Acessibilidade / Reportar erro

Sobre os números transfinitos

DOCUMENTOS CIENTÍFICOS

Sobre os números transfinitos1 1 Comunicação proferida em alemão por Henri Poincaré em 27 de abril de 1909, na Universidade de Göttingen, publicada posteriormente com outros cinco artigos sob o título Sechs Vorträge über ausgewälte Gegenstände aus der reinen Mathematik und matematischen Physik (Leipzig: Teubner, 1910).

Henri Poincaré (1854-1912)

Meus senhores! Hoje eu quero falar diante dos senhores sobre o conceito de número cardinal transfinito; e, precisamente, quero tratar em um primeiro momento de uma aparente contradição que esse conceito contém. Para isso, eu antecipo o seguinte: a meu entender, um objeto só pode ser pensado se for possível definilo em um número finito de palavras. Um objeto que nesse sentido é definível de maneira finita, quero denominar, de forma abreviada, simplesmente "definível". Dessa maneira, um objeto que não pode ser definido também não pode ser pensado. Do mesmo modo, denomino uma lei como "expressável" se ela puder ser expressa em um número finito de palavras.

O senhor Richard2 2 Jules Richard, matemático francês (1862-1956). A prova a que Poincaré se refere de modo sintético foi apresentada por Richard em seu artigo intitulado " Les principes des mathématiques et le problème des ensembles", publicado em 1905 na Revue Générale des Sciences Pures et Appliquées, e consiste em um dos argumentos do bem conhecido paradoxo de Richard. provou que a totalidade de objetos definíveis é contável, isto é, que o número cardinal dessa totalidade é ℵ0. A prova é muito simples: seja α o número de palavras do dicionário; assim, pode-se com n palavras definir um máximo de αn objetos. Faça agora n crescer além de todos os limites; assim, vê-se que ele nunca superará uma totalidade contável. A potência do conjunto dos objetos pensáveis seria, por conseguinte, ℵ0. O senhor Schoenflies levantou a objeção contra essa prova,3 3 A argumentação de Schoenflies encontra-se em um texto de 1909, denominado "Über eine vermeintliche Antinomie der Mengenlehre" e publicado no número 32 do periódico Acta Mathematica, em fevereiro de 1909. Essa mesma publicação traz um artigo de Poincaré que contesta seu posicionamento, praticamente nos mesmos termos que o verificado no segundo parágrafo de "Über transfinite Zahlen". de que com uma única definição pode-se definir vários, até mesmo infinitos objetos. Como exemplo, ele apresenta a definição de funções constantes, que evidentemente existem em número infinito. Essa objeção é, porém, inadmissível, porque através de tais definições não serão definidos absolutamente quaisquer objetos individuais, mas sua totalidade - em nosso exemplo, o conjunto de funções constantes é definido, e ele é um objeto individual. Desse modo, a objeção do senhor Schoenflies não é convincente.

Como se sabe, Cantor4 4 Georg Cantor (1845-1918) foi um matemático russo-alemão que teve atuação destacada no desenvolvimento da teoria dos conjuntos; dentre suas contribuições, o conceito de números transfinitos (e, portanto, a criação de uma "matemática do transfinito") guarda uma relação direta com as dificuldades tratadas no presente artigo. No artigo, Poincaré cita Cantor por sua prova de que o contínuo não é contável. Na realidade, Cantor apresentou essa prova em duas ocasiões: a primeira, em 1873 (publicada em 1874); a segunda, em 1891, momento em que apresenta o famoso método diagonal de Cantor, que acabou por se tornar uma técnica recorrente de prova em matemática. provou que o contínuo não é contável, e isso contradiz a prova de Richard. Pergunta-se então qual das duas provas é correta. Eu afirmo que são ambas corretas, e que a contradição é apenas aparente. Como fundamentação dessa afirmação, eu quero dar uma nova prova para o teorema cantoriano: seja dado um segmento AB e uma regra através da qual cada ponto do segmento seja relacionado a um número inteiro. Nós queremos designar para efeitos de simplicidade os pontos através dos números a eles relacionados. Nós dividimos agora nosso segmento através de dois pontos arbitrários A1 e A2, em três partes, que nós designamos como subsegmentos de primeiro grau; dividimos esses subsegmentos novamente em três partes e obtemos o subsegmento de segundo grau; imaginemos a continuação desse processo infinitamente, de modo que o comprimento dos subsegmentos de reta diminua a cada aplicação da regra. O ponto 1 pertence assim a um ou, no máximo, a dois - se ele coincide com A1 ou A2 - dos subsegmentos de reta do primeiro grau, havendo, portanto, um a que ele não pertence. Nele procuramos o ponto com o menor número, que agora deve ser no mínimo 2. Nos três subsegmentos do segundo grau, que pertencem ao segmento de primeiro grau na qual nos encontramos, há agora novamente pelo menos um, ao qual o ponto considerado por último não pertence. A partir dele, damos continuidade ao processo e obtemos uma série de segmentos que possui as seguintes propriedades: cada um deles está contido em todos anteriores, e um segmento de n-ésimo grau não contém nenhum dos pontos 1 até n - 1. Da primeira propriedade segue-se que deve existir pelo menos um ponto, que é comum a todos eles. Da segunda propriedade se segue, contudo, que o número desses pontos deve ser maior que cada número finito, isto é, não pode ser relacionado a ele nenhum número.

