recent decades, clusters of desertification have 

emerged, a problem that could intensify from climate change. The objective of this 

study was to elaborate on the spatial distribution of areas susceptible to climatic 

desertification in the SAB, considering future climate change scenarios. 

Understanding this dynamic is essential for SAB's agri-environmental management. 

Aridity indices and proposition of climate classes for current condition (1970-2000) 

and future scenarios (2061-2080) of the Intergovernmental Panel on Climate Change 

(IPCC) were prepared, considering scenarios from Shared Socioeconomic Pathways: 

Optimistic (SSP 126) and pessimists (SSP 585). The results indicate that by the end 

of the century, the climate in the SAB should become significantly drier (Kruskal-

Wallis = p-value < 0.05), with an intensification of the aridity index in SSP 585. In 

the scenarios, the expansion of more arid areas over humid climates could reach 

56,500 km² (10%) in SSP 126 and 140,400 km² (24%) in SSP 585. Consequently, areas 

with high (622,400 km² to 706,300 km²) and very high (622,400 km² to 706,300 km²) 

are expected to expand. 4,400 to 21,700 km²) susceptibility to climate desertification 

in the SAB, respectively in scenarios SSPs 126 and 585. Confirming these projections 

would imply socioeconomic and ecological risks in the SAB. 
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INTRODUCTION 

 

 

The semi-arid regions cover approximately 40% 

of the Earth's surface, and host more than 14% 

of the world's population (HUANG et al., 2016). 

These areas are essential for the global economy 

and ecology, supplying many ecosystem services 

(WU et al., 2021). Despite their importance, 

semi-arid regions are extremely sensitive to the 

effects of climate change, leading to 

desertification processes (BURRELL et al., 

2020). Therefore, understanding the climatic 

variables in future scenarios is essential for 

managing semi-arid regions. 

Desertification in semi-arid zones is a global 

problem that disproportionately affects the 

world's poorest areas (POZO et al., 2019). 

Conceptually, desertification is a complex 

phenomenon resulting from the interaction of 

natural and anthropogenic factors that affect 

arid, semi-arid, and dry sub-humid areas (MMA, 

2004). Climate desertification is a subset of 

desertification that specifically refers to changes 

in certain climate variables (UNEP, 1992). Both 

forms of desertification involve decreased 

precipitation, increased air temperature, and 

increased potential evapotranspiration (ZHOU 

et al., 2021). All those changes potentially 

increase aridity, an index of the degree of 

dryness of these environments (ZARCH et al., 

2017). 

By the end of the century, the aridity in semi-

arid regions is expected to intensify, amplifying 

the already prevalent dryness in these areas. 

(HUANG et al., 2016), according to projections 

formulated by the Intergovernmental Panel on 

Climate Change (IPCC). If confirmed, this trend 

will lead to changes in weather conditions 

characterized by decreasing humidity that may 

cause desertification (ZARCH et al., 2017). The 

process of desertification has several negative 

impacts, including the disruption of 

socioeconomic flows, heightened levels of 

poverty, and increased rates of migration among 

both animal and human populations (HUANG 

et al., 2016; SANZHEEV et al., 2020). 

Desertification also reduces land productivity, 

causes soil loss, increases CO2 rates, and 

declines biodiversity levels (HUANG et al., 

2016). Therefore, it is crucial to monitor the 

progress of this process, especially in semi-arid 

areas, in order to mitigate local socioeconomic 

and environmental problems of local and global 

dimensions. 

South America is one of the most affected 

regions by desertification processes. About 10% 

(~200 million hectares) of the continent’s lands 

presents some degree of degradation, with a 

tendency to worsen in future scenarios 

(VERGARA et al., 2015). The Brazilian semi-

arid region (SAB) is inserted in this context, 

with more than twenty-eight million 

inhabitants (IBGE, 2010), constituting the most 

populous semi-arid zone in the world. 

The SAB has high biodiversity, with the 

presence of the Caatinga biome (with xerophytic 

vegetation), and enclaves of Cerrado (semi-

deciduous characteristics), and Atlantic Forest 

(ombrófila vegetation) that create unique 

ecosystems (AB'SABER, 2003). Additionally, it 

has anthropic uses of substantial socioeconomic 

importance. However, recent studies show an 

increase in areas of desertification, ecological 

succession of plant species more adapted to 

drought, and intensification of socioeconomic 

problems (MARQUES SILVA et al., 2018; 

CASTRO OLIVEIRA et al., 2021). 

