Acessibilidade / Reportar erro

Frequency of fungi associated with Creole corn seeds under different environmental conditions in Guerrero, Mexico

Frequência de fungos associados a sementes de milho crioulo em diferentes condições ambientais em Guerrero, México

ABSTRACT

In Mexico, Creole corn has presented problems related to seed rot. Therefore, the objective of this study was to determine the frequency of fungi associated with Creole corn seeds. From January to February 2019, 13 Creole corn samples were collected from several localities in Guerrero, Mexico. The samples were processed in PDA culture medium and the frequency of each fungus was estimated based on cultural characteristics and taxonomic keys. Considering symptomatic corn seed samples, Fusarium oxysporum was recorded in eight samples at 97.2%, followed by F. graminearum, isolated from race “Olotillo 1” at 94.4% and from race “Cónico pepitilla” at 58.3%. Phomopsis sp. was isolated at 100% from race “Olotillo 2”. Gibberella moniliformis was isolated from “Elotes Occidental 1” at 83.3%, while the least frequent isolate (19.4%) from “Pepitilla” was Sarocladium strictum, which was recorded in three samples at the low values of 11.1% and 2.8% for races “Arrocillo 2” and “Pepitilla”, respectively; Talaromyces variabilis was found in two samples at 11.1% and 2.8% from “Arrocillo 2” and “Cónico pepitilla”, respectively; Stenocarpella macrospora was isolated at 72.2% from “Pepitilla”. Aspergillus flavus was obtained from “Cónico Pepitilla” at 16.7%, while Setosphaeria turcica and Emericella sp. were less frequently isolated. Considering asymptomatic seeds of race “Cónico pepitilla”, F. oxysporum was isolated at 8.3%, Fusarium acuminatum at 8.3% and Gibberella moniliformis at 41.7%; from asymptomatic seeds of “Olotillo 1” and “Olotillo 2”, Phomopsis sp. was isolated at 50% and Rhizoctonia solani at 50%, respectively. In the present study, the fungi F. oxysporum, Phomopsis sp., G. moniliformis and F. graminearum were most frequently associated with Creole corn seeds.

Keywords
Zea mays ; fungal disease; seed mycoflora

RESUMO

No México, o milho crioulo apresenta problemas de podridão das sementes. Portanto, o objetivo desta pesquisa foi determinar a frequência de fungos associados a sementes de milho crioulo. De janeiro e fevereiro de 2019, 13 amostras de milho crioulo foram coletadas em localidades de Guerrero, México. As amostras foram processadas em meio de cultura BDA e a frequência de cada fungo foi estimada com base nas características culturais e chaves taxonômicas. Nas amostras sintomáticas de sementes de milho, Fusarium oxysporum foi registrado em oito amostras com 97,2%, seguido por F. graminearum isolado na raça de milho “Olotillo 1” com 94,4% e na raça “Cónico pepitilla” com 58,3%. Phomopsis sp., foi isolado 100% na raça “Olotillo 2”. Gibberella moniliformis, foran isolados de “Elotes Occidental 1” com 83,3% e o menos frequente (19,4%) em “Pepitilla” foi Sarocladium strictum registrado em três amostras com valores baixos de 11,1% e 2,8% na raça de milho “Arrocillo 2” e “Pepitilla”, Talaromyces variabilis em duas amostras com 11,1% e 2,8% em “Arrocillo 2” e “Cónico pepitilla”. Stenocarpella macrospora foi isolado em 72,2% da raça de milho “Pepitilla”. Aspergillus flavus em “Cónico Pepitilla” com 16,7%, Setosphaeria turcica e Emericella sp., foi isolado com menor frequência. Em sementes assintomáticas da raça “Cónico pepitilla” foi isolado F. oxysporum com 8,3%, Fusarium acuminatum 8,3%, Gibberella moniliformis em 41,7%, em sementes assintomáticas de “Olotillo 1” e “Olotillo 2” Phomopsis sp., foi isolado em 50% e Rhizoctonia solani com 50%. Neste estudo, os fungos F. oxysporum, Phomopsis sp., G. moniliformis e F. graminearum foram os mais frequentemente associados às sementes de milho crioulo.

