Dimorphism and allometry of *Systaltocerus platyrhinus* and *Hypselotropis prasinata* (Coleoptera: Anthribidae)

Ingrid Mattos¹, José Ricardo M. Mermudes^{1,3} & Mauricio O. Moura²

¹ Laboratório de Entomologia, Departamento de Zoologia, Universidade Federal do Rio de Janeiro. Caixa Postal 68044, 21941-971 Rio de Janeiro, RJ, Brazil.

² Departamento de Zoologia, Universidade Federal do Paraná. Caixa Postal 19020, 81531-980 Curitiba, PR, Brazil.

³ Corresponding author. E-mail: jrmermudes@gmail.com

ABSTRACT. Males of sexually dimorphic anthribid species display structural modifications that suggest sexual selection. Polyphenism, which is expressed through morphological and behavioral novelties, is an important component of the evolutionary process of these beetles. In this study, we endeavored to ascertain the presence of variations in selected monomorphic traits, polyphenism in males, and variation in structures associated with sexual dimorphism and allometric patterns in two species: *Systaltocerus platyrhynus* Labram & Imhoff, 1840 and *Hypselotropis prasinata* (Fahraeus, 1839). To that end, we used Principal Components Analysis (PCA) and Canonical Variate analysis (CVA) to statistically analyze 26 measurements of 91 specimens. The PCA discriminated three groups (females, major, and minor males) for *S. platyrhinus*, but only two groups (males and females) for *H. prasinata*. The same groups discriminated by the PCA for *Systaltocerus* were confirmed by the CVA analysis, indicating a highly significant variation separating the three groups. We also analyzed positive allometry with respect to prothorax length – independent variable by Reduced Major Axis (RMA). The allometric pattern indicated by most of the linear measurements was strong and corroborates a possible relationship between male polyphenism and the reproductive behavior of major and minor males. We believe that these patterns, in species that show both sexual dimorphism and male polyphenism, are associated with the behavior of defending the female during oviposition, performed by major males.

KEY WORDS. Anthribinae; morphometry; polyphenism; sexual dimorphism.

Male sexual dimorphism and polyphenism are ubiquitous in several species of Coleoptera (EMLEN *et al.* 2005, KAWANO 2006). These phenotypic differences are thought to be linked to fitness, since they influence reproductive success (EBERHARD & GUTIEREZ 1991, EMLEN & NOJHOUT 2000, EMLEN 1994, 1996, 2008, EMLEN *et al.* 2005, 2007, KAWANO 2006). In insects, body size is an important phenotypic trait which often corresponds to adaptations (Possadas *et al.* 2007). Some species of Coleoptera, for instance beetles with horns (e.g., Scarabaeidae, Dynastinae) and those with oversized mandibles (Cerambycidae, Prioninae, and Lucanidae) are model systems for studies on the evolution of sexual dimorphism and polyphenism (EBERHARD & GUTIEREZ 1991, KAWANO 2000, SHIOKAWA & IWAHASHI 2000). Moreover, Anthribidae species show both sexual dimorphism and polyphenism (MERMUDES 2002, YOSHITAKE & KAWASHIMA 2004).

Fungus weevils (Anthribidae: Curculionoidea) comprise about 370 genera and at least 3,900 species (SLIPINSK *et al.* 2011). Most species of Anthribinae have remarkable sexual dimorphism, particularly with respect to the size of the rostrum and antennae (HOLLOWAY 1982, MERMUDES 2002, 2005, MERMUDES & NAPP 2006). Anthribidae females have toothed sclerotized plates at the apex of the ovipositor, which bear conchoidal projections that are used to excavate plant tissues for oviposition. This behavior is unique and distinct among Curculionoidea, which use only the rostrum to dig plant tissues (HOWDEN 1995).

Although sexual dimorphism in size and polyphenism in male size are widespread in Anthribinae (MERMUDES 2002, 2005, MERMUDES & NAPP 2006, MERMUDES & MATTOS 2010), detailed information about it is only available for a few species (HOLLOWAY 1982). Yoshitake & Kawashima (2004) and Matsuo (2005) demonstrated that in large, intermediate, and small males of the Japanese fungus weevil Exechesops leucopis Jordan, 1928 the length of the eyestalks, which are associated with the agonistic behavior males use to protect females against other males on fruits of Styrax japonica Siebold & Zuccarini (Styracaceae) differs. Large males that have more developed cephalic eyestalks win the disputes, indicating that sexual dimorphism and polyphenism in males are under sexual selection. However, smaller males (without developed eyestalks) can copulate in the absence of competition when females are not accompanied by larger males, which may partly explain the sneaky behavior of small males described by Yoshitake & Kawashima (2004).

2014 Sociedade Brasileira de Zoologia | www.sbzoologia.org.br | www.scielo.br/zool All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY-NC. Agonist behavior in Anthribidae was also observed by THOMPSON (1963) and HOWDEN (1992). Thompson reported that guarding males of *Deuterocrates longicornis* (Fabricius, 1781), a species from West Africa, defend females and engage in fights with other males using their mandibles. HOWDEN (1992) recorded that males of *Ptychoderes rugicollis* Jordan, 1895, a Neotropical species, use their antennae and rostrum to protect females while they lay eggs on dead trees.

Considering the past detection of polyphenism in size in two species of Neotropical Anthribinae, Systaltocerus platyrhinus Labram & Imhoff, 1840 (variations in the length and shape of the rostrum; MERMUDES 2002) and Hypselotropis prasinata (Fahraeus, 1839) (different length of rostrum and antennae; MERMUDES 2005, MERMUDES & RODRIGUES 2010), we endeavored to determine whether there is variation in monomorphic characters (such as eyes, prothorax, and elytra), polyphenism in males, variation in sexually dimorphic structures (rostrum, antennae, and ventrites) and allometric patterns. This study contributes to the understanding of patterns of dimorphism and polyphenism in Anthribidae and evaluates structures that are likely to interfere with body size and/or with the relative size of other structures in the two species. However, whether agonistic interactions occur between males in those species remains unknown.

MATERIAL AND METHODS

In this study, we used a sample of 34 specimens (25 males and 9 females) of *S. platyrhinus* and 57 specimens (32 males and 25 females) of *H. prasinata* loaned from three collections (curators between parenthesis): MNRJ, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro (M. Monné); AMCT, American Coleoptera Museum, San Antonio, Texas (J. Wappes); and DZUP, Coleção Padre Jesus S. Moure, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba (L. Marinoni).

All individuals were measured using the standard imageanalysis software Moticam 1000, or in the case of elytral length, a digital caliper. Before each trait was measured, the specimen was oriented so that the trait of interest was as closely parallel to the plane of the objective lens as possible. The anatomical landmarks measured follow MERMUDES & NAPP (2006) with some modifications. These modifications, defined in Table I, are based on characters that display variation among males and the sexes, independently of geographical locality. The 26 traits (measurements in millimeters) used were log-transformed (Table I and Figs 1-7).

Linear models and cluster analysis were performed in PAST version 2.0 (HAMMER *et al.* 2001). Multivariate analyses (PCA and CVA) were run in vegan (OKSANEN *et al.* 2013) and Morph (SCHLAGER 2013). Both packages were implemented in R (R CORE TEAM 2013).

Variations in phenotypic traits between and within sexes were accessed through the coefficient of variation (CV).

Figures 1-7. Diagram of the morphological traits measured: (1) *Hypselotropis prasinata*, head, dorsal; (2) *Systaltocerus platyrhinus*, head, frontal; (3-7) *H. prasinata*: (4) antennal segments I-III; (5) prothorax, dorsal; (6) elytron, dorsal; (7) abdomen, ventral. For abbreviations see Material and methods. Scale bars: 1 mm.

A cluster analysis with Ward's methods (based on Euclidean distance) was carried out with 1,000 Bootstrap replicates (VALENTIN 2000). In this analysis, missing data were replaced by the column average. Additionally, a Principal Components Analysis (PCA) of the covariance-variance matrix of all variables was performed to reduce the dimension of the data matrix and to visualize possible differences among groups and characters that contributed the most to these differences. The first two component axes were then used as variables in a Canonical Variate Analysis (CVA) to test morphometric differences among groups.

The analyses were designed to test the relationship between body size (prothorax length = PL) and all other variables. For this reason we used the allometric function $y = ax^b$ (HUXLEY 1932, 1950). However, the data was log-transformed and expressed by: log y = log a + b (log x), to fit a straight line (GOULD 1966).

Body size (prothorax length = PL) was used as a predictor variable and all other measurements were considered as response variables. However, in allometric studies, no variable

Measures and abbreviation	Description
Rostral length 1 (RL 1)	laterally between the anterior margin of the eye and the apex of the rostrum
Apical width of rostrum (RAW)	dorsally at the apical margin of the rostrum
Basal width of rostrum (RBW)	measured dorsally at the base of the rostrum
Medial width 1 of rostrum (MW1R)	dorsally in the rostrum, only in Systaltocerus platyrhinus (modified from MERMUDES 2002)
Medial width 2 of rostrum (MW2R)	dorsally in the rostrum, only in Systaltocerus platyrhinus (modified from MERMUDES 2002)
Head width (HW)	dorsally between the lateral margins of the head
Antennal segments, length = seven variables (II, III, IV, V, VI, VII, VIII)	along the midline of each segment
Antennal segments of club, length = three variables (IX, X, XI)	along the midline
Inter-eye width (IEW)	maximum distance measured between the inner eye margins
Maximum eye width (MEW)	laterally between the outer eye margins
Inter-scrobal distance (DIS)	maximum width between the inner margins
Prothorax length (PL)	dorsally along the midline between the anterior and posterior margins
Prothorax width (PW)	dorsally near the antebasal carina (Fig. 5)
Elytra length (EL)	dorsally between the anterior margin and the apical margin
Elytra width (EW)	dorsally across the humeri
Total body length (TL)	sum of PL, EL, and RL 1
Ventrite length IV (VL IV)	along the midline
Ventrite length V (VL V)	along the midline

Table I. Measurements obtained from each part of the body.

can be considered independent (GOULD 1966). Therefore, we decided to fit a model II regression, or Reduced Major Axis regression (RMA). This allows the combined variation of the two variables to be better described because there are associated errors in both.

The slope (b) of the model II regression is the allometric constant that expresses the relationship between two variables and it has been used as an indication of the allometric pattern (EMDEN 2008). Therefore, when b equals 0 there is no allometric relationship. However, when b = 1 the relationship is isometric, b < 1 determines a negative allometry, and b > 1 describes positive allometry. The level of statistical significance was set at 0.05 in all analyzes.

RESULTS

The mean and standard deviation of all measurements were given in the Appendixes 1 and 2. The amplitude of total body length (TL) and the coefficient of variation (CV) for *S. platyrhinus* and *H. prasinata* were summarized in Table II.

Sexual dimorphism. Males of *H. prasinata* (Fig. 8) are relatively larger than females (Fig. 9). Major males of *S. platyrhinus* (Fig. 10) are similar to females in size, whereas minor males (Fig. 11) of this species are smaller than their female counterparts (Fig. 12). Males and females of *H. prasinata* and *S. platyrhinus* did not differ in the following variables that correspond to monomorphic characters in both species: apical width of rostrum (RAW), basal width of rostrum (RBW), head width (HW), prothorax length (PL), prothorax width (PW), elytra

Table II. Amplitude of the total length (mm) for males and females of *S. platyrhinus* and *H. prasinata* (n = 34, males = 25 and females = 9).

1 1			
Species	Groups	CV	TL
6 platurbinus	Males	0.17	6.37-12.81
s. platyminus	Females	0.12	8.22-11.36
(platurbinus	Major males		10.32-12.95
s. platyminus	Minor males		6.37-9.51
H pracipata	Males	0.15	10.86-19.60
n. prasmata	Females	0.16	8.51-17.96

length (EL), elytra width (EW), inter-scrobal distance (DIS), and inter-eye width (IEW), as detailed in Appendix 1.

The independent t test for sexual dimorphism of all variables is shown for the two species analyzed (Appendix 1). Males and females of the two species did not differ only in the maximum eye width (MEW). Based on the RMA results for *S. platyrhinus* (Table III), the elytral length and width did not show allometry. These results showed that all other structures are indicative of sexual dimorphism, as previously suggested by HOLLOWAY (1982) and MERMUDES (2002).