Recent studies show the impacts of climate 

change on the spatial distribution of 

desertification-susceptible areas in the SAB 

(MARQUES DA SILVA et al., 2018; VIEIRA et 

al., 2020). However, the number of studies that 

analyze future climate conditions, especially on 

an adequate scale, are few (VIEIRA et al., 2021). 

Additionally, new analysis techniques have 

been used for climate variable studies in 

desertification research, such as the use of 

machine learning algorithms in modeling 

(FENG et al., 2022). One advantage of this 

methodological structure is the inclusion of 

environmental covariates in modeling.  

Covariates help explain the spatial distribution 

of the variable and increase the accuracy of 

spatial models (SILVA et al., 2023). Therefore, 

this study aims to evaluate the spatial 

distribution of areas susceptible to climatic 

desertification considering the effects of future 

climate change scenarios (2061-2080). 

Additionally, maps of aridity index (AI) and 

climate classes were created to achieve this goal 

for future scenarios. 

 

 

MATERIALS AND METHODS 

 

 

Study area 

 

The SAB is located in the northeastern portion 

of South America, between 0° and 20° South 

latitude (Figure 1d, e). The region encompasses 

13% of the Brazilian territory, including states 

in the Northeast region and part of the northern 

state of Minas Gerais. 

The SAB region is influenced by atmospheric 

systems such as cold fronts from the 

southeastern Brazil region and seasonal 
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variations of the Inter-Tropical Convergence 

Zone (MUTTI et al., 2020). The air temperature 

has high average values (up to 27 °C) recorded 

in the northwestern portion. The lowest 

averages (19-21°C) prevail on the eastern edge, 

where the arrival of moist fronts from the ocean 

is more constant (Figure 1a). 

 

Figure 1 - SAB Location. A) Spatial distribution of average air temperature (1970-2000). B) Annual 

precipitation. C) Potential evapotranspiration using the Penman-Monteith method (ETo-PM). D) 

SAB boundary. E) SAB in the world. 

 
Source: The authors (2023). 

 

The SAB region presents an irregular 

rainfall distribution throughout the year, 

characterized by a dry period during the winter. 

Some parts may have precipitation levels as low 

as 290 mm during this period. The lowest 

precipitation occurs in the middle area (390-690 

mm/year), while the highest occurs on the 

eastern edge and the northwest portion (1700-

1990 mm/year). 

Potential evapotranspiration is higher in the 

central portion (1200-2200 mm/year), where 

solar radiation levels are intense. Furthermore, 

the effect of moist fronts is reduced, and there 

are lower levels of precipitation (Figures 1b, c). 

 

 

METHODOLOGICAL PROCEDURES 

 

 
Aridity Index (current and future) 

 

The AI was obtained using the Thornthwaite 

method (1948), calculated by the ratio between 

rainfall (P) and potential evapotranspiration 

(ETo) (Equation 01). The lower the AI, the drier 

the land, while higher values represent more 

humid environments. The AI was calculated for 

both current (1970-2000) and future scenarios 

(2061-2080). Rainfall and evapotranspiration 

data compatible with these periods were 

generated. 

 

𝑨𝑰 =
𝑷

𝑬𝑻𝒐
                                       (Equation 1) 

 

Where P and ETo represent annual 

precipitation and potential 

evapotranspiration, respectively. 

 

Precipitation (Current and Future 

Scenarios)  

 

The precipitation data used to build the AI were 

from worldclim 2.1 products that have a spatial 

resolution of 10 km, available for current 

conditions (1970-2000) and future scenarios 

(2061-2080) (FICK et al., 2017). 
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Future precipitation data were based on 

information from global climate change 

scenarios from the Intercompared Project 6 

Coupled Model (CMIP6). CMIP6 establishes 

climate scenarios ranging from ambitious 

mitigation to continuous growth in greenhouse 

gas emissions. 

The scenarios projected by CMIP6 are called 

The Shared Socio-Economic Pathways (SSPs). 

This research selected the SSPs representing 

future global socioeconomic trajectories of 

mitigation (SSP126) and increasing emissions 

(SSP585). Therefore, in SSP126, it is projected 

that CO2 levels will decline by 2050, with a 1.8 

°C temperature increase (optimistic scenario). 