Palavras Chave
Zea mays ; doença fúngica; micoflora de sementes

In Mexico, native corn occupies around 70% to 80% of the cultivated area and is mostly used for self-consumption. Although it is a regional genetic material, native corn presents various problems that decrease the crop productivity, one of which is associated with seed rot induced by phytopathogenic fungi of different genera (2727 Uribe-Cortés, T.B.; Silva-Rojas, H.V.; Mendoza-Onofre, L.E.; Velázquez-Cruz, C.; Rebollar-Alviter, Á. Identificación de especies de Fusarium aisladas de semillas sintomáticas y asintomáticas de maíz con base en el gen TEF-1α. Revista Fitotecnia Mexicana, Texcoco, v.43, n.1, p.79-88, 2020. https://doi.org/10.35196/rfm.2020.1.79
https://doi.org/10.35196/rfm.2020.1.79...
). The most frequent fungi causing economic losses throughout the world are Fusarium spp.; in such a large genus, the major species found in corn kernels and stalks are: F. verticillioides, F. oxysporum, F. graminearum, F. equiseti, F. proliferatum and F. subglutinans (33 Atanasova-Penichon V.; Barreau C.; Richard-Forge F. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation. Frontiers in Microbiology, Lausanne, v.7, p.566, 2016. https://doi.org/10.3389/fmicb.2016.00566, 1818 Li, L.; Qu, Q.; Cao, Z.; Guo, Z.; Jia, H.; Liu, N.; Wang, Y.; Dong, J. The relationship analysis on corn stalk rot and ear rot according to Fusarium species and fumonisin contamination in kernels. Toxins, Basel, v.11, p.320, 2019. https://doi.org/10.3390/toxins11060320
https://doi.org/10.3390/toxins11060320...
), while in corn kernels for consumption and corn kernels for popcorn, Aspergillus flavus, A. niger, A. calvatus, Rhizopus stolonifer and Fusarium proliferatum were identified (2828 Yassin, M.A.; El-Samawaty, A.R.M.A.; Moslem, M.; Bahkali, A.; Abd-Elsalam, K. Fungal biota and occurrence of aflatoxigenic Aspergillus in postharvest corn grains. Fresenius Environmental Bulletin, Freising, p.20, n.4, 903-909, 2011. https://www.researchgate.net/publication/259827957
https://www.researchgate.net/publication...
). The genus Fusarium commonly infects corn seeds and consequently reduces their ability to germinate; in some cases, the fungus remains colonizing plant debris for several periods, waiting for seedlings, roots and stalks (2727 Uribe-Cortés, T.B.; Silva-Rojas, H.V.; Mendoza-Onofre, L.E.; Velázquez-Cruz, C.; Rebollar-Alviter, Á. Identificación de especies de Fusarium aisladas de semillas sintomáticas y asintomáticas de maíz con base en el gen TEF-1α. Revista Fitotecnia Mexicana, Texcoco, v.43, n.1, p.79-88, 2020. https://doi.org/10.35196/rfm.2020.1.79
https://doi.org/10.35196/rfm.2020.1.79...
). Therefore, the objective of the present study was to determine the frequency of fungi associated with Creole corn seeds in Guerrero, Mexico.

Materials and methods

Corn seed sampling

Corn samples were collected from January to February 2019. The sampling consisted of five symptomatic seeds and three asymptomatic seeds of the same race of Creole corn from the study locations (Table 1). The samples were placed in plastic bags, which were labeled and taken to the laboratory for processing.

Table 1
Races of Creole corn (Zea mays L.) collected from five localities in Guerrero State, Mexico. Period: January − February 2019.

Sample processing

Potato Dextrose Agar (PDA) culture medium (Bioxon®) was prepared according to the manufacturer›s instructions. In each Creole corn collection, 25 symptomatic seeds were selected for the isolation of fungi and 10 asymptomatic seeds were used as negative control. Six fragments of approximately 0.5 cm were obtained from each seed; they were disinfected with 1.5% NaClO for two minutes and rinsed in two changes of sterilized water for two minutes. The fragments were placed on previously sterilized absorbent paper and allowed to rest for 20 minutes to eliminate excess water. Then, the fragments of symptomatic and asymptomatic corn seeds were sown with a dissection needle; six fragments / Petri dish with PDA were deposited (90 x 15 mm diameter boxes) and incubated at 26°C for seven days under white light and alternating 12 h light / dark cycles.

Identification and frequency of fungi

Adopting the taxonomic keys proposed by Barnett & Hunter (55 Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi. 4th ed. Saint Paul: American Phytopathological Society, 1998. 218p.), Leslie & Summerell (1717 Leslie, J.F.; Summerell, B.A. The Fusarium laboratory manual. Iowa: Blackwell Publishing, 2006. 388 p.) and Crous et al. (99 Crous, P.W.; Verkley, G.J.M.; Groenewald, J.Z.; Samson, R.A. Fungal biodiversity. Utrecht: Editora, 2009. 269p. CBS Laboratory Manual Series.), the fungi associated with Creole corn seeds were morphologically identified, according to the methodology used in the present study.