O que estabelecemos assim como pressuposto para essa prova? Nós tomamos como pressuposto a lei de que um número inteiro relaciona-se a cada ponto do segmento. Então, conseguimos definir um ponto que não está relacionado a nenhum inteiro. Nesse sentido, as diferentes provas desse teorema não se diferenciam. Mas para isso, essa regra deveria ser confirmada. Segundo Richard, aparentemente tal regra deveria existir, mas Cantor provou o contrário. Como superamos esse dilema? Perguntemo-nos uma vez mais sobre o significado da palavra "definível". Tomemos o quadro de todas as proposições finitas e risquemos cada uma das que não definem nenhum ponto. O restante nós ligamos aos números inteiros. Quando nós realizamos a verificação do quadro novamente, será de maneira geral mostrado que nós devemos deixar ficar algumas proposições que previamente riscamos. Assim, as proposições em que se fazia referência à própria lei de formação das relações5 5 No original, " Zuordnungesetz". Optou-se pela tradução supra ("lei de formação de relações") em vista do que o autor pretende evidenciar: uma regra que estabelece uma relação entre os pontos e os enunciados que os definem. Trata-se, portanto, de um sentido muito mais plausível que o de regra de atribuição ou de ordenação, que também seriam traduções possíveis. não tinham significado antes, visto que os pontos não estavam ainda relacionados aos números inteiros. Essas proposições agora possuem significado, e devem pertencer ao nosso quadro. Se nós estabelecêssemos uma nova lei de formação das relações, tal dificuldade repetir-se-ia ad infinitum. Aqui reside, entretanto, a solução da aparente contradição entre Cantor e Richard. Seja M0 o conjunto dos números inteiros, M1 o conjunto decorrente do primeiro exame do quadro de todas as proposições finitas de pontos definíveis de nosso segmento, G1 a lei de formação das relações entre ambos os conjuntos. Através dessa regra, agrega-se um novo conjunto M2, de pontos como definíveis. A M1 + M2 pertence uma nova regra G2, e dessa maneira tem origem um novo conjunto M3, e assim por diante. A prova de Richard ensina que mesmo onde eu não aplico o procedimento, sempre existe uma regra, enquanto Cantor prova que o procedimento pode ser continuado arbitrariamente sem limite. Logo, não existe nenhuma contradição entre ambos.