SSP585 describes a future where no significant 

climate policies and economic and population 

growth remain the main priorities, standing for 

a scenario of high greenhouse gas emissions. 

Each SSP has projections of climate data 

based on General Circulation Models (GCMs). 

GCMs supply climate and bioclimatic variables 

for future scenarios (Table 1). However, to 

reduce the effect of uncertainties, a 

recommended procedure in the literature is 

calculating the mean of the climate and 

bioclimatic variables present in the GCMs 

(HAUSFATHER et al., 2022). Therefore, the 

precipitation data from SSP126 and SSP585 

scenarios were obtained from the mean of five 

atmospheric circulation models (INM-CM4-8, 

INM-CM5-0, MIROC6, GISS-E2-1-H, and 

MIROC-ES2L). The mean procedure was also 

applied to bioclimatic variables, which were 

used to assist in modeling the ETo variable.  

 

Table 1 – Climatic and bioclimatic variables for current conditions (1970 – 2000) and future 

scenarios (2061 – 2080). 

Abbreviation 
Variables of current and 

future scenarios 
Abbreviation 

Variables of current and future 

scenarios 

Bio 01 
Annual Mean 

Temperature 
Bio 11 

Mean Temperature of Coldest 

Quarter 

Bio 02 Mean Diurnal Range Bio 12 Annual Precipitation 

Bio 03 Isothermality Bio 13 Precipitation of Wettest Month 

Bio 04 Temperature Seasonality Bio 14 Precipitation of Driest Month 

Bio 05 
Max Temperature of 

Warmest Month 
Bio 15 Precipitation Seasonality 

Bio 06 
Min Temperature of 

Coldest Month 
Bio 16 

Precipitation of Wettest 

Quarter 

Bio 07 
Temperature Annual 

Range 
Bio 17 Precipitation of Driest Quarter 

Bio 08 
Mean Temperature of 

Wettest Quarter 
Bio 18 

Precipitation of Warmest 

Quarter 

Bio 09 
Mean Temperature of 

Driest Quarter 
Bio 19 

Precipitation of Coldest 

Quarter 

Bio 10 
Mean Temperature of 

Warmest Quarter 
SRTM Altitude 

Source: Fick et al. (2017). 

 

Evapotranspiration ET0 (Current and 

Future Scenarios) 

 

The potential evapotranspiration was obtained 

from the EToBrasil dataset (ALTHOFF et al., 

2020). This is a dataset modeled by machine 

learning algorithms. These data were chosen 

because they have a low density of weather 

stations in the SAB.  

The temporal scale of the EToBrasil data is 

daily from 2000 to 2020, with a spatial 

resolution of 10 km. To equalize the temporal 

range of ETo (2000-2020) with the current 

(1970-2000) and future (2061-2080) 

precipitation data, new ETo modeling using 

machine learning algorithms was performed for 

the current and future scenarios. 

In the ETo modeling, the input data 

considered the daily average over 20 years 

(2000-2020), obtained from 6,827 images from 

the EToBrasil database. The sampling of values 

consisted of creating a grid of 2,056 points 

randomly distributed in the SAB, minimum 

distance between points of 10 km. 

The next stages were performed in an R 

programming language environment (TEAM, 

2022). The modeling steps of current and future 

ETo data were helped by a dataset of climatic 

and topographic covariates (Table 1). The 

covariates used were nineteen bioclimatic 

variables from WorldClim, available for current 

conditions (1970-2000) and future scenarios 

(2061-2080) – (Table 1). A topographic covariate 

was inserted based on the SRTM digital 
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elevation model. Altitude was used because it 

alters the spatial distribution patterns of ETo 

rates (LIU et al., 2021). 

From the sample data (2,056 points), a 

regression matrix of the variable y (ETo) was 

created, and the values of the covariates were 

extracted (Table 1). This regression matrix was 

elaborated into three sets of covariates 

encompassing current climate conditions and 

two future climate scenarios (SSP 126 and SSP 

585) (Table 1). 

The correlation level between the covariates 

inserted in the regression matrix was analyzed 

using the findcorrelation function to discard 

highly correlated covariates that can generate 

overestimated results in modeling (SOUZA et 

al., 2018). The criterion used was the Spearman 

coefficient to search for covariates with a 

correlation level above 0.95. 