Polyphenism in males. In *S. platyrhynus*, major and minor males differ significantly in almost all variables, with the exception of antennomeres VII, VIII, and IX and ventrite V. The result of the independent t test for the polyphenism in males of the two species analyzed is shown in Table III. The presence of two groups of males in *S. platyrhinus*, relatively discrete in size, indicates size polyphenism (Table III and Ap-

Figures 8-12. Dorsal habitus. (8-9) *Hypselotropis prasinata*: (8) male; (9) female. (10-12) *Systaltocerus platyrhynus*: (10) major male; (11) minor male; (12) female. Scale bar = 2 mm.

pendix 2). In *H. prasinata*, although there is no evidence of major and minor males, we found intermediate males, suggesting a continuous variation in size (Table IV). Therefore, there were no discrete groups, rejecting the hypothesis of size polyphenism for *H. prasinata* males.

Multivariate analysis. Cluster Analyses with the Ward's Method, considered very efficient (VALENTIN 2000), identified different groups for each species analyzed. Bootstrap support values for these groups are shown within parentheses: three groups found for *S. platyrhinus* (Fig. 13): major males (76), minor males (75), and females (99); and two for *H. prasinata* (Fig. 14): males (respectively 29, 23) and females (74).

The Principal Components Analysis (PCA) indicated that size has a greater influence on the identification of groups (major males, minor males, and females) of *S. platyrhynus* (Table V and Fig. 15). The separation of the groups was evident by the analysis of the axes of components 1 and 2, which explain more than 80% of total variance. In the first axis (PC1), two groups were identified: males and females. The second axis (PC2) shows the separation between major and minor males. For *H. prasinata*, the principal components analysis indicated that size contributes to the differentiation of groups (Table V). However, there is no evidence of polyphenism in males (Fig. 16). The first and second components explained 87% of total evidence.

Canonical Variate Analysis (CVA), together with MANOVA, confirmed that there are three different morphotypes in *S. platyrhynus* (MANOVA CVA: Wilks' Lambda = 0.000194; df1 = 50; df2 = 14; F = 19.82; p < 0.0001) with correct allocation of

specimens exceeding 90%. The separation of groups in *S. platyrhynus* (Fig. 17) was evident through the first two axes, of which the first CV provided information for the separation of males and females and the second CV distinguished major and minor males. This separation is obtained essentially by a size contrast among head width (HW), prothorax width (PW), elytra width (EW), and length of antennal segment VII. CVA was not undertaken for *H. prasinata* because it is only recommended when there are more than two groups (HAMMER 2002).

Allometry and sexual dimorphism. Results of analysis by the RMA in *S. platyrhinus* males, without separating major and minor groups (Table IV), showed positive allometry between the independent variable PL (prothorax length) and each of the six variables connected with the rostrum (rostral length 1, apical width of rostrum, medial width 1 and 2 of rostrum, basal width of rostrum, and inter-scrobal distance). Even within the analysis of males, only one variable of the head, inter-eye width (IEW), and three antennal segments (the proximal III-V), did not fit an allometric pattern, differing from females of *S. platyrhinus* in this respect (Table IV).

Differing from the results above, evidence of sexual dimorphism with allometric patterns was confirmed only for females of *H. prasinata* in the following characters: width of head, prothorax, and elytra. Males of *H. prasinata* (Table IV) showed positive allometry for only one trait in the antennae (segment III). Males and females of this species, however, showed positive allometry in thirteen measurements, whereas females showed exclusive positive allometry in five traits.

Figure 13. Dendogram obtained with Ward's Cluster Analysis methods for S. platyrhinus. 1,000 bootstrap replicates.

ZOOLOGIA 31 (1): 51-62, February, 2014

Allometry and polyphenism in males. In reviewing the evidence of allometry between major and minor males of *S. platyrhynus* (Table III), five variables from the rostrum (RAW, MW1R, MW2R, RBW, and DIS), two of antennomeres (III) and only one from the ventrite (VL IV) have positive allometry only in major males. On the other hand, minor males showed positive allometry in prothorax and elytral width, and length of rostrum and antennomeres II, III, and VI. This demonstrates a clear morphological plasticity between males.

DISCUSSION

According to KAWANO (2006), body size is the most appropriate morphological trait for allometric analyses because it depends on the quality of the nutrition received by an individual during growth. However, other traits have been used as allometric predictors, for instance elytra length (CLARK 1977, GOLDSMITH 1985), elytra width (EBERHARD 1980, COOK 1987), and pronotum width (Emlem 1994, 1996, Eberhard et al. 1998, Emlen et al. 2005, TOMKINS et al. 2005). KAWANO (2006) stated that in sexually dimorphic beetles characters such as elytra length (EL), elytra width (EW), and prothorax width (PW) are not adequate allometric predictors because they do not represent a true measurement of body size (see MOCZEK et al. 2002 for a different view). Notably, we know that nutritional and environmental factors influence body size and also dimorphic structures, and that body size, as a dimorphic structure, is determined by endocrine mechanisms regulating development (EMLEN et al. 2005).

We did not use the TL as an allometric predictor because it is a composite measure formed by the sum of rostral length (RL1), prothorax length (PL), and elytra length (EL). Moreover, all these traits exhibited positive allometry (see discussion below), which could lead, through high correlations, to an indirect correlation. In addition, the elytra width (EW) showed positive allometry for males of *S. platyrhinus* and *H. prasinata*, and females of *H. prasinata*. Thus, only the prothorax length (PL) was used as a proxy for the true size of the body in the subsequent allometric analysis.

The results on variation in monomorphic characters also corroborated the work of HOLLOWAY (1982), who postulated that the inter-scrobal distance (DIS) is a diagnostic character for genera in Anthribidae. Our results also showed that the DIS did not differ between sexes because it is a monomorphic character. Additionally, the results showed that, in a supposedly dimorphic structure such as the rostrum, there are measurements that do not vary between the sexes (monomorphic). For *H. prasinata* there were no differences between the sexes in rostral length (RL1). For *S. platyrhynus*, there were no differences in: (1) rostrum, the average width 1 (MW1B) and width 2 (MW2R); (2) antenna, length of antennomere II; and (3) abdomen, length of ventrite IV (VL IV).

Sexual dimorphism was discussed by HOLLOWAY (1982) and MERMUDES & NAPP (2006); it occurs in the relative length of the

Table III. The results based on regression. Reduced Major Axis regression (RMA) of pairs of morphological variables selected with positive allometry in *S. platyrhinus*. Prothorax length (PL) was used as a predictor variable, and all variables were log-transformed prior to the two male groups (major and minor). Values of positive allometry shown in bold, with slope >1 and $p \le 0.05$.

Measures	Males	Slope	r	р	95% IC
RL1	Major Males	-1.48550	-0.093925	0.7255	-2.2580; 1.7650
	Minor Males	1.81560	0.758530	0.0181	1.0100; 2.8050
RAW	Major Males	1.22850	0.656570	0.0053	0.7506; 1.7230
	Minor Males	0.96200	0.899870	0.0020	0.6779; 1.2760
MW1R	Major Males	1.22850	0.656570	0.0053	0.7506; 1.7230
	Minor Males	1.55180	0.218300	0.5583	-2.2640; 2.5990
MW2R	Major Males	1.75670	0.762370	0.0005	1.0840; 2.4550
	Minor Males	1.33680	0.802830	0.0143	0.8597; 1.9060
RBW	Major Males	1.39400	0.652370	0.0054	0.6713; 1.9830
	Minor Males	1.39230	0.815180	0.0089	0.8295; 1.9170
HW	Major Males	0.96648	0.565020	0.0229	0.6182; 1.3610
	Minor Males	0.85738	0.742430	0.0168	0.4798; 1.2800
PW	Major Males	0.93269	0.678800	0.0030	0.5844; 1.2920
	Minor Males	1.08050	0.842200	0.0026	0.6262; 1.5120
EL	Major Males	0.80780	0.619160	0.0099	0.5425; 1.0200
	Minor Males	0.77868	0.619390	0.0818	-0.6077; 1.1640
EW	Major Males	0.99183	0.657430	0.0059	0.6287; 1.3850
	, Minor Males	1.09810	0.819920	0.0034	0.6483; 1.7040
MEW	Major Males	1.14760	0.363730	0.1763	-1.3830; 1.6280
	, Minor Males	0.75328	0.862790	0.0029	0.5855: 0.9414
DIS	Maior Males	3.04740	0.530800	0.0355	1.4770: 4.4360
	Minor Males	1.66940	0.474440	0.1888	-1.7580; 2.6060
IEW	Maior Males	1.23250	0.534230	0.0283	0.5754: 1.9310
	Minor Males	1,15860	0.813750	0.0102	0.7183:1.5460
П	Major Males	2,61660	0.277900	0.3112	-1.9190: 4.4160
	Minor Males	1.40660	0.894920	0.0016	0.8673: 1.8060
ш	Major Males	2 63410	0 577120	0.0139	1 1790: 4 4660
	Minor Males	1 23150	0 930700	0.0007	0 9571 1 5440
IV	Major Males	1 70980	0 494290	0.0512	0.9584: 2.6600
	Minor Males	1 90930	0.661310	0.0546	1 1760: 2 8730
V	Major Males	1 1 3 9 6 0	0.434660	0.0868	-0 5834 1 8540
•	Minor Males	1 75840	0.644540	0.0652	0.9586: 2.5610
VI	Major Males	0 74156	0.0119830	0.0052	-0.6722:1.0240
VI	Minor Males	1 99570	0.412030	0.1010	1 0120, 2 8120
VII	Major Malos	0.72472	0.286160	0.0402	0.0168.0.0083
VII	Minor Males	1 50120	0.200100	0.2017	1 0050, 2 2040
VIII	Major Males	1.57100	0.370370	0.0075	-1.0030, 2.3940
VIII		1.13300	0.397010	0.1235	-1.4790; 1.0420
IV		1.57690	0.430390	0.2103	-1.0770; 2.2130
IA		1.00190	0.347030	0.1804	-1.9980; 2.3000
v		1.19260	0.65/950	0.0557	0.6023; 1.7510
X	Major Males	1.///50	0.281690	0.3055	-2.80/0; 2.//50
	Minor Males	0.94/94	0.432220	0.2407	-0.8429; 1.3880
XI	Major Males	1.37250	0.502660	0.0498	0.8856; 2.0770
	Minor Males	1.13450	0.572490	0.1132	-0.3999; 1.7300
VL IV	Major Males	1.64070	0.701600	0.0017	0.9728; 2.4760
	Minor Males	0.91300	0.015324	0.9692	-1.2600; 1.4550
VL V	Major Males	1.80020	0.219740	0.4421	-1.2380; 3.1420
	Minor Males	1.34300	0.466900	0.2049	-0.8419; 2.1480

Table IV. Reduced Major Axis regression (RMA) results between pairs of morphological variables selected with positive allometry in *S. platyrhinus* and *H. prasinata*. Prothorax length (PL) was used as a predictor variable. All variables were log-transformed prior to males and females. (***) for $p \le 0.0001$.