A impressão que advém daí reside no fato de que falta uma propriedade à regra de ordenação de Richard, que eu, com uma expressão emprestada dos filósofos ingleses, designo como "predicativa". Em Russell,6 6 Russell apresenta os termos "predicativo" e "não predicativo" de modo preciso em seu artigo intitulado "On some difficulties in the theory of transfinite numbers and order types", submetido à publicação em 1905 e publicado em 1906. A referência a Russell é sugestiva, pois o lógico inglês é o principal interlocutor de Poincaré no que concerne aos problemas relativos à solução dos paradoxos da teoria dos conjuntos. de quem eu tomo emprestada a palavra, a definição entre os conceitos A e A' é não predicativa se A está presente na definição de A' e vice-versa. Entendo, portanto, o seguinte: cada regra de ordenação pressupõe uma determinada classificação. Eu denomino agora uma ordenação como predicativa se sua classificação é predicativa. Eu denomino, entretanto, uma classificação como predicativa se ela não é modificada através da introdução de novos elementos. Esse não é, contudo, o caso sob o ponto de vista de Richard; de fato, a introdução de regras de ordenação modifica a distribuição tanto das sentenças que possuem significado quanto das que não possuem. O que se quer dizer com a palavra "predicativo" deixa-se ilustrar melhor com um exemplo: se eu devo ordenar um conjunto de objetos em certo número de caixas, posso fazê-lo de duas maneiras diferentes: ou os objetos ordenados já estão previamente em seus lugares de modo definitivo, ou eu devo, a cada vez que ordeno um novo elemento, novamente remover os outros, ou ao menos uma parte deles. No primeiro caso, eu chamo a classificação de predicativa, no segundo, não. Um bom exemplo de uma definição não predicativa foi dado por Russell: seja A o menor número inteiro cuja definição exige mais de cem palavras em alemão. A deve existir, uma vez que de qualquer maneira só se pode definir com cem palavras uma quantidade finita de números. A definição que acabamos de dar desse número possui, entretanto, menos de cem palavras. E o número A é, portanto, definido como indefinível.

Zermelo levantou uma objeção contra a rejeição das definições não predicativas, rejeição essa que invalidaria grande parte da matemática, como por exemplo, a prova de existência da raiz de uma equação algébrica.

Essa prova é conhecida como segue:

Dada uma equação F(x) = 0, prova-se agora que |F(x)| precisa ter um mínimo; seja x0 um dos valores do argumento para o qual um mínimo ocorre; então

|F(x)||F(x0)|.

Donde se segue que F(x0) = 0. Aqui a definição de F(x0) é não predicativa, pois esse valor depende da totalidade dos valores de F(x), para os quais ele mesmo pertence.

Eu não posso admitir como justificável essa objeção. Pode-se então remodelar essa prova, de modo a desaparecer dela a definição não predicativa. Considero para essa finalidade todos os argumentos da forma , onde m, n e p são números inteiros. Então, eu posso estabelecer as mesmas conclusões como antes, mas o valor do argumento para o qual ocorre o mínimo de |F(x)| não pertence em geral àquilo que foi considerado. Desse modo, a circularidade da prova é evitada. Pode-se exigir de cada prova matemática que as definições que nela aparecem (sua respectiva definição), e tudo que daí se segue, seja predicativo, pois, caso contrário, a prova não seria rigorosa.

E quanto à clássica prova do teorema de Bernstein? Ela é livre de objeção? É sabido que o teorema diz que, se três conjuntos A, B, e C são dados, onde A está contido em B, B em C, e A é equivalente a C, então A e B também devem ser equivalentes. Trata-se aqui também de uma regra de correspondência. Se a primeira regra de correspondência (entre A e C) é predicativa, a prova mostra que também precisa existir uma regra de correspondência predicativa entre A e B.

No que concerne ao segundo cardinal transfinito à1, não estou inteiramente convencido de que ele exista. Nós chegamos a ele através da consideração da totalidade dos números ordinais de potência ℵ0; é evidente que esse conjunto deve possuir uma potência superior. Pergunta-se, contudo, se ele é fechado, ou se nós podemos falar de sua potência sem incorrer em contradição. Um infinito atual, de qualquer maneira, não existe.

O que devemos pensar do famoso problema do contínuo? Pode-se "bem" ordenar os pontos do espaço? O que entendemos por isso? Há aqui dois casos possíveis: ou afirma-se que a regra de bem-ordenação pode ser expressa de modo finito, e, então, essa afirmação não é provada; também o senhor Zermelo não tem provavelmente a pretensão de ter provado tal afirmação. Ou admitimos a possibilidade de que a regra não possa ser afirmada de modo finito. Nesse caso, não posso atribuir a essa afirmação qualquer sentido, tratando-se para mim meramente de palavras vazias. Nisso está a dificuldade. E essa é provavelmente a causa da disputa acerca da "quase genial" proposição de Zermelo.7 7 Poincaré refere-se, como deixará claro logo em seguida, ao problema que envolve o axioma da escolha. Nos termos de Russell, o axioma da escolha pode ser assim postulado: "dado um conjunto w, existe uma função f'u tal que, se u é um conjunto não vazio contido em w, então f'u é membro de u" (Russell, 1906, p. 47). A simplicidade do axioma da escolha não corresponde ao seu caráter problemático: apesar de necessário para a ordenação de séries, o axioma é evidente para conjuntos finitos, mas indemonstrável no caso de conjuntos transfinitos, o que é particularmente incômodo para os autores de orientação logicista. Essa disputa é muito curiosa: uns rejeitam o axioma da escolha, aceitando, contudo, a sua prova; outros aceitam o axioma da escolha, mas não reconhecem a sua prova.