Subsequently, each regression matrix was 

divided into two sets, training (75%) and testing 

(25%). Finally, five machine learning models 

were selected to predict current and future ETo 

(Table 2). The models were trained with 75% of 

the samples, using cross-validation. The 

remaining 25% was used for external validation 

and selection of the model with the best 

performance, i.e., > R-squared (R²) and < Root 

Mean Square Error (RMSE). 

 

Table 2 – Machine learning algorithms used to train and predict potential evapotranspiration in 

current and future scenarios. 

Machine learning models Source/Package 

Cubist (KUHN; QUINLAN, 2018) 

Random Forest (LIAW; WIENER, 2002) 

Bayesian regularized neural networks (RODRIGUEZ; GIANOLA, 2016) 

Multivariate Adaptive Regression Splines (MILBORROW; TIBSHIRANI, 2019) 

Linear regression (TEAM, 2022) 

  

Aridity index, spatial distribution and 

statistical analyzes 

 

Based on the modeled ETo variable for current 

and future conditions, along with current (1970-

2000) and future (2061-2080) precipitation data 

obtained by averaging GCMs, the Aridity index 

(AI) was calculated (Equation 01). Thresholds of 

the AI were used for climatic classification and 

spatial distribution of areas susceptible to 

desertification in the SAB. The criteria followed 

were the recommendations of the World Atlas of 

Desertification (UNEP, 1992) (Table 3). 

 

Tabela 1 – Climatic classification and levels of susceptibility to desertification as a function of the 

Thornthwaite aridity index (1948) 

Climatic classes 

Desertification 

susceptibility Aridity Index 

Arid Very High 0,05 < 0,20 

 

semi-arid High 0,21 < 0,50 

 

dry subhumid Moderate 0,51 < 0,65 

 

humid subhumid Moderate > 0,65 

Source: Thornthwaite (1948); UNEP (1992).  

 

Simple linear regressions were performed to 

understand how precipitation and ETo affect 

aridity levels under current and future 

conditions. In addition, the Kruskal-Wallis test 

was used to evaluate whether there were 

significant changes in aridity index values in 

response to climate change scenarios. The 

spatial distribution of aridity classes was 

analyzed using Sankey diagrams created with 

the ggplot2 alluvial package in R (BRUNSON, 

2020).
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RESULTS 

 

Algorithms performance in the prediction 

of ETo 

 

The regression matrix for predicting ETo was 

initially constructed with 20 covariates, 

however, after applying findcorrelation, four 

covariates were removed due to correlation > 

0.95 (Bio2, Bio11, Bio16, and Bio17 – Table 1).  

Regarding statistical validation, the Cubist 

and RF algorithms performed better (R² = 0.97 

and 0.98, RMSE = 0.07 and 0.08 mm day-¹, 

respectively). The BRNN presented 

intermediate metrics between the algorithms. 

Earth and LM had the worst performance for 

predicting ETo in the SAB (Figure 2). Cubist 

was selected to predict ETo because it had better 

metrics than RF. 

 

Figure 2 – External validation for BRNN (regularized Bayesian neural networks), Cubist, Earth, LM 

(linear regression) and RF (Random Forest). Figure 2a) Boxplot of R² and Figure 2b) Boxplot of 

RMSE (Square Root Mean Error) 

 
Source: The authors (2023). 

 

Aridity Index (IA): current conditions (1970 

– 2000) and future scenarios (2061 – 2080) 

 

Until the end of the century, the SAB region will 

become significantly drier with an 

intensification of aridity (Thornthwaite aridity 

index) (Kruskal-Wallis p-value <0.05). In the 

current scenario, the average AI in the SAB was 

0.49, a typical value for a semi-arid region 

(Table 3). In the optimistic climate change 

scenario (SSP 126), a 6% decrease is projected 

compared to the current average. In the 

pessimistic scenario (SSP 585), a 14% reduction 

is expected, both showing an intensification of 

aridity. 

Areas with higher aridity are more 

susceptible to climate desertification (Table 3) 

and are expected to expand territorially in 

response to climate change. The AI value of 0.33, 

standing for a high susceptibility to climate 

desertification, showed an expansion of 46,000 

km² (+29%) in SSP 126 and 125,600 km² (+79%) 

in SSP 585. The region where these AI values 

prevail is in the central part of the SAB, where 

there are also projections of the recurrence of 

lower annual precipitation levels (~590 mm) and 

higher ETo levels (~2,300 mm) (Figure 3). 

