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ABSTRACT. A fundamental step in the emerging Movement Theory is the description of movement paths, and the
identification of its proximate and ultimate drivers. The most common characteristic used to describe and analyze
movement paths is its tortuosity, and a variety of tortuosity indices have been proposed in different theoretical or
empirical contexts. Here we review conceptual differences between five movement indices and their bias due to loca-
tions errors, sample sizes and scale-dependency: Intensity of Habitat use (IU), Fractal D, MSD (Mean Squared Distance),
Straightness (ST), and Sinuosity (SI). Intensity of Habitat use and ST are straightforward to compute, but ST is actually an
unbiased estimator of oriented search and ballistic movements. Fractal D is less straightforward to compute and repre-
sents an index of propensity to cover the plane, whereas IU is the only completely empirical of the three. These three
indices could be used to identify different phases of path, and their path tortuosity is a dimensionless feature of the path,
depending mostly on path shape, not on the unit of measurement. This concept of tortuosity differs from a concept
implied in the sinuosity of Bentamou (2004), where a specific random walk movement model is assumed, and diffusion
distance is a function of path length and turning angles, requiring their inclusion in a measure of sinuosity. MSD should
be used as a diagnostic tool of random walk paths rather than an index of tortuosity. Bias due to location errors, sample
size and scale, differs between the indices, as well as the concept of tortuosity implied. These differences must be

considered when choosing the most appropriate index.
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The study of animal movements gained much of the at-
tention in the last decade with the perception of its importance
in understanding the spatial dynamics of populations (Starr &
VaN Horne 1997, TurcHiN 1998). Movement patterns have been
particularly useful to infer search strategies (Kress & Davies 1987),
effects of scale (Nams 2005), habitat selection at different scales
(Moura et al. 2005), and seasonal changes in these patterns
(Lorerro & Viera 2005). The diversity of approaches to under-
stand and predict movement patterns has reached a critical point
were a Movement Ecology paradigm is being formulated, trying
to produce an integrated theoretical framework (Horvoak et al.
2008, NatHaN 2008, NatHAN et al. 2008, Reynorps & RuopEes 2009).
A fundamental step in this theory is the description of move-
ment paths, which have been modelled as correlated random
walks or Lévy-walks, which have characteristic frequency distri-
bution of step lengths (reviewed in Gerz & Sarrz 2008).

In this theory, a major challenge is the identification of
proximate and ultimate drivers of a movement path, and the
break up of the path into different movement phases or modes

(NatHAN et al. 2008). Most analyses of movement paths trying to
determine the best statistical models to describe it, assume that
it was produced by search behaviour, but actually movement
paths are a composite result of a combination of behaviours
(NatHAN et al. 2008). Most frequently the only information avail-
able to infer the behaviours involved is the movement path it-
self, and quantitative descriptors of movement paths — such as
movement indices — may help in this inference of the behaviours
involved.

The most common characteristic used to describe and
analyze movement paths is its tortuosity, or how much tortu-
ous and twisted a path is in a given space or time (CopLING et al.
2008). Tortuosity has been inferred by a variety of movement
measures that frequently express different information or con-
cepts about movement behaviour. Sinuosity is frequently used
as a synonym, but has been defined as a specific type of tortuos-
ity (Bover & Benaamou 1988, Bastarpik ef al. 2002, BEnHAMOU 2004).
Bover & BenHamou (1988) defined sinuosity as the tortuosity that
would be obtained from a random search, resulting in a corre-
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lated random walk with constant step lengths (CopLiNG et al.
2008). In this context, tortuosity and sinuosity indices were de-
signed to measure different concepts, adding more complexity
in the choice of an appropriate index. For example, in a study of
the ornate turtle, Terrapene ornata (Agassiz, 1857), CLaussEN (1997)
compared four movement indices, but only one pair of indices
was correlated with each other. Actually, these indices have been
proposed in different theoretical or empirical contexts, and there-
fore could not be applied to the same situations. Redundancy
between movement indices, their advantages and disadvantages
are not always clear.

The choice of the appropriate index also has to consider
how it is affected by location errors, inherent to any estimate
of a movement path (Kaunara & TurikaNen 2002), dependency
on sample size and scale (Nams 2005). These factors affect the
accuracy of movement parameters, particularly in GPS data
(BrabDsHAW et al. 2007).