Mas eu ainda poderia falar sobre isso por algumas horas, sem resolver a questão.

Notas

Tradução do original em alemão de Oscar João Abdounur & Jacintho Del Vecchio Junior.

  • 1
    Comunicação proferida em alemão por Henri Poincaré em 27 de abril de 1909, na Universidade de Göttingen, publicada posteriormente com outros cinco artigos sob o título
    Sechs Vorträge über ausgewälte Gegenstände aus der reinen Mathematik und matematischen Physik (Leipzig: Teubner, 1910).
  • 2
    Jules Richard, matemático francês (1862-1956). A prova a que Poincaré se refere de modo sintético foi apresentada por Richard em seu artigo intitulado "
    Les principes des mathématiques et le problème des ensembles", publicado em 1905 na
    Revue Générale des Sciences Pures et Appliquées, e consiste em um dos argumentos do bem conhecido paradoxo de Richard.
  • 3
    A argumentação de Schoenflies encontra-se em um texto de 1909, denominado "Über eine vermeintliche Antinomie der Mengenlehre" e publicado no número 32 do periódico
    Acta Mathematica, em fevereiro de 1909. Essa mesma publicação traz um artigo de Poincaré que contesta seu posicionamento, praticamente nos mesmos termos que o verificado no segundo parágrafo de "Über transfinite Zahlen".
  • 4
    Georg Cantor (1845-1918) foi um matemático russo-alemão que teve atuação destacada no desenvolvimento da teoria dos conjuntos; dentre suas contribuições, o conceito de números transfinitos (e, portanto, a criação de uma "matemática do transfinito") guarda uma relação direta com as dificuldades tratadas no presente artigo. No artigo, Poincaré cita Cantor por sua prova de que o contínuo não é contável. Na realidade, Cantor apresentou essa prova em duas ocasiões: a primeira, em 1873 (publicada em 1874); a segunda, em 1891, momento em que apresenta o famoso método diagonal de Cantor, que acabou por se tornar uma técnica recorrente de prova em matemática.
  • 5
    No original, "
    Zuordnungesetz". Optou-se pela tradução supra ("lei de formação de relações") em vista do que o autor pretende evidenciar: uma regra que estabelece uma relação entre os pontos e os enunciados que os definem. Trata-se, portanto, de um sentido muito mais plausível que o de regra de atribuição ou de ordenação, que também seriam traduções possíveis.
  • 6
    Russell apresenta os termos "predicativo" e "não predicativo" de modo preciso em seu artigo intitulado "On some difficulties in the theory of transfinite numbers and order types", submetido à publicação em 1905 e publicado em 1906. A referência a Russell é sugestiva, pois o lógico inglês é o principal interlocutor de Poincaré no que concerne aos problemas relativos à solução dos paradoxos da teoria dos conjuntos.
  • 7
    Poincaré refere-se, como deixará claro logo em seguida, ao problema que envolve o axioma da escolha. Nos termos de Russell, o axioma da escolha pode ser assim postulado: "dado um conjunto
    w, existe uma função
    f'u tal que, se
    u é um conjunto não vazio contido em
    w, então
    f'u é membro de
    u" (Russell, 1906, p. 47). A simplicidade do axioma da escolha não corresponde ao seu caráter problemático: apesar de necessário para a ordenação de séries, o axioma é evidente para conjuntos finitos, mas indemonstrável no caso de conjuntos transfinitos, o que é particularmente incômodo para os autores de orientação logicista.
  • Datas de Publicação

    • Publicação nesta coleção
      20 Ago 2013
    • Data do Fascículo
      Jun 2013
    Universidade de São Paulo, Departamento de Filosofia Rua Santa Rosa Júnior, 83/102, 05579-010 - São Paulo - SP Brasil, Tel./FAX: (11) 3726-4435 - São Paulo - SP - Brazil
    E-mail: secretaria@scientiaestudia.org.br