After the incubation period, the presence of fungi and their growth were visually observed on Petri dishes with PDA. The frequency of fungi was calculated with the following formula:

Frequency   % = Number   of   fragments   per   genus   or   species   of   fungus Total   fragments   per   Petri   dish   ×   100

Results and Discussion

In the present investigation, 10 species of fungi belonging to 8 genera were isolated. From symptomatic seeds, the following fungi were isolated: Fusarium oxysporum, F. graminearum, Gibberella moniliformis, Sarocladium strictum, Talaromyces variabilis, Stenocarpella macrospora, Aspergillus flavus, Setosphaeria turcica, Phomopsis sp., and Emericella sp.

Rhizoctonia solani, Fusarium acuminatum, F. oxysporum, Gibberella moniliformis and Phomopsis sp. were isolated from asymptomatic seeds (Table 2).

Table 2
Frequency of fungi in symptomatic and asymptomatic Creole corn seeds from five localities in Guerrero State, Mexico. Period: January − February 2019.

Fusarium oxysporum was isolated from eight samples of six races of Creole corn, showing an incidence of 97.2% in white seeds (Table 2). Fusarium oxysporum is considered the major cause of decreased corn production worldwide, particularly in Spain, Brazil and Mexico (11 Aguín, O.; Cao, A.; Pintos, C.; Santiago, R.; Mansilla, P.; Butrón, A. Occurrence of Fusarium species in maize kernels grown in northwestern Spain. Plant Pathology, London, v.63, p.946-951, 2014. https://doi.org/10.1111/ppa.12151
https://doi.org/10.1111/ppa.12151...
, 2525 Rivas-Valencia, P.; Virgen-Vargas, J.; Rojas Martínez, I.; Cano Salgado, A.; Ayala Escobar, V. Evaluación de pudrición de mazorca de híbridos de maíz en Valles Altos. Revista Mexicana de Ciencias Agrícolas, Texcoco, v.2, n.6, p.845-854, 2011. Available at: <http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342011000600004>. Accessed on: 02 Oct. 2021
http://www.scielo.org.mx/scielo.php?scri...
). García-Aguirre & Martínez-Flores (1414 García-Aguirre, G.; Martínez-Flores, R. Especies de Fusarium en granos de maíz recién cosechado y desgranado en el campo en la región de Ciudad Serdán, Puebla: Revista Mexicana de Biodiversidad, Ciudad de México, v.81, p.15-20, 2010. Available at: <http://www.scielo.org.mx/scielo.php?pid=S1870-34532010000100003&script=sci_arttext>. Accessed on: 01 Nov. 2020.
http://www.scielo.org.mx/scielo.php?pid=...
) reported that F. oxysporum was isolated from two samples of national white corn seeds and native white corn seeds at a frequency of 100%. Zhou et al. (2929 Zhou, D.; Wang, X.; Chen, G.; Sun, S.; Yang, Y.; Zhu, Z.; Duan, C. The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, Basel, v.10, p.1-14, 2018. https://doi.org/10.1016/S1572-5995(06)80136-5
https://doi.org/10.1016/S1572-5995(06)80...
) isolated different Fusarium spp. from corn cobs and grains, detecting F. verticillioides, F. proliferatum, F. meridionale and F. oxysporum as the predominant species, and the latter was found at a frequency of 12.1%; those same species were considered pathogens that cause rot in corn ears and grains in China. Regarding the corn race “Pepitilla”, F. oxysporum was less frequently isolated, reaching values of 2.8%. Considering asymptomatic fragments from race “Cónico pepitilla”, that fungus was detected at 8.3%.