MATERIAL AND METHODS

Here we review the conceptual differences and distin-
guish the appropriate application of five indices used in the
previous studies to quantify animal movement: Intensity of
Habitat Use (Haitey & Courson 1996, Lorerro & Viera 2005),
Fractal D (Nams 1996), Mean Squared Displacement or distance
(ScHOENER 1981, SwiHART & StADE 1985), Straightness (BATSCHELET
1981), and Sinuosity (Bover & Bexnamou 1988). We also make a
first analysis of empirical differences in these indices regarding
location errors, spatial scale and sample size, simulating their
effects on real movement paths of a Neotropical marsupial,
the black-eared opossum Didelphis aurita (Wied-Neuwied, 1826).

Conceptual differences between movement indices

Of the five indices considered, only Intensity of Use, IU,
is purely empirical and does not have a theoretical background,
hence is not linked to a particular mechanism. Defined as the
ratio between total movement and the square root of the area
of movement (Lorerro & Vieira 2005), it is proportional to the
active time spent per unit area, which should increase with
tortuosity of the path. Several versions were proposed in the
literature, such as the square root of the area of habitat use
divided by the length of the movement (HaiLey & Courson 1996),
the inverse of IU as in Lorerto & ViEra (2005), and the comple-
ment of the Straightness index (BarscHerer 1981), but their re-
lationship with active time spent per unit area is not as clear or
direct as in IU. However, there are various ways to increase
space use intensity, such as reducing speed, increasing sinuos-
ity of a diffusive movement, and performing search loops, us-
ing the borders of a profitable area as reflective boundaries.
Besides, IU depends on sample size to some extent because es-
timates of area of habitat use, such as daily home ranges, de-
pend on sample size (GauTesTAD & MysTerRUD 1995) or path length
(LorerTO & VIEIRA 2005).

The fractal dimension of a path, D, is another measure
of tortuosity that has been used (Dicke & BurrouGH 1988, Nawms
1996, Nams & BourGeois 2004, Nawms 2005, 2006, TreMBLAY et al.
2007), based on the theoretical framework of fractal geometry
(ManpeLroT 1983). The Fractal D of a set of two points (as a
curve) can be seen as a measure of its propensity to cover the
plane, being a value of one for no plane coverage (a straight
line, for example) and two for full coverage of some area in the
plane. Generally, Fractal D must be correlated with path tortu-
osity, but it is not a measure of tortuosity per se, and should be
more appropriately considered an area-filling index, hence
particularly suitable for the analysis of search behaviour
(TrEmBLAY et al. 2007). If tortuosity is the question of interest,
and movements can be assumed to follow a correlated random
walk, sinuosity indexes should be used instead (Bexuamou 2004).
A high Fractal D value will only result when a track’s convolu-
tions lead to reasonably efficient coverage of an area in the
plane. One advantage of Fractal D over other indices is the
possibility of relating movement metrics to other objects, such
as pattern of tree branching, Koch curves, and the distribution
of elements of the landscape (Dicke & BurrougH 1988, Nawms
1996). Another advantage is the use of change in Fractal D
with scale to detect changes in movement behaviour with scale
(WrtH 1994, Nams 1996, Nams & Bourcrois 2004, Nams 2005,
TremBLAY et al. 2007). The use of fractals in Ecology has been
questioned, especially regarding the assumption of auto-simi-
larity among scales, considered as a required condition for char-
acterizing a fractal (TurcHIN 1996, HaLLEY et al. 2004). However,
ManpeLsroT (1983) proposed the application of the fractal theory
to natural phenomena even if these were not perfectly fractal
(Nams & Bourgtors 2004). If it is assumed that an image does
not reflect an ideal fractal, fractal dimension may still be use-
ful as a parameter that indicates complexity or the scale de-
pendence of a pattern (JeLiNek et al. 1998), or may be used in a
statistical sense, as long as the feature measured at high resolu-
tion is proportional to the same feature measured over the
whole system at a coarser resolution (BASSINGTHWAIGHTE et al.
1994, Sort & Bascompte 2006).