Regression analyses confirmed these 

relationships (Figure 4), especially for rainfall 

(R2>0.87). 

The expansion of arid lands (AI between 0.34 

and 0.53) in future scenarios was also seen in 

the southern portions of the SAB. This 

expansion is worrying because, in the current 

scenario, more humid conditions are prevailing 

(dry sub-humid, humid sub-humid), with AI 

ranging from 0.54 to 0.65 (moderate 

susceptibility to desertification). The inversion 

of this situation should be induced by the 

expansion of zones with higher ETo values 

(1,900 and 2,200 mm) and lower precipitation 

levels (600-830 mm) (Figure 3). 
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Figure 3 - Spatial distribution of the aridity index (AI), annual precipitation and potential 

evapotranspiration (ETo) for the Brazilian semi-arid region under current conditions (1970 – 2000) 

and future scenarios (2061 – 2080) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: The authors (2023). 

 

Figure 4 - Linear regressions between aridity index (AI), annual precipitation and potential 

evapotranspiration (ETo) under current conditions and future scenarios for SAB 

 
Source: The authors (2023). 

 

Climate classification and climate 

desertification 

 

Future variations of IA are expected to induce 

spatial changes in the climate classes in the SAB 

region (Figure 5). The arid climate condition 

may expand by 4,100 km² in a more optimistic 

climate change scenario (SSP 126). This 

projection is more dramatic in a pessimistic 

scenario, with an expansion of the arid climate 

by 21,500 km². The area with the highest 

recurrence of this expansion in both situations 

is in the middle part of the SAB, being the semi-
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arid climate currently predominant (Figure 5 a-

f). 

 

Figure 5 – Spatial distribution of climate classes based on Thornthwaite (1948) and areas susceptible 

to climate desertification for the Brazilian semi-arid region under current conditions (1970 – 2000) 

and future scenarios (2061 – 2080) 

 
Source: The authors (2023). 

 

Future AI variations should induce spatial 

changes in the climate classes in the SAB 

(Figure 5). The arid climate condition may 

expand by 4,100 km² in a more optimistic 

climate change scenario (SSP 126). This 

projection is even more dramatic in a pessimistic 

scenario, with an arid climate expansion of 

21,500 km². The area with the highest 

recurrence of this expansion in both situations 

prevails in the middle part of the SAB (Figure 

5a, f). 

The territorial expansion of arid climate in 

future scenarios will result from converting 

zones currently classified as semi-arid (Figure 

5). Furthermore, even semi-arid zones should 

expand over zones of subhumid dry climate. This 

means that in the current scenario, the semi-

arid condition dominates 57.79% of the SAB, in 

the optimistic scenario 63.34%, while in the 

most extreme case, 71.87%. 

In general, more arid zones amplify the 

process of susceptibility to desertification. The 

modeling of this study shows that this behavior 

is expected in the SAB in the face of climate 

change (Figure 6a, b). Lands with high 

susceptibility to climatic desertification will be 

more frequent in the SAB until the end of the 

century. Therefore, the expansion of zones of 

high susceptibility to desertification may 

increase by 622,400 km² (+10%) in the SSP 126, 

and more intensely in the SSP 585, increasing 

by 706,300 km² (+39%). 

The expansion of areas with greater 

susceptibility to climatic desertification should 

advance over areas with lower levels of 

susceptibility in the current conditions. 

Therefore, in the central part of the SAB, zones 

currently with high susceptibility will be 

converted to very high susceptibility to 

desertification in future scenarios (Figure 5), 

with a territorial expansion of 4,400 in an 

optimistic scenario (SSP 126) and 21,700 km² in 

the most extreme climate change scenario (SSP 

585). Additionally, the evolution of areas with 

high susceptibility to desertification should 

reach even regions to the south (up to 15° S, 

including the semi-arid region in northern 

Minas Gerais). 
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Figure 6 – Sankey graph with the conversions: (a) Climate types in the face of climate change 

scenarios. (b) Areas susceptible to climate desertification in the face of climate change scenarios 

 
Source: The authors (2023). 