Model Sex Single b r p L.C. Single b r p L.C. BL Males 1.9000 0.69903 0.44029 0.2449 -0.4048;1.800 1.10600 0.91170 V** 0.9485;1.3050 Famales 0.4185 0.037300 *** 1.0008;1.1272 -4.59440 -0.037101 V** 0.9485;1.3050 MMUR Males 1.66740 0.849920 0.0044 1.0480;2.5660 -	Maacurac			S. platyrhir	านร	H. prasinata					
R1 Males 1.00000 0.699050 *** 1.464/0, 2.3560 1.06040 0.91700 *** 0.9902, 1.1910 Fermales 0.41585 0.027300 0.2449 -0.0448; 1.800 0.940410 *** 0.9495, 1.3200 Fermales 0.01585 0.027370 0.2446 -0.02777; 1.1800 0.93810 0.919110 *** 0.8433, 1.2070 MVIR Males 1.6670 0.549920 0.0466 -0.7777; 1.1800 0.93810 0.919110 *** 0.8433, 1.2070 MVIR Males 1.6010 0.58900 *** 1.320(1.9150 -	wiedsures	Sex	Slope b	r	р	I.C.	Slope b	r	р	I.C.	
Females 0.9137 0.40290 0.2449 -0.40481, 1800 1.10600 0.94051 0.96451, 3050 Females 0.41585 -0.078700 0.8496 -0.7777, 11800 0.99130 0.919110 **** 0.8439; 1.2070 MVIR Males 1.66740 0.849920 0.0064 1.0480, 2.5660 - - - - - - - MM28 0.01268 0.03803 0.9755 0.4407, 0.939 - - - - - MM28 0.13010 0.83307 0.9755 0.4554; 1.2100 - - - - Females 0.47930 0.823670 0.9298 -1.0410; 1.6160 1.02050 0.972850 *** 0.8961; 1.0180 Females 0.43730 0.823670 *** 0.82462; 1.2310 0.991140 0.95122 *** 0.8476; 1.0300 Females 0.43758 0.88446 0.3060 0.7977; 1.1870 1.10150 0.987180 *** 0.9867180 Females <td>RL1</td> <td>Males</td> <td>1.90000</td> <td>0.699050</td> <td>***</td> <td>1.4610; 2.3560</td> <td>1.06040</td> <td>0.931790</td> <td>***</td> <td>0.9302; 1.1910</td>	RL1	Males	1.90000	0.699050	***	1.4610; 2.3560	1.06040	0.931790	***	0.9302; 1.1910	
Males I.10070 0.87300 *** 1.0080; 1.3720 4.9940 0.005110 0.7206 9.9433; 0.03101 MVII Males 0.61555 0.078700 0.8496 0.0777; 1.1800 0.91910 0.7206 0.8439; 1.2070 MVII Males 1.666740 0.549920 0.0064 1.0460; 2.566 - <td< td=""><td></td><td>Females</td><td>0.59137</td><td>0.440290</td><td>0.2449</td><td>-0.4048; 1.800</td><td>1.10600</td><td>0.940410</td><td>***</td><td>0.9485; 1.3050</td></td<>		Females	0.59137	0.440290	0.2449	-0.4048; 1.800	1.10600	0.940410	***	0.9485; 1.3050	
Females -0.41885 -0.078700 0.9496 -0.0777, 11800 0.98130 0.919110 *** 0.8439; 1.2070 MWIR Males 1.66740 0.578990 - <	RAW	Males	1.16070	0.875300	***	1.0080; 1.3720	-4.99440	-0.058107	0.7606	-9.096; 4.3820	
MVIR Males 1.68740 0.59920 0.0064 1.04802, 25660 - - - - - Females 1.0640 0.87990 *** 1.3820, 1910 - - - - - RW Males 1.0300 0.863070 *** 1.2590, 1740 -		Females	-0.41585	-0.078700	0.8496	-0.7777; 1.1800	0.98130	0.919110	***	0.8439; 1.2070	
Fernales 0.32354 0.012680 0.9745 0.4807() 0.933 - - - - MMAR 0.41981 0.038030 0.9181 0.03954, 1210 - - - - R8W Males 1.51310 0.636307 0.9718 0.97285 0.91151, 1.610 Fernales 0.47393 0.041306 0.9207 0.91518 0.953520 0.91151, 1.610 HW Males 1.03900 0.823670 0.90191, 1.4070 1.02200 0.972850 0.9448, 1.1690 Fernales 0.47393 0.041906 0.09791, 1.4070 1.02200 0.976430 0.9448, 1.1690 Fernales 0.41758 0.088446 0.306 0.7475, 1.0580 0.98249 0.974480 0.982430 0.972430 0.98480 0.972430 0.98481 0.375, 1.0580 Fernales 0.447518 0.384900 0.3544 -0.1564; 1.1820 1.05030 0.98480 0.97430 0.98491 0.375, 1.0580 Fernales 0.44510 0.15240	MW1R	Males	1.68740	0.549920	0.0064	1.0480; 2.5660	_	-	_	-	
MW2R Males 1.60640 0.878990 ••• 1.3820; 1.9150 - - - - - Rem Males 1.0310 0.838070 ••• 1.2390; 1.7940 1.1200 0.87210 0.8721, 1.4110 HW Males 1.03500 0.83267 ••• 0.8392; 1.4110 HW Males 1.03500 0.82367 ••• 0.8540; 1.2510 0.915484 0.953520 ••• 0.9692; 1.4110 HW Males 1.04600 0.875940 ••• 0.8462; 1.210 0.99050 0.91520 ••• 0.04752; 1.0580 0.98140 ••• 0.8752; 1.0380 0.98100 ••• 0.8752; 1.0380 0.98299 0.96430 ••• 0.8989; 1.0570 0.8751; 1.2260 0.98049 0.94480 ••• 0.8989; 1.0570 0.7817; 1.071, 1.1800 0.814940 ••• 0.8699; 1.0570 7.10540 0.814940 ••• 0.4661; 0.0124 1.879 1.7170; 1.1800 1.0170; 1.1800 1.0170; 1.1800 1.0170; 1.1800 1.0170; 1.1800 1.0170; 1.1800		Females	-0.32354	-0.012680	0.9765	-0.4807; 0.9039	_	-	_	-	
Females 0.41981 0.038053 0.9181 -0.5954; 1.2100 - - - - RBW Males 1.3010 0.863070 **** 1.2590; 1.7940 1.17200 0.971850 **** 0.8922; 1.4110 Females 0.37593 0.031366 0.929 0.411616 1.02000 0.972850 *** 0.8662; 1.0180 Females 0.47593 0.043096 0.9097 0.9619; 1.4070 1.02800 0.975950 *** 0.9448; 1.1690 Females 0.41758 0.088446 0.8306 -0.7940; 1.1870 1.10450 0.98570 *** 0.2675; 1.0580 0.92829 0.967430 *** 0.9666; 1.1080 Females 0.43514 0.34803 0.3544 -0.1567; 1.1320 1.05030 0.988480 *** 0.9686; 1.1080 FW Males 1.05390 0.88050 *** 0.6704; 1.0870 0.78105 0.814940 *** 0.6461; 0.9124 Females 0.34873 -0.10388 0.610371, 1.0860 0.872020 8	MW2R	Males	1.60640	0.878990	***	1.3820; 1.9150	_	-	_	-	
RBW Males 1.50130 0.863070 *** 1.2590; 1.7940 1.17200 0.87160 *** 0.8829; 1.4110 HW Males 1.03030 0.031836 0.9298 1.0410; 1.6160 1.02050 0.972830 **** 0.8016; 1.0180 Females 0.47593 0.043096 0.9097 -0.9619; 1.4070 1.02800 0.97280 **** 0.8762; 1.0380 Females 0.41758 0.088760 **** 0.8642; 1.2310 0.99005 0.96120 **** 0.8782; 1.0380 Females 0.41758 0.080760 **** 0.775; 1.0580 0.98249 0.974080 **** 0.8875; 1.0570 Females 0.45187 0.135270 0.6926 -0.6374; 1.370 1.08220 0.98840 **** 0.8869; 1.0570 Females 0.45467 0.45187 0.135270 0.6926 -0.6374; 1.370 1.8820 0.94080 **** 0.89841, 0.9124 Females 0.45467 0.45290 0.2183 0.1739; 1.2460 1.08700 0.970210		Females	0.41981	0.038053	0.9181	-0.5954; 1.2100	_	-	_	-	
Females 0.53790 0.031836 0.9298 -1.0410; 1.6160 1.02050 0.972850 **** 0.9115; 1.1610 HW Males 1.03900 0.823670 **** 0.8490; 1.2310 0.91548 0.953520 **** 0.8606; 1.0180 Females 0.47593 0.043060 0.9079 0.96121 0.90050 0.957120 *** 0.8642; 1.2310 0.99005 0.961220 *** 0.8722; 1.0860 Females 0.43174 0.348030 0.3544 -0.1564; 1.1820 1.05030 0.988480 *** 0.9686; 1.1080 EV Males 1.05590 0.680570 *** 0.6704; 1.1870 1.08220 0.988480 *** 0.9686; 1.1080 Emales 0.43187 0.155270 0.6226 -0.6374; 1.370 1.08220 0.988480 *** 0.6661; 1.080 Miles 1.82373 -0.10388 0.8103 -0.492; 0.90720 0.814940 *** 0.6461; 0.9174 Females 0.45877 -0.16380 1.1560 0.896060 ***	RBW	Males	1.50130	0.863070	***	1.2590; 1.7940	1.17200	0.873160	***	0.8929; 1.4110	
HW Males 1.03900 0.823670 *** 0.8540; 1.2510 0.91548 0.953520 *** 0.8060; 1.0180 Females 0.47593 0.043096 0.9097 -0.9619; 1.4070 1.02800 0.975950 *** 0.9448; 1.1690 Females 0.41758 0.088446 0.8306 -0.7940; 1.1870 1.10450 0.975250 *** 0.89571 0.4875; 1.0540 Females 0.43141 0.348030 0.35444 0.1564; 1.1820 1.05300 0.986480 *** 0.89857, 1.0540 Females 0.45187 0.566950 *** 0.8797; 1.2260 0.98049 0.974080 *** 0.89857, 1.0570 Females 0.45187 0.155270 0.6926 -0.6374; 1.370 1.08220 0.936000 *** 0.8797; 1.1800 MEW Males 0.34873 0.10388 0.8103 -0.4492; 0.9072 0.87605 0.93600 *** 0.2657; 1.0860 DIS Males 1.35670 0.645290 0.2183 0.1733; 1.260 0.97090 ***		Females	0.53790	0.031836	0.9298	-1.0410; 1.6160	1.02050	0.972850	***	0.9115; 1.1610	
Females 0.47593 0.043096 0.9097 -0.9619; 1.4070 1.02800 0.975950 **** 0.8442; 1.2310 PW Males 1.04600 0.875940 **** 0.8642; 1.2310 0.99005 0.967120 **** 0.8752; 1.0860 Females 0.43514 0.807660 **** 0.7675; 1.0580 0.98289 0.967430 **** 0.8957; 1.0540 Females 0.43517 0.155270 0.66726 -0.6374; 1.370 1.08220 0.98480 **** 0.6461; 0.9124 Females 0.43873 -0.10388 0.8103 -0.4792, 0.972 0.87655 0.936000 **** 0.6661; 0.9124 Females 0.45870 0.465290 0.2183 0.1739; 1.2460 1.04790 0.97210 **** 0.9672; 1.2030 Females 0.5587 0.16280 0.723 -0.8943; 1.8360 1.1270; 1.6580 1.12460 0.89810 **** 0.9362; 1.1300 II Males 1.6500 0.62090 0.0005 0.9977; 2.640 1.8270 0.93710	HW	Males	1.03900	0.823670	***	0.8540; 1.2510	0.91548	0.953520	***	0.8060; 1.0180	
PW Males 1.04600 0.875940 *** 0.8642; 1.2310 0.99005 0.961220 *** 0.8782; 1.0860 Females 0.41758 0.088446 0.8306 -0.7940; 1.1870 1.10450 0.98259 0.96743 *** 0.8025; 1.0540 0.98289 0.96743 *** 0.8957; 1.0540 0.98289 0.974080 *** 0.89829; 1.0570 Females 0.43514 0.348030 0.3544 -0.1564; 1.1820 1.08220 0.988480 *** 0.96869; 1.0570 Females 0.44170 0.6704; 1.0870 0.78105 0.814940 *** 0.6461; 0.9124 Females 0.45967 0.46374; 1.370 1.08220 0.98380 *** 0.7675; 1.0860 DIS Males 1.35670 0.83330 *** 1.1210 0.873571 *** 0.97571 *** 0.9672; 1.260 Females 0.45967 0.465290 0.218 0.1739; 1.2460 1.04790 0.97210 *** 0.9365; 1.1890 II Males 1.35670		Females	0.47593	0.043096	0.9097	-0.9619; 1.4070	1.02800	0.975950	***	0.9448; 1.1690	