The Mean Square Displacement, MSD, is an important
parameter from the random walk theory (reviewed in CopLING
et al. 2008), but has also been used as index of movement area
or home range (Hayne 1949, ScHoener 1981, StADE & SwIHART
1983). It is likely to be inversely related to path tortuosity, simi-
larly to ST, as more tortuous paths take more time to leave a
certain area, resulting in a lower MSD (SwinarT & Srape 1985).
However, MSD is more appropriately used to distinguish be-
tween diffusive, super-diffusive, and sub-diffusive movements.
In diffuse movements, MSD or its square root scales linearly
with time or path length, but sub or super-diffusive movements
has a power-law relationship with time. In super-diffusive
movements such as Lévy walks, the power-law exponent is
between 1 and 2, whereas in sub-diffusive such as search loops,
the exponent is less than 1. Additionally, MSD divided by the
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parametric variance of distances is distributed as a Chi-square
variable, hence the statistical significance of differences between
values can be tested (Swinart & Stape 1985). For these reasons
MSD should be used more as diagnostic parameter in non-ori-
ented movement paths rather than a simple descriptive index.

The Straightness or linearity index, ST, (BarscHeLET 1981),
is simply the net displacement distance (the Euclidian distance
between the start and the final point), divided by the total
length of the movement. The total length of movement could
be measured by a spool-and-line device (Breper 1927, MiLes 1976,
Boonstra & CraINE 1986), by a radiotracking device (MILLSPAUGH
& Marzrurr 2001), or by the square root of an area measure-
ment such as the Minimum Convex Polygon (Lorerto & VIEIRA
2005) or the Mean Square Displacement, MSD (Hayne 1949).
The Straightness index measures how straight the animal path
was relative to the final point, it varies from 0 to 1, and quan-
tifies search efficiency: the closer to 1, the higher the search
efficiency (hence inversely related to path tortuosity). Defined
as such, it seems as empirical as IU, but actually it is only ap-
propriate to quantify ballistic movements, oriented towards a
distant goal (Bennamou 2004). For diffusive movements, mod-
elled as random walks, ST tends to decrease when the denomi-
nator — total movement - increases, tending to zero for an in-
finitely long path. An unbiased estimator of ST for diffusive
movements can be obtained by using the square root of total
movement in the denominator, but then ST becomes a dimen-
sional index, depending on the units of the mean step length.
Nevertheless, it cannot be considered a reliable estimator be-
cause of its intrinsic high variability (Bennamou 2004).

Bover & Benuamou (1988) and Bennamou (2004) devised
specific estimates of tortuosity of random search paths, named
Sinuosity estimates, which differ from previous indices such as
IU, Fractal D and ST in its formulation, and even in the concept
of tortuosity implied by these indices. Sinuosity assumes that
paths are correlated random walks, hence were produced by

Table I. Indices compared and their formulation

animals randomly searching a homogenous environment, which
is not an assumption of any of the other indices. Based on ran-
dom walk theory, Bennamou (2004) determined relationships
between diffusion distance of a random search, the correlation
of turning angles, and step length. In random search, diffusion
distance is determined by both step length and turning angles,
hence tortuosity of a random search path has a dimension re-
lated to mean step length. In oriented searches, tortuosity is
determined mostly by the mean vector length of step orienta-
tions, not step length, hence a dimensionless index such as ST is
appropriate. In random searches, however, an estimate of tortu-
osity based on diffusion distance has to include path length and
turning angles, which was formulated as a Sinuosity measure
(Bennamou 2004, 2006). In its general formulation, see table I
(equation 10 of Bennamou 2004), where p = mean step length,
c = mean cosine of turning angles, s = mean sine of turning
angles, b = coefficient of variation of step length. This equation
is the more appropriate for paths with varying step lengths, and
assumes that turning angle and subsequent step are uncorrelated.
Sinuosity estimates the tortuosity if the path were measured with
steps of the same length, hence it should not matter if paths
were tracked with different resolution - the sinuosity measure
scales them to the same sampling scale, to same step length.

Sinuosity has a dimension, mean step length, and move-
ment paths measured in centimetres, while if measured in
meters, they will have different values of sinuosity, even if iden-
tical in shape. This is a major difference from dimensionless
indices of tortuosity such as IU, Fractal D, and ST, for which
units of measurement do not matter, and paths identical in
shape have the same tortuosity, regardless of path length units.
Thus, sinuosity can only be compared between random search
paths of similar length.