Fusarium graminearum was recorded in two samples of race “Olotillo 1” at a frequency of 94.4%. In Mexico, such a fungus was reported as the cause of ear rot, stem blight and rot in corn seedlings (1919 Martínez-Nuñez, B.; Tadeo-Robledo, M.; Espinosa-Calderón, A.; García-Zavala, J.J.; Silva-Rojas, H.V.; Aguilar-Rincón, V.H.; Miranda-Colín, S. Rendimiento de grano y resistencia a tizón foliar (“Exserohilum turcicum”) de híbridos fértiles y androestériles de maíz. Agrociencia, Texcoco, v.53, n.1, p.73-88, 2019. Available at: <https://agrociencia-colpos.org/index.php/agrociencia/article/view/1752>. Accessed on: 23 Jan. 2021
https://agrociencia-colpos.org/index.php...
). In Argentina, it is also known as the cause of corn ear rot and stands out for its constant presence in corn grains (88 Castañares, E.; Martínez, M.; Cristos, D.; Rojas, D.; Lara, B.; Stenglein, S.; Dinolfo, M.I. Fusarium species and mycotoxin contamination in maize in Buenos Aires province, Argentina. European Journal of Plant Pathology, Dordrecht, v.155, p.1265-1275, 2019. https://doi.org/10.1007/s10658-019-01853-5
https://doi.org/10.1007/s10658-019-01853...
). In Pakistan, Niaz & Dawar (2121 Niaz, I.; Dawar, S. Detection of seed borne mycoflora in maize (Zea mays L.). Pakistan Journal of Botany, Karachi v.41, n.1, p.443-451, 2009. Available at: <http://www.pakbs.org/pjbot/PDFs/41(1)/PJB41(1)443.pdf> Accessed on: 17 Apr. 2019
http://www.pakbs.org/pjbot/PDFs/41(1)/PJ...
) reported the presence of F. graminearum in the microbiota isolated from the seeds of corn crops. Broders et al. (77 Broders, K.D.; Lipps, P.E.; Paul, P.A.; Dorrance, A.E. Evaluation of Fusarium graminearum associated with corn and soybean seed and seedling disease in Ohio. Plant Disease, Saint Paul, v.91, p.1155-1160, 2007. https://doi.org/10.1094/PDIS-91-9-1155
https://doi.org/10.1094/PDIS-91-9-1155...
) pointed out that, in the United States, F. graminearum is considered an economically important pathogen, which causes the disease called “head blight” in wheat and is also responsible for stem and ear rot in wheat. On the other hand, in the present study, its presence was also reported in corn seeds of race “Cónico Pepitilla” at a frequency of 58.3%. Moreover, Ekwomadu et al. (1111 Ekwomadu, T.I.; Gopane, R.E.; Mwanza, M. Occurrence of filamentous fungi in maize destined for human consumption in South Africa. Food Science & Nutrition, Weinheim, v.6, p.884-890, 2018. https://doi.org/10.1002/fsn3.561
https://doi.org/10.1002/fsn3.561...
) mentioned that the genus Fusarium is the major cause of contamination of commercial corn seeds in South Africa.

The fungus Phomopsis sp. was isolated from six samples of symptomatic corn of races “Conico pepitilla”, “Arrocillo delgado”, “Elotes occidental 2”, “Olotillo 2”, “Maíz Costeño 1” and “Maíz Costeño 2”; it was also recorded in an asymptomatic sample of “Olotillo1”. The highest values were found for: “Olotillo 2” and “Maíz Costeño 1”; both were symptomatic samples and had frequency values oscillating between 100% and 97.2%, respectively. In addition, Phomopsis sp. was isolated from asymptomatic samples of “Olotillo 1” at a frequency of 50%. Lamprecht et al. (1616 Lamprecht, S.C.; Crous, P.W.; Groenewald, J.Z. Diaporthaceae associated with root and crown rot of maize. IMA Fungus, Heidelberg, v.2, p.13-24, 2011. https://doi.org/10.5598/imafungus.2011.02.01.03
https://doi.org/10.5598/imafungus.2011.0...
) reported the presence of Phomopsis viticola, P. asparagi, P. vaccinii and P. sclerotioides, considered part of the fungal complex that significantly affects the survival of corn seedlings and the cause of ear rot in South African corn crops.

Gibberella moniliformis was isolated from four symptomatic seed samples; in this sense, the races “Elotes occidentales 1” and “Arrocillo 1” presented incidence values of 83.3% and 66.7%, respectively. That fungal species has been reported in Mexico as a pathogen of great importance, affecting different corn parts: cob, grains, root and stem (1010 De la Torre-Hernández, M.E.; Sánchez R.; Galeana S., D.; Plasencia P., J. Fumonisinas –Síntesis y función en la interacción Fusarium verticillioides-maíz. Tip Revista Especializada en Ciencias Químico-Biológicas, Ciudad de México, v.17, p.77-91, 2014. https://doi.org/10.1016/S1405-888X(14)70321-3
https://doi.org/10.1016/S1405-888X(14)70...
). Gibberella moniliformis was also detected in a sample of asymptomatic seed fragments of race “Cónico Pepitilla”, showing incidence values of 41.7% (Table 2).

Sarocladium strictum was also isolated and, for symptomatic seeds, its incidence values were 11% in “Arrocillo 2”, 8.3% in “Arrocillo 1” and 2.8 in “Pepitilla”. That same species was recorded in South Africa at a higher incidence; as reported in the present study, its frequency was 18.4% isolation from corn grains and it was associated with corn ear rot (44 Aveling, T.A.S.; De Ridder, K.; Olivier, N.A.; Berger, D.K. Seasonal variation in mycoflora associated with asymptomatic maize grain from small-holder farms in two provinces of South Africa. Journal of Agriculture and Rural Development in the Tropics and Subtropics, Witzenhausen, v.121, p.265-275, 2020. https://doi.org/10.17170/kobra-202011262275
https://doi.org/10.17170/kobra-202011262...
). Differently, Gonçalves et al. (1515 Gonçalves, R.M.; Figueiredo, J.E.F.; Pedro, E.S.; Meirelles, W.F.; Leite, J.R.P.; Sauer, A.V.; Paccola-Meirelles, L.D. Etiology of Phaeosphaeria leaf spot disease of maize. Journal of Plant Pathology, Napoli, v.95, n.3, p.559-569, 2013. http://www.jstor.org/stable/23721577
http://www.jstor.org/stable/23721577...
) detected S. strictum in corn leaves.