Females 0.41758 0.088446 0.8306 -0.7940; 1.1870 1.10450 0.985070 **** 1.0230; 1.2320 EL Males 0.90022 0.807660 **** 0.7675; 1.0880 0.98289 0.967430 **** 0.8956; 1.1680 EW Males 1.05590 0.860950 **** 0.8797; 1.2260 0.98049 0.974080 **** 0.8988; 1.0570 Females 0.43187 0.155270 0.6626 -0.6374; 1.370 1.08220 0.814940 **** 0.6461; 0.9124 Females 0.34873 -0.10388 0.8103 -0.4492; 0.9072 0.87605 0.936000 **** 0.6765; 1.0800 DIS Males 1.035670 0.81330 -*** 0.1720; 1.6800 1.1210 0.87202 **** 0.8765; 1.0800 DIS Males 1.035670 0.81330 04492; 0.9072 0.87705; 1.0870 0.9769; 1.3200 LF Males 1.05670 0.81330 04804; 1.3300 1.04790 0.97591 **** 0.9769; 2.1400 <td>PW</td> <td>Males</td> <td>1.04600</td> <td>0.875940</td> <td>***</td> <td>0.8642; 1.2310</td> <td>0.99005</td> <td>0.961220</td> <td>***</td> <td>0.8782; 1.0860</td>	PW	Males	1.04600	0.875940	***	0.8642; 1.2310	0.99005	0.961220	***	0.8782; 1.0860	
EL Males 0.90022 0.807660 *** 0.7675; 1.0580 0.98289 0.967430 *** 0.8957; 1.0540 EW Males 1.0550 0.860950 *** 0.877; 1.2260 0.98049 0.974080 *** 0.8987; 1.0540 Females 0.45187 0.155270 0.6926 -0.6374; 1.370 1.08220 0.983880 *** 1.0170; 1.1800 MEW Males 0.82335 0.695740 *** 0.6704; 1.0870 0.78165 0.984800 *** 0.6767; 1.0860 DIS Males 2.07910 0.64830 0.0008 1.5690; 2.8290 1.12190 0.872020 *** 0.9575; 1.0860 DIS Males 1.35670 0.835360 *** 1.1270; 1.5800 1.04290 0.97210 *** 0.9575; 1.0800 IEW Males 1.65210 0.723 0.8943; 1.8360 1.04290 0.977210 *** 0.9627; 1.2050 IEW Males 1.65210 0.740040 *** 1.1270; 2.5400 1.04290		Females	0.41758	0.088446	0.8306	-0.7940; 1.1870	1.10450	0.985070	***	1.0230; 1.2320	
Females 0.43514 0.348030 0.3544 -0.1564; 1.1820 1.05030 0.988480 **** 0.9686; 1.1080 EW Males 1.05590 0.860950 **** 0.8797; 1.2260 0.99849 0.974080 **** 0.8888; 1.0570 MEW Males 0.43187 0.155270 0.6924 -0.6374; 1.370 1.08220 0.983880 **** 0.6704; 1.1800 MEW Males 2.07910 0.649830 0.0008 1.5690; 2.8290 1.12190 0.872020 **** 0.7657; 1.0860 DIS Males 1.03570 0.83336 0.012183 0.1739; 1.2460 0.889160 **** 0.9572; 1.2050 IEW Males 1.7560 0.620900 0.0005 0.697; 2.6140 1.8290 0.917990 *** 1.520; 2.0320 Females 0.94552 -0.729110 0.0761 -1.1480; 1.3230 1.03330 0.908060 *** 0.9029; 1.3000 III Males 1.62210 0.749730 *** 1.1260; 2.1320 0.933101	EL	Males	0.90022	0.807660	***	0.7675; 1.0580	0.98289	0.967430	***	0.8957; 1.0540	
EW Males 1.05590 0.860950 *** 0.8797; 1.2260 0.98049 0.974080 *** 0.8989; 1.0570 MEW Males 0.82335 0.695740 *** 0.6704; 1.0870 0.78105 0.814940 *** 0.6461; 0.9124 Fernales 0.34873 0.10388 0.8103 0.4492; 0.9072 0.87605 0.83600 *** 0.8757; 1.0860 DIS Males 2.07910 0.649830 0.0008 1.5690; 2.8290 1.12190 0.872020 *** 0.8779; 1.2360 IEW Males 1.35670 0.835360 *** 1.12791 0.889160 *** 0.937210 *** 0.937211 0.9367; 1.2300 IEW Males 1.7650 0.620900 0.0005 0.9697; 2.6140 1.8200 0.917990 *** 1.5820; 2.0320 III Males 1.69210 0.74004 *** 1.12202 0.24410 0.9291; 1.300 III Males 1.69210 0.749730 *** 1.12730; 2.1020 2.2445		Females	0.43514	0.348030	0.3544	-0.1564; 1.1820	1.05030	0.988480	***	0.9686; 1.1080	
Females 0.45187 0.155270 0.6926 -0.6374; 1.370 1.08220 0.983880 *** 1.0170; 1.1800 MEW Males 0.82335 0.695740 *** 0.6704; 1.0870 0.87105 0.814940 *** 0.6461; 0.9124 Females -0.1388 0.8103 -0.4992; 0.9072 0.87005 0.936000 *** 0.6767; 1.0800 Females 0.45967 0.465290 0.2183 0.1739; 1.2460 1.04790 0.970210 *** 0.9574; 1.300 Females 0.59589 0.116280 0.723 0.9843; 1.8360 1.04290 0.95751 *** 0.9386; 1.1890 III Males 1.71650 0.620900 0.0005 0.9697; 2.6140 1.82900 0.917990 *** 1.5820; 2.0320 Females 0.74552 -0.729110 0.0761 -1.1480; 1.3230 1.0330 0.980806 *** 0.9029; 1.3000 III Males 1.6270 0.740940 *** 1.2730; 2.1020 2.24450 0.972940 *** 2.0800; 2.2	EW	Males	1.05590	0.860950	***	0.8797; 1.2260	0.98049	0.974080	***	0.8989; 1.0570	
MEW Males 0.82335 0.695740 *** 0.6704; 1.0870 0.78105 0.814940 *** 0.6461; 0.9124 Females -0.34873 -0.10388 0.8103 -0.4492; 0.9072 0.87605 0.936000 *** 0.7557; 1.0860 DIS Males 2.07910 0.649830 0.0008 1.5690; 2.8290 1.12100 0.872020 *** 0.8792; 1.3570 Females 0.45967 0.465290 0.2183 0.1739; 1.2460 1.04790 0.970210 *** 0.9594; 1.3300 Females 0.59589 0.116280 0.723 -0.8943; 1.8360 1.04290 0.957510 *** 0.9386; 1.1890 II Males 1.69210 0.740040 *** 1.1920; 2.400 1.92700 0.959180 *** 1.7420; 2.1320 Females -1.07410 -0.089660 0.8043 -1.2830; 2.8000 1.01900 0.933010 *** 0.9303; 1.2060 IV Males 1.54270 0.761590 *** 1.1260; 1.9080 6.15970 0.526750 <td></td> <td>Females</td> <td>0.45187</td> <td>0.155270</td> <td>0.6926</td> <td>-0.6374; 1.370</td> <td>1.08220</td> <td>0.983880</td> <td>***</td> <td>1.0170; 1.1800</td>		Females	0.45187	0.155270	0.6926	-0.6374; 1.370	1.08220	0.983880	***	1.0170; 1.1800	
Females -0.34873 -0.10388 0.8103 -0.4492; 0.9072 0.87605 0.936000 **** 0.7657; 1.0860 DIS Males 2.07910 0.649830 0.008 1.5690; 2.8290 1.12190 0.872020 **** 0.8799; 1.3570 Females 0.45967 0.465290 0.2183 0.1739; 1.2460 1.04790 0.970210 **** 0.9972; 1.2050 IEW Males 1.35670 0.833360 **** 1.1270; 1.6580 1.1640 0.898160 **** 0.9945; 1.3300 IEW Males 1.71650 0.620900 0.0005 0.9697; 2.6140 1.82900 0.917990 **** 1.5820; 2.320 Females -1.07410 -0.089660 0.8043 -1.2830; 2.8000 1.01900 0.933010 **** 0.9035; 1.2660 IV Males 1.68500 0.749730 **** 1.2730; 2.1020 2.24450 0.972940 **** 2.9800; 2.4190 Females -1.07410 -0.089660 0.3446 -1.2100; 0.8810 1.07030 <t< td=""><td>MEW</td><td>Males</td><td>0.82335</td><td>0.695740</td><td>***</td><td>0.6704; 1.0870</td><td>0.78105</td><td>0.814940</td><td>***</td><td>0.6461; 0.9124</td></t<>	MEW	Males	0.82335	0.695740	***	0.6704; 1.0870	0.78105	0.814940	***	0.6461; 0.9124	
DIS Males 2.07910 0.649830 0.0008 1.5690; 2.8290 1.12190 0.872020 **** 0.8799; 1.3570 IEW Males 1.35670 0.465290 0.2183 0.1739; 1.2460 1.04790 0.970210 **** 0.95751 **** 0.95751 **** 0.95751 0.9365; 1.1800 IEW Males 1.71650 0.620900 0.0005 0.9697; 2.6140 1.82900 0.917990 **** 1.5820; 2.0320 Females 0.94552 -0.729110 0.0761 -1.1480; 1.3230 1.03330 0.908060 **** 1.7420; 2.1320 III Males 1.69210 0.740040 **** 1.2730; 2.1020 2.24450 0.972940 **** 2.0800; 2.4190 Females 0.44250 0.378060 0.3446 -1.2100; 0.8810 1.07030 0.933310 **** 2.0805; 3.2500 Females 0.44250 0.761590 **** 1.1260; 1.4010 1.07280 0.91670 **** 2.0805; 3.2500 Females 0.44555		Females	-0.34873	-0.10388	0.8103	-0.4492; 0.9072	0.87605	0.936000	***	0.7657; 1.0860	
Females 0.45967 0.465290 0.2183 0.1739; 1.2460 1.04790 0.970210 **** 0.9672; 1.2050 IEW Males 1.35670 0.835360 **** 1.1270; 1.5580 1.15460 0.889160 **** 0.9554; 1.3300 III Males 1.7150 0.62090 0.0005 0.9697; 2.6140 1.82900 0.917990 **** 0.9386; 1.1890 III Males 1.69210 0.740040 **** 1.1920; 2.5400 1.92700 0.959180 **** 1.7420; 2.1320 Females -0.07410 -0.089660 0.8043 -1.230; 2.8000 1.01900 0.933010 **** 2.0800; 2.4190 Females -1.64250 0.749730 **** 1.2730; 2.1020 2.24450 0.972940 **** 2.0800; 2.1270 V Males 1.54270 0.761590 **** 1.1060; 1.9080 6.15970 0.526750 **** 2.5750; 10.8700 Females 0.49559 0.074484 0.8421 -1.2560; 1.4010 1.07280 0.916	DIS	Males	2.07910	0.649830	0.0008	1.5690; 2.8290	1.12190	0.872020	***	0.8799; 1.3570	
IEW Males 1.35670 0.835360 *** 1.1270; 1.6580 1.15460 0.889160 *** 0.9594; 1.3300 II Males 1.71650 0.620900 0.0005 0.9697; 2.6140 1.82900 0.917990 *** 0.9386; 1.1890 III Males 1.69210 0.740040 *** 1.1220; 2.6400 1.92700 0.959180 *** 0.9029; 1.3000 III Males 1.69210 0.740040 *** 1.1220; 2.5400 1.92700 0.959180 *** 0.9035; 1.2060 IV Males 1.68500 0.749730 *** 1.2730; 2.1020 2.24450 0.972940 *** 0.9035; 1.2060 IV Males 1.54270 0.761590 *** 1.2730; 2.1020 2.24450 0.972940 *** 2.0800; 2.4190 Females 0.44250 '0.378060 0.3446 -1.2100; 0.8810 1.07030 0.916670 *** 2.5750; 10.820 VI Males 1.51620 0.764820 *** 0.9724; 1.9400		Females	0.45967	0.465290	0.2183	0.1739; 1.2460	1.04790	0.970210	***	0.9672; 1.2050	
Females 0.59589 0.116280 0.723 -0.8943; 1.8360 1.04290 0.957510 **** 0.9386; 1.1890 II Males 1.71650 0.620900 0.0005 0.9697; 2.6140 1.82900 0.917990 **** 1.5820; 2.0320 Females -0.94552 -0.729110 0.0761 -1.1480; 1.3230 1.03330 0.908060 **** 0.9029; 1.3000 III Males 1.69210 0.740040 **** 1.1290; 2.5400 1.01900 0.933010 *** 0.9355; 1.2600 IV Males 1.68500 0.749730 **** 1.2730; 2.1020 2.24450 0.972940 *** 2.0800; 2.4190 Females 0.44250 Ó.378060 0.3446 -1.2100; 0.8810 1.07030 0.939310 *** 0.9352; 1.2770 V Males 1.54270 0.764820 *** 1.1060; 1.9080 6.15970 0.24720 *** 2.0800; 2.24190 Females 0.45601 -0.07770 0.8245 -0.8710; 1.4290 1.02590 0.944720	IEW	Males	1.35670	0.835360	***	1.1270; 1.6580	1.15460	0.889160	***	0.9594; 1.3300	