The five movement indices considered differ conceptu-
ally regarding their theoretical background (empirical, fractal,
or random walk) (see also table I for calculation comparison),

Index Equation Parameters Reference
dE dE = Euclidean distance between the beginning  BartscHeLeT (1981)
Straightness (ST) ST ="— and end of the path
L L = Total path length

Mean Squared

Displacement (MSD) MSD —VarX +VarY

X and Y = cartesian coordinates of each point of
trajectory change along the path

SCHOENER (1981), SWIHART
& Stape (1985)

L -
. U =— L = total path lenght Haiey & Coutson (1996)
Intensity Use (IU) JA A = area of the movement Loretto & Viera (2005)
1—c2—§2 00 p = mean step length, c = mean cosine of Bover & BenHamou (1988),
Sinuosity (SI) Sl=2\p| —=—— ? turning angles, s = mean sine of turning angles, BenHamou (2004)
(1 - C) +S$ b = coefficient of variation of step length

Mean D estimator, using Fractal D
program

Fractal D

http://nsac.ca/envsci/staff/vnams/Fractal.htm

Nams (1996, 2005)
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in their potential dependence on sampling scale and sample
size, and in their dimensionality (dimension vs. dimension-
less). For dimensionless indices, tortuosity of a path is a result
of its shape, how much zig-zag it does and the relative distance
between zig-zags, whereas a dimensional SI, paths of same shape
but with different sizes will differ.

Empirical differences between indices: effects of
scale, sample size and location errors

We used real animal movements of a long term database
to simulate the effects of scale, sample size, and location er-
rors. Real movement paths represent natural and unexplained
variation likely to occur in any application of movement indi-
ces. Totally simulated paths would be valuable to test expected
patterns based on pre-established hypotheses and assumptions,
but limited for an empirical test.

A vertebrate species was used as a model, the black-eared
opossum Didelphis aurita Wied-Neuwied, 1826. Species of Di-
delphis Linnaeus, 1758 are also known as common opossums
because they are frequently abundant locally, widespread in
distribution, and considered generalist in food habits and habi-
tat use compared to other didelphid marsupials (Nowak 1999).
Individuals of D. aurita were sampled in bimonthly trapping
sessions from 1997 to 2006 as part of a capture-recapture pro-
gram of the Laboratoério de Vertebrados, UFRJ (Lorerto & VIEIRA
2005). The field site is located in the mountain range of Serra
dos Orgdos, in the Parque Nacional da Serra dos Orgdos (PARNA/
SO), municipality of Guapimirim, state of Rio de Janeiro, Bra-
zil, locally known as Garrafao (22°28'28"S, 42°59'86"W). Indi-
viduals were released with a spool-and-line device (CunHA &
Viera 2002). Thread released by each animal was tracked, and
paths were mapped taking polar coordinates (azimuth and dis-
tance) between points of trajectory change, defined by any
change of more than 5° on the animal’s path. We used all move-
ments with more than 30 m of thread tracked. During the study
period 114 animals were captured, resulting in 149 tracked
pathways. Distance between consecutive points of trajectory
change corresponds to step length (mean = 4.5, SD = 4.11),
path length was the sum of step lengths (mean = 161.5, SD =
119.51), and the path area was the area of the polygon formed
by joining the points, each point corresponding to a polygon
vertex, used to calculated IU.

The effect of sample size on real paths was simulated by
comparing index values calculated using only half the total
number of points of a path with values calculated using all
points. This reduction to n/2 was accomplished by calculating
each index for odd and even numbered points of the path
separetely, and using the mean of the two (odd and even) for
comparison with the value using all points. Therefore, the
length of movement paths did not change compared to the
original path, only sample size (number of location points).

The effect of scale was simulated by splitting each path
in two with the same number of points each, such that the

number of points was n/2 in each half as in the simulation of
sample size effect, but now path length also was reduced to
approximately half the original length. Movement indices were
calculated for the two parts, and the mean value was used to
determine the effect of reducing path length. This effect was
determined by comparison with the index value obtained for
the sample size effect, using alternating points. The original
path cannot be used for comparison because it differs not only
in scale, but also in sample size.