 

DISCUSSION 

 

 

The study analyzed the effects of climate change 

on aridity and its impacts on the increase of 

drylands and the expansion of areas susceptible 

to climate desertification in the SAB. A crucial 

step was using precipitation and ETo variables 

to model aridity indices (AI), a fundamental 

index to obtain maps of climate classes and 

levels of climate desertification. 

The methodological structure used to model 

the ETo variable based on machine learning 

algorithms was highlighted. The Cubist 

algorithm presented the best performance 

between the five tested methods, explaining 98% 

of the distribution of ETo in the SAB (Figure 2). 

Modeling ETo using these criteria can generate 

more precise data (ALTHOFF et al., 2020; DIAS 

et al., 2021).  

AI modeling showed that aridity will expand 

territorially in the SAB (Figure 3). This evidence 

follows a global trend, as several spatial 

modeling studies show that aridity is expected 

to intensify in semi-arid regions (FERNANDEZ 

et al., 2019; BURRELL; EVANS; DE KAUWE, 

2020; DENISSEN et al., 2022). For the SAB, 

about 23% of the land has desertification nuclei 

in the current scenario (BEZERRA et al., 2020); 

therefore, the intensification of aridity 

conditions and the expansion of dry climates in 

future scenarios should increase the zones with 

susceptibility to climate desertification (Figure 

5). Earlier studies for South America show a 

similar pattern, with the expansion of dry 

climates and the intensification of zones 

susceptible to desertification (FERNANDEZ et 

al., 2017; FERNANDEZ et al., 2019). 

The central and southern SAB tend to be the 

most affected by climate desertification in future 

scenarios: (Figure 5). In the central part, classes 

with very high susceptibility to desertification 

will emerge, affecting states in Bahia and part 

of Pernambuco. These regions already have 

ongoing desertification processes in the current 

scenario. Studies in this area show that 45,000 

km² of land have become drier in recent decades 

(SPINONI et al., 2015). 

Ranges with high susceptibility to 

desertification should reach the southern part of 

the SAB, where the northern region of Minas 

Gerais is located (Figure 5). These projections 

align with earlier studies that defined the region 

as having a high potential for desertification 

based on the low levels of precipitation and high 

temperature under current conditions (SANTOS 

et al., 2022). The implications of increased 

aridity and desertification can have dramatic 

consequences in northern Minas Gerais, mainly 

because it is a densely populated region (1.6 

million inhabitants), with a low human 

development Index (14% below the national 

average) (IBGE, 2010), and with 25% of the 

conflicts in the State’s rural areas that depend 

on the productivity of arable land (FERREIRA 

et al., 2021). 

Ecosystem’s function will also be affected by 

the expansion of desertification areas in the 

SAB. Vegetation with xerophilous 

characteristics may expand into currently 

wetter areas (CASTRO OLIVEIRA et al., 2021). 

The implications of this expansion are changes 

in the physical environment, such as reduced 

land cover, loss of nutrients and soil, and 

changes in the water cycle, further contributing 

to desertification (ADAMO; CREWS-MEYER, 
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2006; FAY et al., 2016). Soil loss, for example, 

has been shown as one of the main indicators of 

desertification in SAB (PEREZ-MARIN et al., 

2012). 

The expansion of xerophilous vegetation can 

negatively affect the region's biodiversity. 

Studies show that in desertification nuclei, 

plant species biodiversity decreases (TAVARES 

et al., 2019). Therefore, it is crucial to consider 

the effects of climate change and desertification 

in SAB on the loss of agricultural productivity 

and biodiversity and soil properties. 

 

 

FINAL CONSIDERATIONS 

 

 

Aridity indices, classification of climate classes, 

and levels of climate desertification were 

developed for the Brazilian semi-arid region 

considering climate change scenarios. The 

results show that the Brazilian semi-arid region 

may become drier by the end of the century, 

especially with increased aridity levels and 

territorial expansion of more arid zones. This 

dynamic is concerning even in optimistic climate 

change scenarios (SSP 126). 

The intensification of aridity should result in 

spatial alterations of the climatic classes in the 

SAB. Dry climates (arid and semi-arid) may 

expand over areas with wetter climates (sub-

humid humid and sub-humid dry). 

The intensification of aridity creates zones 

with high susceptibility to desertification, which 

will be intensified in the central part of the SAB, 

and displacement of zones with high 

susceptibility to desertification towards regions 

to the south. 
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