In the present study, the fungus Talaromyces variabilis was isolated from two samples which showed a lower frequency: 11.1% in race “Arrocillo 2” and 2.8% in race “Cónico pepitilla”. Peterson & Jurjevi? (2323 Peterson, S.W.; Jurjević, Ž. New species of Talaromyces isolated from maize, indoor air, and other substrates. Mycologia, London, v.109, p.537-556, 2017. https://doi.org/10.1080/00275514.2017.1369339
https://doi.org/10.1080/00275514.2017.13...
) indicated that Talaromyces spp. were isolated from corn seeds in the United States.

On the other hand, Stenocarpella macrospora was detected in one single sample of symptomatic seeds at a frequency of 72.2% for corn of race “Pepitilla”. In Brazil, S. macrospora is the cause of corn stem, ear and leaf rot (2626 Siqueira, C.D.S.; Machado, J.D.C.; Barrocas, E.N.; De Almeida, M.F. Potential for transmission of Stenocarpella macrospora from inoculated seeds to maize plants grown under controlled conditions. Journal of Seed Science, Londrina, v.36, n.2, p.154-161, 2014. https://doi.org/10.1590/2317-1545v32n2904
https://doi.org/10.1590/2317-1545v32n290...
).

Aspergillus flavus was only detected in corn of race “Cónico Pepitilla” at a frequency of 16.7%. In Sonora, Mexico, research was carried out in several agroecological zones of the soils of corn crops, detecting values higher than 45% for A. flavus, which was considered a contaminant to corn crops; aflatoxin content of the said species was also analyzed (2222 Ortega-Beltran, A.; Cotty, P.J. Frequent shifts in Aspergillus flavus populations associated with maize production in Sonora, Mexico. Phytopathology, Saint Paul, v.108, n.3, p.412-420, 2018. https://doi.org/10.1094/phyto-08-17-0281-R
https://doi.org/10.1094/phyto-08-17-0281...
).

Setosphaeria turcica exhibited colonial development in symptomatic seeds of race “Arrocillo delgado” collected from the town of San Francisco Lagunita. That fungus is considered cosmopolitan and is of great economic importance for different crops worldwide; in East Africa and China, it has been reported as a severe pathogen, causing “leaf blight” that affects different races of sorghum (Sorghum bicolor L.) (2424 Ramathani, I.; Biruma, M.; Martin, T.; Dixelius, C.; Okori, P. Disease severity, incidence and races of Setosphaeria turcica on sorghum in Uganda. European Journal of Plant Pathology, Dordrecht, v.131, p.383-392, 2011. https://doi.org/10.1007/s10658-011-9815-1
https://doi.org/10.1007/s10658-011-9815-...
). Likewise, Félix-Gastélum et al. (1212 Félix-Gastélum, R.; Lizárraga-Sánchez, G.J.; Maldonado-Mendoza, I.E.; Leyva-Madrigal, K.Y.; Herrera-Rodríguez, G.; Espinoza-Matías, S. Confirmación de la identidad de Exserohilum turcicum, agente causal del tizón foliar del maíz en Sinaloa. Revista Mexicana de Fitopatología, Texcoco, v.36 n.3, p.468-478, 2018. https://doi.org/10.18781/r.mex.fit.1803-1
https://doi.org/10.18781/r.mex.fit.1803-...
) confirmed the presence of Exserohilum turcicum, indicated as the anamorphic phase of S. turcica and the major cause of leaf blight affecting hybrid corn production in Sinaloa State, Mexico.

On the other hand, Emericella sp. was isolated from samples of race “Arrocillo delgado”. Emericella sp. is considered to be present in food worldwide, both in its teleomorphic phase and in its anamorphic phase, which is Aspergillus sp. (22 Akhtar, N.M.J.H.; Bajwa, R.; Javaid, A. Fungi associated with Seeds of some economically important plants. Mycopath, Lahore, v.5, p.35-40, 2007. Available at: <http://111.68.103.26/journals/index.php/mycopath/article/viewFile/197/102>. Accessed on: 13 Oct. 2020.
http://111.68.103.26/journals/index.php/...
); in addition, both genera are regarded as potential producers of aflatoxins (1313 Frisvad, J.C.; Skouboe, P.; Samson, R.A. Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. Systematic and Applied Microbiology, Amsterdam, v.28, p.442-453, 2005. https://doi.org/10.1016/j.syapm.2005.02.012
https://doi.org/10.1016/j.syapm.2005.02....
). So far, in reference to the current study, presence of Emericella sp. in corn seeds has not been reported in Mexico.