Effects of localization errors where simulated by adding
a random value to x and y coordinates of each original point.
Values were randomly chosen from a uniform distribution vary-
ing between + 5, 15, 30, 45, or 80% of the overall mean step
length. In this way, a new point was generated for each origi-
nal movement coordinate, a point with localization error.

Fractal D was calculated for each original and simulated
path with the Fractal software (Nams 2005), whereas the re-
maining indices and all simulations with a routine written in
MATLAB.

RESULTS

Bias due to sample size was relatively small, varying from
0.05 (Fractal D) to 0.14 (ST) of the original value for a 0.50
reduction in sample size (Tab. II). For scale effects, MSD was
clearly the most affected compared to other four indices, which
varied from 0.01 (Fractal D) to 0.28 (SI) for a 0.50 reduction in
scale (Tab. II). A scale effect on MSD is to be expected because,
as described previously, MSD allows the distinction between
different types of diffusion according to is scaling exponent
with path length or time. Thus, it is expected that MSD should
depend on scale (path length). Fractal D was practically unaf-
fected by the reduction in sample size and scale (Tab. II).

Intensity of Use and ST were the most sensitive to loca-
tion errors, but bias became large, more than 0.10 of the origi-
nal value, only for relatively large location errors, greater than
45% of the mean path length (Fig. 1). Bias for SI, Fractal D and
MSD also appeared only with location errors greater than 45%,
but bias was only ca. + 0.03 of the original index value.

Straightness was positively biased by location errors,
whereas IU was negatively biased. Therefore, increasing loca-
tion errors had the effect of reducing overall tortuosity of move-
ment paths, reducing IU, and increasing ST.

DISCUSSION

Movement paths emerge as result of a combination of
behaviours, interactions between organisms and the distribu-
tion of resources and risks in the landscape. In such context,
there is no unique most appropriate quantitative measure or
index to be used: the most appropriate index will depend on the
objective of the study, and what is known about the behaviour
that generates a certain path. It may also depend on how much
an index is affected by sample size, scale and location errors.
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Table Il. Bias produced by reduction in sample size and scale on movement indices. Index values are the means and their coefficient of
variation (CV) of index values based on 149 individual paths of the marsupial D. aurita. (IU) Intensity of Use, (ST) Straightness index,
(MSD) Mean Square Displacement, (SI) Sinuosity index. Reduced sample size effect was determined comparing the original path with a
path of the same length but considering only alternate points along the path (same path length, but different number of points). Reduced
scale effect was determined by dividing the original path in two halves, computing the index on each half, and comparing the average
with the index computed on the whole path but considering only alternate points (same number of points, but different path length).

Value after Bias from reduction in scale

Observed Bias from reduction in sample Value after

reductionin  CV reduction cv

Index cv

value

sample size

size (proportion of change in
the mean value of the index)

in scale

(proportion of change in the
mean value of the index)
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Figure 1. Bias produced by location errors on movement indices.
Location errors were defined as a percentage of mean path length,
and index mean values (not shown) were based on 150 individual
paths of the marsupial D. aurita. (IU) Intensity of Use, (ST)
Straightness index, (MSD) Mean Square Displacement, (SI) Sinu-
osity index.

If search behaviour can be assumed to be mostly oriented,
either by the perceptual abilities or spatial memory of indi-
viduals, then ST would be appropriate to measure search effi-
ciency. Sample size, scale and low to medium levels of location
errors did not introduce much bias in ST. Bias was greater than
0.10 of the original value only for really high level of location
errors, above 45% of mean step length, which would make
movement paths hardly of any use (Fig. 1). Therefore, ST is
generally an unbiased estimate of straightness of oriented move-
ment paths.
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If random search behaviour for unknown patches of food
or a specific resource can be assumed to be the major driver of
the path, the SI would be an appropriate index to describe it,
particularly if diffusivity of path is also of interest (Bexuamou
2006). Bias from reduced sample size and location errors may
not be important for most uses, but bias from differences in
path length between individuals (differences in scale) may be
an issue. The dependency of SI on scale was expected from the
definition of sinuosity, which depends on path length
(Bennamou 2004): if two movement paths have the same turn-
ing angles, the one with longer step lengths will have lower SI.
In the calculation of SI, step lengths are discretized again to
the same length, hence the one with longer step length will
have some steps broken into two or more pieces, all with 0°
turning angles, resulting in a lower SI. Therefore, SI may be the
more appropriate index to compare sinuosity among move-
ment paths as long as path lengths are of similar scale.