II Males 1.71650 0.620900 0.0005 0.9697; 2.6140 1.82900 0.917990 **** 1.5820; 2.0320 Females -0.94552 -0.729110 0.0761 -1.1480; 1.3230 1.03330 0.908060 **** 0.9029; 1.3000 III Males 1.65210 0.740040 *** 1.1220; 2.5400 1.92700 0.959180 **** 1.7420; 2.1320 Females -1.07410 -0.089660 0.8043 -1.2830; 2.8000 1.01900 0.933010 **** 1.7420; 2.1220 V Males 1.68500 0.749730 **** 1.2730; 2.1020 2.24450 0.972940 **** 2.0800; 2.1770 V Males 1.54270 0.761590 **** 1.1060; 1.9080 6.15970 0.526750 **** 2.5750; 10.8700 Females 0.49559 0.074484 0.8421 -1.2560; 1.4010 1.07280 0.916670 **** 2.8050; 3.2500 Females 0.49559 0.074484 0.8421 -1.2560; 1.4010 1.02590 0		Females	0.59589	0.116280	0.723	-0.8943; 1.8360	1.04290	0.957510	***	0.9386; 1.1890	
Females -0.729110 0.0761 -1.1480; 1.3230 1.03330 0.908060 **** 0.9029; 1.3000 III Males 1.69210 0.740040 *** 1.1920; 2.5400 1.92700 0.959180 **** 1.7420; 2.1320 IV Males 1.66500 0.749730 **** 1.2730; 2.1020 2.24450 0.972940 **** 2.0800; 2.4190 Females -0.44250 0.378660 0.3446 -1.2100; 0.810 1.07030 0.939310 **** 2.9550; 10.8700 V Males 1.54270 0.761590 **** 1.1060; 1.9080 6.15970 0.526750 *** 2.5750; 10.8700 V Males 1.51620 0.764820 *** 0.9724; 1.9400 2.99950 0.944720 *** 2.8050; 3.2500 Females -0.45601 -0.077770 0.8245 -0.8710; 1.4290 1.02590 0.879440 *** 0.8348; 1.2660 VI Males 1.34630 0.727210 *** 0.9905; 1.5750 2.8610 0.824990	Ш	Males	1.71650	0.620900	0.0005	0.9697; 2.6140	1.82900	0.917990	***	1.5820; 2.0320	
III Males 1.69210 0.740040 **** 1.1920; 2.5400 1.92700 0.959180 **** 1.7420; 2.1320 IV Males 1.68500 0.749730 **** 1.2730; 2.1020 2.24450 0.972940 **** 2.0800; 2.4190 Females -0.44250 0.378060 0.3446 -1.2100; 0.8810 1.07030 0.939310 **** 0.9352; 1.2770 V Males 1.54270 0.761590 **** 1.2560; 1.4010 1.07280 0.916670 **** 2.5750; 10.8700 Females 0.49559 0.074484 0.8421 -1.2560; 1.4010 1.07280 0.916670 **** 0.9190; 1.2640 VI Males 1.31630 0.727210 **** 0.9724; 1.9400 2.99950 0.944720 **** 2.86050; 3.1810 Females -0.45601 -0.077770 0.8245 -0.8710; 1.4290 1.02590 0.87440 **** 2.5600; 3.1810 Females -0.45601 -0.023300 0.9504 -0.8681; 1.3760 0.95728		Females	-0.94552	-0.729110	0.0761	-1.1480; 1.3230	1.03330	0.908060	***	0.9029; 1.3000	
Females -1.07410 -0.089660 0.8043 -1.2830; 2.8000 1.01900 0.933010 **** 0.9035; 1.2060 IV Males 1.68500 0.749730 **** 1.2730; 2.1020 2.24450 0.972940 **** 2.0800; 2.4190 Females -0.44250 0.378060 0.3446 -1.2100; 0.8810 1.07030 0.939310 **** 0.9352; 1.2770 V Males 1.54270 0.761590 **** 1.1060; 1.9080 6.15970 0.526750 **** 2.5750; 10.8700 Females 0.49559 0.074484 0.8421 -1.2560; 1.4010 1.07280 0.916670 **** 0.9190; 1.2640 VI Males 1.51620 0.764820 *** 0.9724; 1.9400 2.99950 0.94720 **** 2.8050; 3.2500 VII Males 1.34630 0.727210 **** 0.9909; 1.7510 2.83610 0.916910 **** 2.5600; 3.1810 Females -0.4280 -0.023300 0.954 -0.8681; 1.3760 0.95728 0.82	Ш	Males	1.69210	0.740040	***	1.1920; 2.5400	1.92700	0.959180	***	1.7420; 2.1320	
IV Males 1.68500 0.749730 **** 1.2730; 2.1020 2.24450 0.972940 **** 2.0800; 2.4190 Females -0.44250 0.378060 0.3446 -1.2100; 0.8810 1.07030 0.939310 **** 0.9352; 1.2770 V Males 1.54270 0.761590 **** 1.1060; 1.9080 6.15970 0.526750 **** 0.9190; 1.2640 VI Males 1.51620 0.764820 *** 0.9724; 1.9400 2.99950 0.944720 **** 2.8050; 3.2500 Females -0.45601 -0.077770 0.8245 -0.8710; 1.4290 1.02590 0.87940 **** 0.8348; 1.2660 VII Males 1.34630 0.727210 *** 0.9090; 1.7510 2.83610 0.916910 **** 2.2600; 3.1810 Females 0.44280 -0.023300 0.9504 -0.8871; 1.6360 2.56950 0.924410 *** 2.2630; 3.1810 Females 0.56072 0.210630 0.5876 -0.9753; 1.6330 1.12210 0.6137		Females	-1.07410	-0.089660	0.8043	-1.2830; 2.8000	1.01900	0.933010	***	0.9035; 1.2060	
Females -0.44250 0.378060 0.3446 -1.2100; 0.8810 1.07030 0.939310 **** 0.9352; 1.2770 V Males 1.54270 0.761590 **** 1.1060; 1.9080 6.15970 0.526750 **** 2.5750; 10.8700 V Males 1.51620 0.74484 0.8421 -1.2560; 1.4010 1.07280 0.916670 **** 0.9190; 1.2640 VI Males 1.51620 0.764820 **** 0.9724; 1.9400 2.99950 0.944720 **** 2.8050; 3.2500 Females -0.45601 -0.077770 0.8245 -0.8710; 1.4290 1.02590 0.879440 **** 0.8348; 1.2660 VI Males 1.34630 0.727210 **** 0.9090; 1.7510 2.83610 0.916910 **** 2.5600; 3.1810 Females -0.44280 -0.023300 0.9504 -0.8681; 1.3760 0.95728 0.824990 **** 0.8010; 1.2830 VIII Males 1.27890 0.666200 0.0005 0.8895; 1.5690 2.7099	IV	Males	1.68500	0.749730	***	1.2730; 2.1020	2.24450	0.972940	***	2.0800; 2.4190	
V Males 1.54270 0.761590 **** 1.1060; 1.9080 6.15970 0.526750 **** 2.5750; 10.8700 Females 0.49559 0.074484 0.8421 -1.2560; 1.4010 1.07280 0.916670 **** 0.9190; 1.2640 VI Males 1.51620 0.764820 **** 0.9724; 1.9400 2.99950 0.944720 **** 2.8050; 3.2500 Females -0.45601 -0.077770 0.8245 -0.8710; 1.4290 1.02590 0.879440 **** 0.8348; 1.2660 VII Males 1.34630 0.727210 **** 0.9090; 1.7510 2.83610 0.916910 **** 2.5600; 3.1810 Females -0.44280 -0.023300 0.9504 -0.8681; 1.3760 0.95728 0.824990 **** 0.8010; 1.2830 VIII Males 1.27890 0.686200 0.0002 0.8871; 1.6360 2.56950 0.924410 **** 2.248; 2.9630 Females 0.56072 0.210630 0.5876 -0.9753; 1.6330 1.12210 <t< td=""><td></td><td>Females</td><td>-0.44250</td><td>´ 0.378060</td><td>0.3446</td><td>-1.2100; 0.8810</td><td>1.07030</td><td>0.939310</td><td>***</td><td>0.9352; 1.2770</td></t<>		Females	-0.44250	´ 0.378060	0.3446	-1.2100; 0.8810	1.07030	0.939310	***	0.9352; 1.2770	
Females 0.49559 0.074484 0.8421 -1.2560; 1.4010 1.07280 0.916670 **** 0.9190; 1.2640 VI Males 1.51620 0.764820 **** 0.9724; 1.9400 2.99950 0.944720 **** 2.8050; 3.2500 Females -0.45601 -0.077770 0.8245 -0.8710; 1.4290 1.02590 0.879440 **** 0.8348; 1.2660 VII Males 1.34630 0.727210 **** 0.9090; 1.7510 2.83610 0.916910 **** 2.5600; 3.1810 Females -0.44280 -0.023300 0.9504 -0.8681; 1.3760 0.95728 0.824990 **** 0.8010; 1.2830 VIII Males 1.27890 0.686200 0.0002 0.8871; 1.6360 2.56950 0.924410 **** 2.248; 2.9630 Females 0.56072 0.210630 0.5876 -0.9753; 1.6330 1.12210 0.613780 0.0013 0.8289; 1.7310 IX Males 1.19600 0.641790 0.0005 0.8995; 1.5690 2.70990	V	Males	1.54270	0.761590	***	1.1060; 1.9080	6.15970	0.526750	***	2.5750; 10.8700	
VI Males 1.51620 0.764820 *** 0.9724; 1.9400 2.99950 0.944720 **** 2.8050; 3.2500 Females -0.45601 -0.077770 0.8245 -0.8710; 1.4290 1.02590 0.879440 **** 0.8348; 1.2660 VII Males 1.34630 0.727210 *** 0.9090; 1.7510 2.83610 0.916910 **** 2.5600; 3.1810 Females -0.44280 -0.023300 0.9504 -0.8681; 1.3760 0.95728 0.824990 **** 0.8010; 1.2830 VIII Males 1.27890 0.686200 0.0002 0.8871; 1.6360 2.56950 0.924410 **** 2.248; 2.9630 Females 0.56072 0.210630 0.5876 -0.9753; 1.6330 1.12210 0.613780 0.0013 0.8289; 1.7310 IX Males 1.19600 0.641790 0.0005 0.8995; 1.5690 2.70990 0.836270 **** 2.2630; 3.1940 Females -0.97553 -0.262960 0.406 -1.7080; 2.6140 1.02260		Females	0.49559	0.074484	0.8421	-1.2560; 1.4010	1.07280	0.916670	***	0.9190; 1.2640	
Females -0.45601 -0.077770 0.8245 -0.8710; 1.4290 1.02590 0.879440 **** 0.8348; 1.2660 VII Males 1.34630 0.727210 **** 0.9090; 1.7510 2.83610 0.916910 **** 2.5600; 3.1810 Females -0.44280 -0.023300 0.9504 -0.8681; 1.3760 0.95728 0.824990 **** 0.8010; 1.2830 VIII Males 1.27890 0.686200 0.0002 0.8871; 1.6360 2.56950 0.924410 **** 2.248; 2.9630 Females 0.56072 0.210630 0.5876 -0.9753; 1.6330 1.12210 0.613780 0.0013 0.8289; 1.7310 IX Males 1.19600 0.641790 0.0005 0.8995; 1.5690 2.70990 0.836270 **** 2.2630; 3.1940 K Males 1.07710 0.400380 0.0479 0.5625; 1.6440 1.06220 0.743030 **** 1.3390; 2.0690 Females -0.96886 -0.548470 0.1422 -2.400; 1.5710 1.28970	VI	Males	1.51620	0.764820	***	0.9724; 1.9400	2.99950	0.944720	***	2.8050; 3.2500	