Fusarium acuminatum was isolated from asymptomatic seeds of race “Conico pepitilla”, at 8.3% incidence. In Italy, 15 species of the genus Fusarium, including F. acuminatum, were identified as causing disease in corn stalks and ears (66 Bottalico, A.; Logrieco, A.; Visconti, A. Fusarium species and their mycotoxins in infected corn in Italy. Mycopathologia, New York, v.107, p.85-92, 1989. https://doi.org/10.1007/BF00707543
https://doi.org/10.1007/BF00707543...
).

Rhizoctonia solani was isolated from asymptomatic seeds of race “Olotillo 2”, at a frequency of 50%. Globally, R. solani is considered a fungus of wide host range and capable of causing plant wilt and fruit rot, both in the field and in the greenhouse, thus generating economic losses (2020 Marzouk, T.; Chouachi, M.; Sharma, A.; Jallouli, S.; Mhamdi, R.; Kaushik, N.; Djébali, N. Biocontrol of Rhizoctonia solani using volatile organic compounds of solanaceae seed-borne endophytic bacteria. Postharvest Biology and Technology, Amsterdam, v.181, p.111655, 2021. https://doi.org/10.1016/j.postharvbio.2021.111655
https://doi.org/10.1016/j.postharvbio.20...
).

The current results indicated the presence of several fungi associated with Creole corn seeds, leading to the conclusion that F. oxysporum was the most frequent organism, isolated from six races of Creole corn, followed by Phomopsis sp., G. moniliformis and F. graminearum. These were the most frequent fungi in the Creole corn seeds evaluated in the present study.

ACKNOWLEDGMENTS

The first author thanks CONACyT for the scholarship granted to her Master’s studies. The authors also thank “Maestría en Ciencias Agropecuarias y Gestión Local de la Universidad Autónoma de Guerrero” for supporting the present study.

  • DISCLOSURE STATEMENT

    There is no potential conflict of interest in the submitted paper.