Paths produced mostly by non-oriented search may best
be described by SI, but how to test a specific process behind
the non-oriented search of individuals? For instance, how to
test if an individual is moving according to a random walk or
to Lévy-walk process? A diagnostic index such as MSD could
be used in such case, but still assuming a non-oriented search
mechanism. The high dependency of MSD on scale (Tab. II)
reduces its value as a descriptive measure or index of path tor-
tuosity, but actually is the property that makes it an excellent
diagnostic tool. As MSD should scale linearly with time or path
length for purely diffusive paths, super-diffusive movements
have MSD increasing with a power exponent between 1 and 2
(CopLING et al. 2008). Super-diffusion would imply a Lévy walk
frequency distribution of step lengths, characterized by long
step lengths more frequent than expected by a Gaussian fre-
quent distribution (Gerz & Sarrz 2008). Although it was not an
objective here to estimate the specific type of diffusion or bal-
listic movement involved in the paths of D. aurita, the rela-
tionship between MSD and scale (path length) suggests a diffu-
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sive or super-diffusive movement. MSD reduced an average 0.63
of its original value for a 0.50 reduction in path length, which
implies an exponent between 1 and 2. Values of ST also do not
suggest a strong orientation or search efficiency, but common
opossums are capable of oriented paths in open fields such as a
pasture (Forero-MEeDpINA & ViEIRA 2009). The paths could be a
composite of directed and random search phases.

If oriented and non-oriented movements are similarly fre-
quent, then the objective may be to identify these different phases
along the path. Area restricted search can also be considered a
non-oriented search, where movements are concentrated in a
certain area more than would be expected based on random
movement (TrRemBLAY et al. 2007). Indices with more intuitive in-
terpretation would be appropriate for identification of oriented
and non-oriented phases, such as IU and ST, and they would
have to be calculated at different portions of the path. Although
less intuitive, Fractal D also could be used, particularly because
it was the least affected among these three indices by sample
size, scale, and location errors (Tab. II, Fig. 1). How should the
path be divided in order to calculate these indices along the path?
Nawms (1996, 2005) devised an ingenious method: a segment of a
given length is moved along the track, and Fractal D is calcu-
lated for each segment. As Fractal D generally increases with track
convolutions, the segment lengths corresponding to highest
average D, and/or highest variance in D, are used as a cut-off to
identify the changes in Fractal D with scale. This method is based
on changes in Fractal D with space coverage, but area restricted
search may also involve changes in time and space used along
the path. A method also using Fractal D, but including time and
space to detect area restricted search was also developed (TrRemBLAY
et al. 2007). A similar approach could be used with ST and IU.

If intensive vs. extensive phases of the path cannot be at-
tributed only to search behaviours, then more empirical and
straightforward indices, such as IU and ST, may be more appro-
priate as they make no assumption about causing mechanisms.
Fractal D also could be used as an empirical description of com-
plexity and scale dependence of a pattern, without necessarily
implying that it was generated by a truly fractal process (JELINEK et
al. 1998). Again, the advantage of using Fractal D is that it could
be used to determine changes in movement behaviour — and prob-
ably tortuosity — along the path. Both ST and IU are not severely
biased by small to medium levels of location errors (Fig. 1), ST
slightly more affected by sample size and IU by scale (Tab. II).
Each phase could then be treated by one of the following indi-
ces, appropriately chosen according to its theoretical background.

The first question that has to be made when choosing a
movement index is if a specific mechanism or behaviour mecha-
nism is the main cause of the path. If this question cannot be
answered, movement indices are likely to continue to be used
empirically, as a first or general description of movement paths,
without assumptions about the mechanisms or behaviours that
produced it. Actually, movement indices must be viewed as more
than descriptors of movement paths as they can be used to iden-

tify different phases of tortuosity along the path, and different
behaviours generating the path. Used empirically or as diagnos-
tic tools, indices differ in bias due to location errors, sample size
and scale, which then should be considered in the choice of an
index. The concept of tortuosity implied may also differ between
indices, and one must be conscious of this difference when choos-
ing the most appropriate index of movement paths.
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