VII Males 1.34630 0.727210 *** 0.9090; 1.7510 2.83610 0.916910 *** 2.5600; 3.1810 Females -0.44280 -0.023300 0.9504 -0.8681; 1.3760 0.95728 0.824990 **** 0.8010; 1.2830 VIII Males 1.27890 0.686200 0.0002 0.8871; 1.6360 2.56950 0.924410 **** 2.248; 2.9630 Females 0.56072 0.210630 0.5876 -0.9753; 1.6330 1.12210 0.613780 0.0013 0.8289; 1.7310 IX Males 1.19600 0.641790 0.0005 0.8995; 1.5690 2.70990 0.836270 **** 2.2630; 3.1940 Females -0.97553 -0.262960 0.406 -1.7080; 2.6140 1.02260 0.415650 0.0415 -0.9485; 1.4340 X Males 1.07710 0.400380 0.0479 0.5625; 1.6440 1.66220 0.743030 **** 1.3390; 2.0690 Females -0.96886 -0.548470 0.1422 -2.400; 1.5710 1.28970		Females	-0.45601	-0.077770	0.8245	-0.8710; 1.4290	1.02590	0.879440	***	0.8348; 1.2660	
Females -0.44280 -0.023300 0.9504 -0.8681; 1.3760 0.95728 0.824990 **** 0.8010; 1.2830 VIII Males 1.27890 0.686200 0.0002 0.8871; 1.6360 2.56950 0.924410 **** 2.248; 2.9630 Females 0.56072 0.210630 0.5876 -0.9753; 1.6330 1.12210 0.613780 0.0013 0.8289; 1.7310 IX Males 1.19600 0.641790 0.0005 0.8995; 1.5690 2.70990 0.836270 **** 2.2630; 3.1940 K Males 1.07710 0.400380 0.0479 0.5625; 1.6440 1.02260 0.415650 0.0415 -0.9485; 1.4340 X Males 1.07710 0.400380 0.0479 0.5625; 1.6440 1.66220 0.743030 **** 1.3390; 2.0690 Females -0.96886 -0.548470 0.1422 -2.400; 1.5710 1.28970 0.746940 **** 1.0500; 1.6130 XI Males 1.06410 0.671810 0.0004 0.8033; 1.3920 <td< td=""><td>VII</td><td>Males</td><td>1.34630</td><td>0.727210</td><td>***</td><td>0.9090; 1.7510</td><td>2.83610</td><td>0.916910</td><td>***</td><td>2.5600; 3.1810</td></td<>	VII	Males	1.34630	0.727210	***	0.9090; 1.7510	2.83610	0.916910	***	2.5600; 3.1810	
VIII Males 1.27890 0.686200 0.0002 0.8871; 1.6360 2.56950 0.924410 **** 2.248; 2.9630 Females 0.56072 0.210630 0.5876 -0.9753; 1.6330 1.12210 0.613780 0.0013 0.8289; 1.7310 IX Males 1.19600 0.641790 0.0005 0.8995; 1.5690 2.70990 0.836270 *** 2.2630; 3.1940 K Males 1.07710 0.400380 0.0479 0.5625; 1.6440 1.02260 0.743030 **** 1.3390; 2.0690 Females -0.96886 -0.548470 0.1422 -2.400; 1.5710 1.28970 0.746940 **** 1.0500; 1.6130 XI Males 1.06410 0.671810 0.0004 0.8033; 1.3920 2.27550 0.836560 **** 1.8510; 2.7770 Females -0.86524 -0.41590 0.2525 -2.3730; 0.7534 1.52600 0.665790 0.0001 1.1680; 2.0830 VL IV Males 1.24970 0.665430 **** 0.9291; 1.7370		Females	-0.44280	-0.023300	0.9504	-0.8681; 1.3760	0.95728	0.824990	***	0.8010; 1.2830	
Females 0.56072 0.210630 0.5876 -0.9753; 1.6330 1.12210 0.613780 0.0013 0.8289; 1.7310 IX Males 1.19600 0.641790 0.0005 0.8995; 1.5690 2.70990 0.836270 *** 2.2630; 3.1940 Females -0.97553 -0.262960 0.406 -1.7080; 2.6140 1.02260 0.415650 0.0415 -0.9485; 1.4340 X Males 1.07710 0.400380 0.0479 0.5625; 1.6440 1.66220 0.743030 *** 1.3390; 2.0690 Females -0.96886 -0.548470 0.1422 -2.400; 1.5710 1.28970 0.746940 **** 1.0500; 1.6130 XI Males 1.06410 0.671810 0.0004 0.8033; 1.3920 2.27550 0.836560 **** 1.8510; 2.7770 Females -0.86524 -0.41590 0.2525 -2.3730; 0.7534 1.52600 0.665790 0.0001 1.1680; 2.0830 VL IV Males 1.24970 0.665430 **** 0.9291; 1.7370 0.79050	VIII	Males	1.27890	0.686200	0.0002	0.8871; 1.6360	2.56950	0.924410	***	2.248; 2.9630	
IX Males 1.19600 0.641790 0.0005 0.8995; 1.5690 2.70990 0.836270 **** 2.2630; 3.1940 Females -0.97553 -0.262960 0.406 -1.7080; 2.6140 1.02260 0.415650 0.0415 -0.9485; 1.4340 X Males 1.07710 0.400380 0.0479 0.5625; 1.6440 1.66220 0.743030 **** 1.3390; 2.0690 Females -0.96886 -0.548470 0.1422 -2.400; 1.5710 1.28970 0.746940 **** 1.0500; 1.6130 XI Males 1.06410 0.671810 0.0004 0.8033; 1.3920 2.27550 0.836560 **** 1.8510; 2.7770 Females -0.86524 -0.41590 0.2525 -2.3730; 0.7534 1.52600 0.665790 0.0001 1.1680; 2.0830 VL IV Males 1.24970 0.665430 *** 0.9291; 1.7370 0.79050 0.705380 **** 0.6296; 0.9581 Females -0.62952 -0.237740 0.546 -1.3870; 1.7320 0.95457		Females	0.56072	0.210630	0.5876	-0.9753; 1.6330	1.12210	0.613780	0.0013	0.8289; 1.7310	
Females -0.97553 -0.262960 0.406 -1.7080; 2.6140 1.02260 0.415650 0.0415 -0.9485; 1.4340 X Males 1.07710 0.400380 0.0479 0.5625; 1.6440 1.66220 0.743030 *** 1.3390; 2.0690 Females -0.96886 -0.548470 0.1422 -2.400; 1.5710 1.28970 0.746940 *** 1.0500; 1.6130 XI Males 1.06410 0.671810 0.0004 0.8033; 1.3920 2.27550 0.836560 **** 1.8510; 2.7770 Females -0.86524 -0.41590 0.2525 -2.3730; 0.7534 1.52600 0.665790 0.0001 1.1680; 2.0830 VL IV Males 1.24970 0.665430 *** 0.9291; 1.7370 0.79050 0.705380 *** 0.6296; 0.9581 Females -0.62952 -0.237740 0.546 -1.3870; 1.7320 0.95457 0.932760 *** 0.8309; 1.0880 VL V Males 1.26970 0.484400 0.0123 0.6120; 1.9140 0.88102	IX	Males	1.19600	0.641790	0.0005	0.8995; 1.5690	2.70990	0.836270	***	2.2630; 3.1940	
X Males 1.07710 0.400380 0.0479 0.5625; 1.6440 1.66220 0.743030 *** 1.3390; 2.0690 Females -0.96886 -0.548470 0.1422 -2.400; 1.5710 1.28970 0.746940 *** 1.0500; 1.6130 XI Males 1.06410 0.671810 0.0004 0.8033; 1.3920 2.27550 0.836560 *** 1.8510; 2.7770 Females -0.86524 -0.41590 0.2525 -2.3730; 0.7534 1.52600 0.665790 0.0001 1.1680; 2.0830 VL IV Males 1.24970 0.665430 *** 0.9291; 1.7370 0.79050 0.705380 *** 0.6296; 0.9581 Females -0.62952 -0.237740 0.546 -1.3870; 1.7320 0.95457 0.932760 *** 0.8309; 1.0880 VL V Males 1.26970 0.484400 0.0123 0.6120; 1.9140 0.88102 0.814830 *** 0.6817; 1.0890 Females -1.07080 -0.285230 0.3561 -2.9930: 1 1460 0.85026		Females	-0.97553	-0.262960	0.406	-1.7080; 2.6140	1.02260	0.415650	0.0415	-0.9485; 1.4340	
Females -0.96886 -0.548470 0.1422 -2.400; 1.5710 1.28970 0.746940 *** 1.0500; 1.6130 XI Males 1.06410 0.671810 0.0004 0.8033; 1.3920 2.27550 0.836560 *** 1.8510; 2.7770 Females -0.86524 -0.41590 0.2525 -2.3730; 0.7534 1.52600 0.665790 0.0001 1.1680; 2.0830 VL IV Males 1.24970 0.665430 *** 0.9291; 1.7370 0.79050 0.705380 *** 0.6296; 0.9581 Females -0.62952 -0.237740 0.546 -1.3870; 1.7320 0.95457 0.932760 *** 0.8309; 1.0880 VL V Males 1.26970 0.484400 0.0123 0.6120; 1.9140 0.88102 0.814830 *** 0.6817; 1.0890 Females -1.07080 -0.285230 0.3561 -2.9930; 11460 0.85026 0.925360 *** 0.7052; 0.9477	Х	Males	1.07710	0.400380	0.0479	0.5625; 1.6440	1.66220	0.743030	***	1.3390; 2.0690	
XI Males 1.06410 0.671810 0.0004 0.8033; 1.3920 2.27550 0.836560 *** 1.8510; 2.7770 Females -0.86524 -0.41590 0.2525 -2.3730; 0.7534 1.52600 0.665790 0.0001 1.1680; 2.0830 VL IV Males 1.24970 0.665430 *** 0.9291; 1.7370 0.79050 0.705380 *** 0.6296; 0.9581 Females -0.62952 -0.237740 0.546 -1.3870; 1.7320 0.95457 0.932760 *** 0.8309; 1.0880 VL V Males 1.26970 0.484400 0.0123 0.6120; 1.9140 0.88102 0.814830 *** 0.6817; 1.0890 Females -1.07080 -0.285230 0.3561 -2.9930; 11460 0.85026 0.925360 *** 0.7052; 0.9477		Females	-0.96886	-0.548470	0.1422	-2.400; 1.5710	1.28970	0.746940	***	1.0500; 1.6130	
Females -0.86524 -0.41590 0.2525 -2.3730; 0.7534 1.52600 0.665790 0.0001 1.1680; 2.0830 VL IV Males 1.24970 0.665430 *** 0.9291; 1.7370 0.79050 0.705380 *** 0.6296; 0.9581 Females -0.62952 -0.237740 0.546 -1.3870; 1.7320 0.95457 0.932760 *** 0.8309; 1.0880 VL V Males 1.26970 0.484400 0.0123 0.6120; 1.9140 0.88102 0.814830 *** 0.6817; 1.0890 Females -1.07080 -0.285230 0.3561 -2.9930; 1.1460 0.85026 0.925360 *** 0.7052; 0.9477	XI	Males	1.06410	0.671810	0.0004	0.8033; 1.3920	2.27550	0.836560	***	1.8510; 2.7770	
VL IV Males 1.24970 0.665430 *** 0.9291; 1.7370 0.79050 0.705380 *** 0.6296; 0.9581 Females -0.62952 -0.237740 0.546 -1.3870; 1.7320 0.95457 0.932760 *** 0.8309; 1.0880 VL V Males 1.26970 0.484400 0.0123 0.6120; 1.9140 0.88102 0.814830 *** 0.6817; 1.0890 Females -1.07080 -0.285230 0.3561 -2.9930; 1 1460 0.85026 0.925360 *** 0.7052; 0 9477		Females	-0.86524	-0.41590	0.2525	-2.3730; 0.7534	1.52600	0.665790	0.0001	1.1680; 2.0830	
Females -0.62952 -0.237740 0.546 -1.3870; 1.7320 0.95457 0.932760 *** 0.8309; 1.0880 VL V Males 1.26970 0.484400 0.0123 0.6120; 1.9140 0.88102 0.814830 *** 0.6817; 1.0890 Females -1.07080 -0.285230 0.3561 -2.9930; 1.1460 0.85026 0.925360 *** 0.7052; 0.9477	VL IV	Males	1.24970	0.665430	***	0.9291; 1.7370	0.79050	0.705380	***	0.6296; 0.9581	
VL V Males 1.26970 0.484400 0.0123 0.6120; 1.9140 0.88102 0.814830 *** 0.6817; 1.0890 Females -1.07080 -0.285230 0.3561 -2.9930: 1.1460 0.85026 0.925360 *** 0.7052: 0.9477		Females	-0.62952	-0.237740	0.546	-1.3870; 1.7320	0.95457	0.932760	***	0.8309; 1.0880	
Females -1.07080 -0.285230 0.3561 -2.9930 1.1460 0.85026 0.925360 *** 0.7052 0.9477	VL V	Males	1.26970	0.484400	0.0123	0.6120; 1.9140	0.88102	0.814830	***	0.6817; 1.0890	
		Females	-1.07080	-0.285230	0.3561	-2.9930; 1.1460	0.85026	0.925360	***	0.7052; 0.9477	