REFERENCES

  • 1
    Aguín, O.; Cao, A.; Pintos, C.; Santiago, R.; Mansilla, P.; Butrón, A. Occurrence of Fusarium species in maize kernels grown in northwestern Spain. Plant Pathology, London, v.63, p.946-951, 2014. https://doi.org/10.1111/ppa.12151
    » https://doi.org/10.1111/ppa.12151
  • 2
    Akhtar, N.M.J.H.; Bajwa, R.; Javaid, A. Fungi associated with Seeds of some economically important plants. Mycopath, Lahore, v.5, p.35-40, 2007. Available at: <http://111.68.103.26/journals/index.php/mycopath/article/viewFile/197/102>. Accessed on: 13 Oct. 2020.
    » http://111.68.103.26/journals/index.php/mycopath/article/viewFile/197/102
  • 3
    Atanasova-Penichon V.; Barreau C.; Richard-Forge F. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation. Frontiers in Microbiology, Lausanne, v.7, p.566, 2016. https://doi.org/10.3389/fmicb.2016.00566
  • 4
    Aveling, T.A.S.; De Ridder, K.; Olivier, N.A.; Berger, D.K. Seasonal variation in mycoflora associated with asymptomatic maize grain from small-holder farms in two provinces of South Africa. Journal of Agriculture and Rural Development in the Tropics and Subtropics, Witzenhausen, v.121, p.265-275, 2020. https://doi.org/10.17170/kobra-202011262275
    » https://doi.org/10.17170/kobra-202011262275
  • 5
    Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi 4th ed. Saint Paul: American Phytopathological Society, 1998. 218p.
  • 6
    Bottalico, A.; Logrieco, A.; Visconti, A. Fusarium species and their mycotoxins in infected corn in Italy. Mycopathologia, New York, v.107, p.85-92, 1989. https://doi.org/10.1007/BF00707543
    » https://doi.org/10.1007/BF00707543
  • 7
    Broders, K.D.; Lipps, P.E.; Paul, P.A.; Dorrance, A.E. Evaluation of Fusarium graminearum associated with corn and soybean seed and seedling disease in Ohio. Plant Disease, Saint Paul, v.91, p.1155-1160, 2007. https://doi.org/10.1094/PDIS-91-9-1155
    » https://doi.org/10.1094/PDIS-91-9-1155
  • 8
    Castañares, E.; Martínez, M.; Cristos, D.; Rojas, D.; Lara, B.; Stenglein, S.; Dinolfo, M.I. Fusarium species and mycotoxin contamination in maize in Buenos Aires province, Argentina. European Journal of Plant Pathology, Dordrecht, v.155, p.1265-1275, 2019. https://doi.org/10.1007/s10658-019-01853-5
    » https://doi.org/10.1007/s10658-019-01853-5
  • 9
    Crous, P.W.; Verkley, G.J.M.; Groenewald, J.Z.; Samson, R.A. Fungal biodiversity Utrecht: Editora, 2009. 269p. CBS Laboratory Manual Series.
  • 10
    De la Torre-Hernández, M.E.; Sánchez R.; Galeana S., D.; Plasencia P., J. Fumonisinas –Síntesis y función en la interacción Fusarium verticillioides-maíz. Tip Revista Especializada en Ciencias Químico-Biológicas, Ciudad de México, v.17, p.77-91, 2014. https://doi.org/10.1016/S1405-888X(14)70321-3
    » https://doi.org/10.1016/S1405-888X(14)70321-3
  • 11
    Ekwomadu, T.I.; Gopane, R.E.; Mwanza, M. Occurrence of filamentous fungi in maize destined for human consumption in South Africa. Food Science & Nutrition, Weinheim, v.6, p.884-890, 2018. https://doi.org/10.1002/fsn3.561
    » https://doi.org/10.1002/fsn3.561
  • 12
    Félix-Gastélum, R.; Lizárraga-Sánchez, G.J.; Maldonado-Mendoza, I.E.; Leyva-Madrigal, K.Y.; Herrera-Rodríguez, G.; Espinoza-Matías, S. Confirmación de la identidad de Exserohilum turcicum, agente causal del tizón foliar del maíz en Sinaloa. Revista Mexicana de Fitopatología, Texcoco, v.36 n.3, p.468-478, 2018. https://doi.org/10.18781/r.mex.fit.1803-1
    » https://doi.org/10.18781/r.mex.fit.1803-1
  • 13
    Frisvad, J.C.; Skouboe, P.; Samson, R.A. Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. Systematic and Applied Microbiology, Amsterdam, v.28, p.442-453, 2005. https://doi.org/10.1016/j.syapm.2005.02.012
    » https://doi.org/10.1016/j.syapm.2005.02.012
  • 14
    García-Aguirre, G.; Martínez-Flores, R. Especies de Fusarium en granos de maíz recién cosechado y desgranado en el campo en la región de Ciudad Serdán, Puebla: Revista Mexicana de Biodiversidad, Ciudad de México, v.81, p.15-20, 2010. Available at: <http://www.scielo.org.mx/scielo.php?pid=S1870-34532010000100003&script=sci_arttext>. Accessed on: 01 Nov. 2020.
    » http://www.scielo.org.mx/scielo.php?pid=S1870-34532010000100003&script=sci_arttext
  • 15
    Gonçalves, R.M.; Figueiredo, J.E.F.; Pedro, E.S.; Meirelles, W.F.; Leite, J.R.P.; Sauer, A.V.; Paccola-Meirelles, L.D. Etiology of Phaeosphaeria leaf spot disease of maize. Journal of Plant Pathology, Napoli, v.95, n.3, p.559-569, 2013. http://www.jstor.org/stable/23721577
    » http://www.jstor.org/stable/23721577
  • 16
    Lamprecht, S.C.; Crous, P.W.; Groenewald, J.Z. Diaporthaceae associated with root and crown rot of maize. IMA Fungus, Heidelberg, v.2, p.13-24, 2011. https://doi.org/10.5598/imafungus.2011.02.01.03
    » https://doi.org/10.5598/imafungus.2011.02.01.03
  • 17
    Leslie, J.F.; Summerell, B.A. The Fusarium laboratory manual Iowa: Blackwell Publishing, 2006. 388 p.
  • 18
    Li, L.; Qu, Q.; Cao, Z.; Guo, Z.; Jia, H.; Liu, N.; Wang, Y.; Dong, J. The relationship analysis on corn stalk rot and ear rot according to Fusarium species and fumonisin contamination in kernels. Toxins, Basel, v.11, p.320, 2019. https://doi.org/10.3390/toxins11060320
    » https://doi.org/10.3390/toxins11060320
  • 19
    Martínez-Nuñez, B.; Tadeo-Robledo, M.; Espinosa-Calderón, A.; García-Zavala, J.J.; Silva-Rojas, H.V.; Aguilar-Rincón, V.H.; Miranda-Colín, S. Rendimiento de grano y resistencia a tizón foliar (“Exserohilum turcicum”) de híbridos fértiles y androestériles de maíz. Agrociencia, Texcoco, v.53, n.1, p.73-88, 2019. Available at: <https://agrociencia-colpos.org/index.php/agrociencia/article/view/1752>. Accessed on: 23 Jan. 2021
    » https://agrociencia-colpos.org/index.php/agrociencia/article/view/1752
  • 20
    Marzouk, T.; Chouachi, M.; Sharma, A.; Jallouli, S.; Mhamdi, R.; Kaushik, N.; Djébali, N. Biocontrol of Rhizoctonia solani using volatile organic compounds of solanaceae seed-borne endophytic bacteria. Postharvest Biology and Technology, Amsterdam, v.181, p.111655, 2021. https://doi.org/10.1016/j.postharvbio.2021.111655
    » https://doi.org/10.1016/j.postharvbio.2021.111655
  • 21
    Niaz, I.; Dawar, S. Detection of seed borne mycoflora in maize (Zea mays L.). Pakistan Journal of Botany, Karachi v.41, n.1, p.443-451, 2009. Available at: <http://www.pakbs.org/pjbot/PDFs/41(1)/PJB41(1)443.pdf> Accessed on: 17 Apr. 2019
    » http://www.pakbs.org/pjbot/PDFs/41(1)/PJB41(1)443.pdf
  • 22
    Ortega-Beltran, A.; Cotty, P.J. Frequent shifts in Aspergillus flavus populations associated with maize production in Sonora, Mexico. Phytopathology, Saint Paul, v.108, n.3, p.412-420, 2018. https://doi.org/10.1094/phyto-08-17-0281-R
    » https://doi.org/10.1094/phyto-08-17-0281-R
  • 23
    Peterson, S.W.; Jurjević, Ž. New species of Talaromyces isolated from maize, indoor air, and other substrates. Mycologia, London, v.109, p.537-556, 2017. https://doi.org/10.1080/00275514.2017.1369339
    » https://doi.org/10.1080/00275514.2017.1369339
  • 24
    Ramathani, I.; Biruma, M.; Martin, T.; Dixelius, C.; Okori, P. Disease severity, incidence and races of Setosphaeria turcica on sorghum in Uganda. European Journal of Plant Pathology, Dordrecht, v.131, p.383-392, 2011. https://doi.org/10.1007/s10658-011-9815-1
    » https://doi.org/10.1007/s10658-011-9815-1
  • 25
    Rivas-Valencia, P.; Virgen-Vargas, J.; Rojas Martínez, I.; Cano Salgado, A.; Ayala Escobar, V. Evaluación de pudrición de mazorca de híbridos de maíz en Valles Altos. Revista Mexicana de Ciencias Agrícolas, Texcoco, v.2, n.6, p.845-854, 2011. Available at: <http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342011000600004>. Accessed on: 02 Oct. 2021
    » http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342011000600004
  • 26
    Siqueira, C.D.S.; Machado, J.D.C.; Barrocas, E.N.; De Almeida, M.F. Potential for transmission of Stenocarpella macrospora from inoculated seeds to maize plants grown under controlled conditions. Journal of Seed Science, Londrina, v.36, n.2, p.154-161, 2014. https://doi.org/10.1590/2317-1545v32n2904
    » https://doi.org/10.1590/2317-1545v32n2904
  • 27
    Uribe-Cortés, T.B.; Silva-Rojas, H.V.; Mendoza-Onofre, L.E.; Velázquez-Cruz, C.; Rebollar-Alviter, Á. Identificación de especies de Fusarium aisladas de semillas sintomáticas y asintomáticas de maíz con base en el gen TEF-1α. Revista Fitotecnia Mexicana, Texcoco, v.43, n.1, p.79-88, 2020. https://doi.org/10.35196/rfm.2020.1.79
    » https://doi.org/10.35196/rfm.2020.1.79
  • 28
    Yassin, M.A.; El-Samawaty, A.R.M.A.; Moslem, M.; Bahkali, A.; Abd-Elsalam, K. Fungal biota and occurrence of aflatoxigenic Aspergillus in postharvest corn grains. Fresenius Environmental Bulletin, Freising, p.20, n.4, 903-909, 2011. https://www.researchgate.net/publication/259827957
    » https://www.researchgate.net/publication/259827957
  • 29
    Zhou, D.; Wang, X.; Chen, G.; Sun, S.; Yang, Y.; Zhu, Z.; Duan, C. The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, Basel, v.10, p.1-14, 2018. https://doi.org/10.1016/S1572-5995(06)80136-5
    » https://doi.org/10.1016/S1572-5995(06)80136-5

Publication Dates

  • Publication in this collection
    13 Feb 2023
  • Date of issue
    Oct-Dec 2022

History

  • Received
    28 Jan 2022
  • Accepted
    08 Sept 2022
Grupo Paulista de Fitopatologia FCA/UNESP - Depto. De Produção Vegetal, Caixa Postal 237, 18603-970 - Botucatu, SP Brasil, Tel.: (55 14) 3811 7262, Fax: (55 14) 3811 7206 - Botucatu - SP - Brazil
E-mail: summa.phyto@gmail.com