ZOOLOGIA 31 (1): 51-62, February, 2014

Massures	S. platy	yrhinus	H. prasinata			
Measures	PC1	PC2	PC1	PC2		
RL1	-0.544	-0.114	0.135	-0.183		
RAW	-0.150	-0.240	0.108	-0.182		
MW1R	0.015	-0.318	*	*		
MW2R	-0.353	-0.225	*	*		
RBW	-0.375	-0.213	0.095	-0.214		
HW	-0.156	-0.222	0.079	-0.200		
PL	-0.098	-0.229	0.124	-0.178		
PW	-0.153	-0.248	0.100	-0.206		
EL	-0.127	-0.234	0.110	-0.191		
EW	-0.156	-0.259	0.091	-0.207		
MEW	-0.027	-0.126	0.073	-0.148		
DIS	-0.295	-0.224	0.088	-0.210		
IEW	-0.199	-0.204	0.115	-0.199		
II	-0.076	-0.052	0.398	-0.096		
III	-0.401	0.066	0.565	-0.009		
IV	-0.551	0.158	0.613	-0.027		
V	-0.600	0.174	1.018	0.087		
VI	-0.583	0.187	0.845	0.048		
VII	-0.561	0.211	0.864	0.104		
VIII	-0.459	0.157	0.815	0.115		
IX	-0.227	0.043	0.583	0.010		
Х	-0.102	0.018	0.308	-0.109		
XI	-0.174	0.011	0.554	-0.045		
VL IV	-0.030	0.117	-0.002	-0.199		
VL V	0.037	-0.134	-0.056	-0.235		

Table V. Loadings of the morphometric variables in the first two components of the Principal Components Analysis (PCA). Variables not measured marked with an asterisk.

antenna of males of some Anthribinae. Also, MERMUDES (2005) used a relationship between the length of ventrites IV and V to distinguish between males and females of *Hypselotropis* Jekel, 1855. Our results here show that ventrite V is always longer than ventrite IV in both males and females of *H. prasinata*. This differs from the opinion of MERMUDES (2005) who believes that ventrite V in males is always slightly shorter than ventrite IV. However, our results confirmed this relationship for females. The large number of variables with values also tested by PCA and CVA (Figs 15-17) suggest that there is marked sexual dimorphism in some structural characters that had not been previously investigated.

The multivariate analysis (PCA) indicated that two relatively discrete groups of males of *S. platyrhinus* exist with respect to size (major males, minor males and females, Fig. 15), which was confirmed by CVA (Fig. 17), revealing the presence of polyphenism in males of this species. The analysis suggested that the allometric component contributes to the differentiation of groups, but there is no evidence of polyphenism in males of *H. prasinata* (Fig. 16), rejecting, at least in this analysis, the hypothesis of size polyphenism in this species.

ZOOLOGIA 31 (1): 51-62, February, 2014

Figures 15-17. (15-16) Principal Components Analysis (PCA) for: (15) *S. platyrhynus*: females (\bullet), major males (\bullet), and minor males (light gray); (16) *H. prasinata*: females (\bigcirc) and males (\bullet); (17) Canonical Variate Analysis (CVA) of *S. platyrhinus*: females (\bullet), major males (\bullet), and minor males (\bigcirc).

Considering together all the results on allometry and sexual dimorphism, we conclude that, in the case of *S. platyrhinus*, the dimensions of the rostrum, antennal segments, and ventrites IV and V indicate that sexual dimorphism is in place, as previously suggested by MERMUDES (2002). Traits that exhibited positive allometry are a strong indication of sexual dimorphism (EMLEN 1996, MOCZEK *et al.* 2002, MATSUO 2005, MOCZEK 2006). It is worth noting that the variables with positive allometry in *S. platyrhinus* are at the anterior part of body (rostrum and frons). In this species, the rostrum and forehead are vertical (hypognathous), providing evidence that such structures are subject to sexual selection and are probably associated with male fighting, similar to the condition found in *Exechesops leucopis*.

Despite the fact that we have analyzed only two species, our results emphasize allometric patterns in structures with sexual dimorphism that can be highly variable within *S. platyrhynus* males. Almost all species of Anthribidae that show sexual dimorphism lack structures known as weapons (e.g., horns). Polyphenism in males was also found to be present in *S. platyrhinus*, making it possible to infer that many traits related to dimorphism could play a role in tactical alternatives that minor males developed when confronted with major males, as reported by HOWDEN (1992), YOSHITAKE & KAWASHIMA (2004), and MATSUO (2005).

Initially, the allometric variation could be derived from either behavioral differences between major or minor males or from a threshold size to developing weapons (horns or mandibles) with exaggerated sizes (Moczek & Emlen 2000, Moczek *et al.* 2002, YOSHITAKE & KAWASHIMA 2004, MATSUO 2005). In males of some species of Anthribidae (which do not have horns = weapons), sexually dimorphic traits exhibit positive allometry with body size, whereas isometry or negative allometry is detected when sexually monomorphic traits are considered (or which are not associated with dimorphism) (MATSUO 2005).

The behavioral relationship involves male-male competition for females, but it does not eliminate the interactions between minor males when they meet, as well as alternative tactics developed by minor males to copulate (EMLEN 1994, MOCZEK *et al.* 2002, MATSUO 2005, TOMKINS & MOCZEK 2009).

Finally, it is possible that the morphological patterns of Anthribidae are linked to the protection of the female, which is secured by males during oviposition, and that a relationship between reproductive behavior and alternative morphologies exists (as noted by HOWDEN 1992). This behavioral pattern can be elucidated in further studies on *S. platyrhinus*.

ACKNOWLEDGMENTS

We are grateful to the curators who made material available and to two anonymous reviewers for comments. This research was partially supported by grants from CNPq (processes 470980/2011-7, 475461/2007, and 312357/2006), FAPERJ (processes 101.476/2010 and 100.927/2011), and Programa de Pós-Graduação em Biociências da Universidade do Estado do Rio de Janeiro.

LITERATURE CITED

- CLARK, J.T. 1977. Aspects of variation in the stag beetle *Lucanus cervus* (L.) (Coleoptera: Lucanidae). Systematic Entomology 2: 9-16. doi: 10.1111/j.1365-3113.1977.tb00350.x.
- COOK, D. 1987. Sexual selection in dung beetles. I. A multivariate study of the morphological variation in two species of *Onthophagus* (Scarabaeidae: Onthophagini). Australian Journal of Zoology 35: 123-132. doi: 10.1071/ZO9870123.
- EBERHARD, W.G. 1980. Horned beetles. Scientific American 242: 166-182.
- EBERHARD, W.G. & E.E. GUTIÉREZ. 1991. Morphometric Variability in Continental and Atlantic Island Populations of Chaffinches *Fringilla coelebs*. **Evolution** 45 (1): 29-39.
- EBERHARD, W.G.; B.A. HUBER; R.L. RODRIGUEZ; R.D. BRICENO; I. SALAS & V. RODRIGUEZ. 1998. One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution 52: 415-431.
- EMLEN, D.J. 1994. Environmental control of horn length dimorphism in the beetle *Onthophagus acuminatus* (Coleoptera: Scarabaeidae). Proceedings of the Royal Society B. 256: 131-136. doi: 10.1098/rspb.1994.0060.
- EMLEN, D.J. 1996. Artificial selection on horn length-body size allometry in the horned beetle *Onthophagus acuminatus* (Coleoptera:Scarabaeidae). Evolution 50: 1219-1230.
- EMLEN, D.J. 2008. The evolution of animal weapons. Annual Review of Ecology and Systematics 39: 387-413. doi: 10.1146/annurev.ecolsys.39.110707.173502.
- EMLEN, D.J. & H.F. NIJHOUT. 2000. The Development and Evolution of Exaggerated Morphologies in Insects. Annual Review of Entomology 45: 661-708. doi: 10.1146/ annurev.ento.45.1.661.
- EMLEN, D.J.; J. HUNT & L.W. SIMMONS. 2005. Evolution of sexual dimorphism and male dimorphism in the expression of beetle horns: phylogenetic evidence for modularity, evolutionary lability, and constraint. The American Naturalist 166 (Suppl.): S42-S68.
- EMLEN, D.J.; L.C. LAVINE & B. EWEN-CAMPEN. 2007. On the origin and evolutionary diversification of beetle horns. **Proceedings** of the National Academy of Sciences 104: 8661-8668.
- GOLDSMITH, S.K. 1985. Male Dimorphism in *Dendrobias* mandibularis Audinet-Serville (Coleoptera: Cerambycidae).
 Journal of the Kansas Entomological Society 58: 534-538.
- GOULD, S.J. 1966. Allometry and size in ontogeny and phylogeny. **Biological Reviews 41**: 587-640. doi: 10.1111/ j.1469-185X.1966.tb01624.x
- HAMMER, O. 2002. Morphometrics brief notes50p. Available at http://folk.uio.no/ohammer/past/morphometry.pdf [Accessed: February 2014].

ZOOLOGIA 31 (1): 51-62, February, 2014

- HAMMER, O.; D.A.T. HARPER & P.D. RVAN. 2001. Past: Palaeontological Statistics Software Package for Education and Data Analysis. Palaeontological Electronica 4 (1): 9p. Available online at: http://palaeo-electronica.org/2001_1/past/past.pdf [Accessed: March 2011].
- HOLLOWAY, B.A. 1982. Anthribidae (Insecta: Coleoptera). Fauna of New Zealand 3. Wellington, DSIR, 269p.
- HOWDEN, A.T. 1992. Oviposition Behavior and Associated Morphology of the Neotropical Anthribid *Ptychoderes rugicollis* Jordan (Coleoptera: Anthribidae). Coleopterists Bulletin 46: 20-27.
- HOWDEN, A.T. 1995. Structures related to oviposition in Curculionoidea. Memoirs of the Entomological Society of Washington 14: 53-100.
- HUXLEY, J.S. 1932. Problems of relative growth. London, Methuen, 276p.
- HUXLEY, J.S. 1950. Relative growth and form transformation. Proceedings of the Royal Society London 137: 465-469. doi:10.1098/rspb.1950.0055.
- KAWANO, K. 2000. Genera and Allometry in the Stag Beetle Family Lucanidae, Coleoptera. Annals of the Entomological Society of America 93: 198-207. doi: http://dx.doi.org/10.1603/0013-8746(2000)093[0198:GAAITS]2.0.CO;2.
- KAWANO, K. 2006. Sexual Dimorphism and the Making of Oversized Male Characters in Beetles (Coleoptera). Annals of the Entomological Society of America 99: 327-341. doi: doi: http://dx.doi.org/10.1603/0013-8746(2006)099[0327: SDATMO]2.0.CO;2.
- MATSUO, Y. 2005. Extreme Eye Projection in the Male Weevil *Exechesops leucopis* (Coleoptera: Anthribidae): Its Effects on Intrasexual Behavioral Interferences. Journal of Insect Behavior 18: 465-477. doi: 10.1007/s10905-005-5605-y.
- MERMUDES, J.R.M. 2002. Systaltocerus platyrhinus Labram & Imhoff, 1840: redescrições e considerações sobre a sinonímia com Homalorhamphus vestitus Haedo Rossi & Viana, 1957 (Coleoptera, Anthribidae, Anthribinae). Revista Brasileira de Entomologia 46: 579-590. doi: http://dx.doi.org/ 10.1590/S0085-56262002000400013.
- MERMUDES, J.R.M. 2005. Revisão sistemática, análise cladística e biogeografia dos gêneros *Tribotropis e Hypselotropis* (Coleoptera, Anthribidae, Anthribinae, Ptychoderini). Revista Brasileira de Entomologia 49: 465-511. doi: http://dx.doi.org/ 10.1590/S0085-56262005000400009.
- MERMUDES, J.R.M. & D.S. Napp. 2006. Revision and cladistic analysis of the genus *Ptychoderes* Schoenherr, 1823 (Coleoptera, Anthribidae, Anthribinae, Ptychoderini) Zootaxa 1182: 1-130.
- MERMUDES, J.R.M. & I. MATTOS. 2010. Description of Males of *Ptychoderes brevis* and *Ptychoderes jekeli*, with a cladistical reanalysis of *Ptychoderes* (Coleoptera: Anthribidae). Annals of the Entomological Society of America 105: 523-531. doi: http://dx.doi.org/10.1603/AN10016.
- MERMUDES, J.R.M. & J.M.S. RODRIGUES. 2010. Description of two new species of *Hypselotropis* Jekel with a revised key and

phylogenetic reanalysis of the genus (Coleoptera, Anthribidae, Anthribinae). **Zootaxa 2575**: 49-62.

- MOCZEK, A.P. 2006. A matter of measurements: challenges and approaches in the comparative analysis of static allometries. **American Naturalist 167**: 606-611.
- MOCZEK, A.P. & D.J. EMLEN. 2000. Male horn dimorphism in the scarab beetle, *Onthophagus taurus*: do alternative reproductive tactics favour alternative phenotypes? Animal Behaviour 59: 459-466. doi: 10.1006/anbe.1999.1342.
- MOCZEK, A.P.; J. HUNT; D.J. EMLEN & L.W. SIMMONS. 2002. Threshold evolution in exotic populations of a polyphenic beetle. Evolutionary Ecology Research 4: 587-601.
- OKSANEN, J.; F.G. BLANCHET; R.P. LEGENDRE; P.R. MINCHIN; R.B. O'HARA; G.L. SIMPSON; P. SOLYMOS; M.H.H. STEVENS & H. WAGNER. 2013. Vegan: Community Ecology Package. R package version 2.0-7. Available online at: http://cran.r-project.org/ web/packages/vegan/index.html [Accessed: July 2013]
- Posadas, P.; E. Ortiz-JAUREGUIZAR & M.E. PÉREZ. 2007. Dimorfismo sexual y variación morfométrica geográfica en *Hybreoleptops aureosignatus* (Insecta: Coleoptera: Curculionidae). **Anales de la Academia** *Nacional* **de Ciencias Exactas**, Físicas y Naturales 59: 141-150.
- R CORE TEAM. 2013. R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available online at: http://www.R-project.org/ [Accessed: July 2013]
- SCHLAGER, S. 2013. Morpho: Calculations and visualizations related to Geometric Morphometrics. R package version 0.25. Available at http://sourceforge.net/projects/morphorpackage [Accessed: July 2013]
- SHIOKAWA, T. & O. IWAHASHI. 2000. Mandible dimorphism in males of a stag beetle, *Prosopocoilus dissimilis okinawanus* (Coleoptera: Lucanidae). *Applied Entomology* and Zoology 35 (4): 487-494. doi: 10.1303/aez.2000.487.
- SLIPINSKI, S.A.; R.A.B. LESCHEN & J.F. LAWRENCE. 2011. Order Coleoptera Linnaeus, 1758. *In*: Z.Q. ZHANG (Ed.). Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. **Zootaxa 3148**: 203-208.
- THOMPSON, G.H. 1963. Forest Coleoptera of Ghana. Biological notes and host trees. Oxford, Forestry Memoirs 24, 78p.
- TOMKINS, J.L.; J.S. KOTIAHO & N.R. LEBAS. 2005. Matters of scale: Positive allometry and the evolution of male dimorphisms. American Naturalist 165: 389-402.
- TOMKINS J.L. & A.P. MOCZEK. 2009. Patterns of threshold evolution in polyphenic insects under different developmental models. **Evolution 62**: 459-468. doi: 10.1111/j.1558-5646.2008. 00563.x.
- VALENTIN, J.L. 2000. Ecologia numérica: Uma introdução à análise multivariada de dados ecológicos. Rio de Janeiro, Interciência, 117p.
- YOSHITAKE, H. & I. KAWASHIMA. 2004. Sexual Dimorphism and Agonistic Behavior of *Exechesops leucopis* (Jordan) (Coleoptera: Anthribidae: Anthribinae). The Coleopterists Bulletin 58: 77-83.

S. platyrhinus							Н	. prasinat	а					
Measures		Males			Female	25			Males	5		Female	s	.
	Mean	SD	Variance	Mean	SD	Variance	- I test	Mean	SD	Variance	Mean	SD	Variance	- I test
RL1	0.54	0.13	0.02	0.41	0.06	0.00	0.0091	0.45	0.01	0.07	0.44	0.01	0.09	0.4807
RAW	0.21	0.08	0.01	0.23	0.04	0.00	0.3405	0.26	0.12	0.34	0.21	0.01	0.08	0.6784
MW1R	0.03	0.12	0.01	0.16	0.03	0.00	0.0041	-	-	-	-	-	-	-
MW2R	0.30	0.11	0.01	0.23	0.04	0.00	0.1091	-	-	-	-	-	-	-
RBW	0.38	0.10	0.01	0.31	0.05	0.00	0.0688	0.09	0.01	0.08	0.12	0.01	0.08	0.2619
HW	0.30	0.07	0.01	0.32	0.05	0.00	0.4375	0.26	0.00	0.06	0.29	0.01	0.08	0.1792
PL	0.31	0.07	0.00	0.34	0.10	0.01	0.2870	0.55	0.00	0.07	0.55	0.01	0.08	0.7185
PW	0.37	0.07	0.01	0.40	0.04	0.00	0.3047	0.49	0.00	0.07	0.51	0.01	0.09	0.4486
EL	0.65	0.06	0.00	0.68	0.04	0.00	0.3094	0.91	0.00	0.07	0.91	0.01	0.08	0.8098
EW	0.42	0.07	0.01	0.45	0.05	0.00	0.2969	0.58	0.00	0.07	0.60	0.01	0.09	0.3034
MEW	-0.03	0.06	0.00	0.02	0.04	0.00	0.0231	0.08	0.00	0.05	0.09	0.00	0.07	0.6900
DIS	0.11	0.14	0.02	0.05	0.05	0.00	0.2983	0.09	0.01	0.08	0.11	0.01	0.08	0.2525
IEW	0.09	0.09	0.01	0.09	0.06	0.00	0.8413	0.07	0.01	0.08	0.07	0.01	0.08	0.8187
Ш	-0.56	0.12	0.01	-0.60	0.10	0.01	0.4182	-0.18	0.02	0.13	-0.36	0.01	0.08	***
Ш	-0.05	0.12	0.01	-0.35	0.11	0.01	***	0.13	0.02	0.13	-0.19	0.01	0.08	***
IV	0.02	0.12	0.01	-0.41	0.04	0.00	***	0.08	0.02	0.15	-0.25	0.01	0.09	***
V	0.06	0.11	0.01	-0.40	0.05	0.00	***	0.14	0.18	0.43	-0.33	0.01	0.09	***
VI	0.04	0.10	0.01	-0.42	0.05	0.00	***	0.09	0.04	0.21	-0.39	0.01	0.08	***
VII	0.01	0.09	0.01	-0.49	0.04	0.00	***	0.09	0.04	0.20	-0.42	0.01	0.08	***
VIII	-0.07	0.09	0.01	-0.49	0.06	0.00	***	0.07	0.03	0.18	-0.41	0.01	0.09	***
IX	-0.23	0.08	0.01	-0.44	0.10	0.01	***	-0.05	0.03	0.19	-0.35	0.01	0.08	***
Х	-0.47	0.07	0.01	-0.61	0.10	0.01	0.0002	-0.48	0.01	0.11	-0.61	0.01	0.10	***
XI	-0.28	0.07	0.01	-0.42	0.09	0.01	***	-0.09	0.02	0.16	-0.39	0.02	0.12	***
VL_IV	-0.40	0.09	0.01	-0.34	0.06	0.00	0.0725	-0.22	0.00	0.05	-0.15	0.01	0.08	0.0002
VL_V	-0.36	0.09	0.01	-0.23	0.11	0.01	0.0010	-0.10	0.00	0.06	0.02	0.00	0.07	***

Appendix 1. Mean, standard deviations, and variance measures of morphological characters of males and females of *S. platyrhinus* and *H. prasinata*. The result of the independent T test for sexual dimorphism is also shown. (***) for $p \le 0.0001$.

Appendix 2. Mean, standard deviations, and variance measures of the morphology of major males and minor males of *S. platyrhinus*. The result of T test for independent polyphenism in males is also shown. (***) for $p \le 0.0001$.

		Major Males			Minor Males		These
Measures –	Mean	Variance	SD	Mean	Variance	SD	- I test
RL1	4.17	0.43	0.65	2.67	0.45	0.67	***
RAW	1.78	0.05	0.21	1.37	0.04	0.19	0.0002
MW1R	1.17	0.07	0.27	0.99	0.04	0.20	0.1450
MW2R	2.29	0.15	0.38	1.60	0.10	0.31	0.0002
RBW	2.74	0.13	0.36	1.94	0.16	0.39	***
HW	2.20	0.05	0.22	1.71	0.05	0.21	***
PL	2.21	0.05	0.23	1.79	0.07	0.26	0.0002
PW	2.59	0.06	0.24	2.06	0.10	0.32	***
EL	4.88	0.16	0.40	3.92	0.20	0.45	***
EW	2.86	0.08	0.28	2.29	0.14	0.37	***
MEW	0.99	0.01	0.11	0.87	0.01	0.10	0.0109
DIS	1.50	0.16	0.40	1.06	0.07	0.26	0.0108
IEW	1.41	0.03	0.17	1.02	0.03	0.18	***
П	0.31	0.01	0.11	0.24	0.00	0.05	0.0181
111	1.01	0.05	0.23	0.77	0.02	0.14	0.0195
							Continues

		Major Males			Minor Males		T 4 4
Measures	Mean	Variance	SD	Mean	Variance	SD	- I test
IV	1.19	0.04	0.19	0.87	0.05	0.23	0.0013
V	1.30	0.02	0.14	0.94	0.05	0.23	***
VI	1.25	0.01	0.09	0.91	0.05	0.23	***
VII	1.15	0.01	0.09	0.86	0.04	0.19	***
VIII	0.96	0.01	0.11	0.73	0.02	0.14	***
IX	0.63	0.01	0.10	0.52	0.01	0.09	0.0129
Х	0.36	0.00	0.06	0.32	0.00	0.04	0.2229
XI	0.57	0.01	0.08	0.48	0.01	0.08	0.0132
VL_IV	0.44	0.01	0.07	0.34	0.00	0.05	0.0011
VL_V	0.47	0.01	0.11	0.40	0.01	0.07	0.0460

Appendix 2. Continued.

Submitted: 05.IV.2013; Accepted: 22.XII.2013.

Editorial responsibility: Gabriel L.F. Mejdalani