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ABSTRACT. This contribution endeavored to investigate the genetic structure and gene flow of the flood mosquito, Aedes
vexans (Meigen, 1830). Using partial sequences of the mitochondrial COI gene, available from BOLD Systems and GenBank,
the Haplotypic (Hd) and nucleotide (@) gene diversity, genetic structuring and gene flow of A. vexans at the global, conti-
nental, and country levels were calculated. In total, 1,184 sequences were obtained, distributed among America (88.60%;
represented by EUA and Canada), Europe (7.35%), Asia (3.89%), and Africa (0.17%). From these, 395 haplotypes (H) with-
out presence of pseudogenes (NUMTs) were detected. The cluster analyses grouped the haplotypes into six clades. Clade
I includes haplotypes from countries in America and Europe, while clades Il and Ill include haplotypes exclusively from Asia
and Europe; clade IV grouped only one haplotype from Africa and clade V grouped haplotypes from America and Africa. The
global Hd and @ were 0.92 and 0.01, respectively. In addition, there is evidence of genetic structuring among continents
(7.07%), countries (1.62%), and within countries (91.30%; F,. = 0.08, p < 0.05) and no isolation by distance was detected
(r=0.003, p > 0.05). The genetic diversity of A. vexans was found to be greater in North America than in other continents.
Although this provisional conclusion might be influenced by a sample bias, since 88.60% of the sequences are from America,
is also plausible to consider that America corresponds to the ancestral distribution area of the flood mosquito. This hypothesis
needs further testing, using a more comprehensive sample from other continents. Additionally, the six clusters found and
their geographical distribution do not support previous proposals of splitting the genus into three subspecies confined to
certain geographical areas.

KEY WORDS. Cytochrome oxidase subunit I, genetic diversity, gene flow, genetic structuring, haplotypes, mitochondrial
DNA, pseudogenes, vector control.

INTRODUCTION 1977, Brust 1980, Nasci 1984). Although these mosquitoes are

more often found in rural zones, they also inhabit suburban
and urban areas. When humans are present in the environment,
flood mosquito females give preference to them for their blood
meals (Thompson and Dicke 1965, O’Donnell et al. 2017).
Based on morphological and molecular evidence, A. vexans
has been subdivided into three subspecies: Aedes vexans vexans

The flood mosquito, Aedes vexans (Meigen, 1830), is
present in the subtropical regions of all continents, except the
Antarctic (Reinert 1973, Johansen et al. 2005, Szalanski et al.
2006). In nature, this species can travel up to 17 km (Briegel et
al. 2001), and has invaded areas beyond its putative native range
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through air transport (Ward 1984, Joyce and Nakagawa 1963).
Like the females of other mosquitos of medical and veterinary
importance, flood mosquito females lay their eggs in moist sites
that are likely to flood (Strickman 1982). These eggs are very
resistant, and will stay viable for up to three years, waiting for
the optimal conditions to hatch (James and Harwood 1969). The
food source of the flood mosquito is nectar, but the female needs
mammal blood to complete the maturation of its ovaries (Edman
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(Meigen, 1830) from eastern Asia and Oceania, Aedes vexans
arabiensis (Patton, 1905) from Africa and Europe, and Aedes
vexans nipponii (Theobald, 1907) from southeast Asia (Reinert
1973, Reinert et al. 2004, Fall et al. 2012, Francuski et al. 2016,
Sanborn et al. 2019). The vector competence of the flood mos-
quito is 30 arboviruses. Among these viruses, some are important
to human public health, for instance the causal agents of West
Nile fever, Rift Valley fever, Saint Louis encephalitis and Eastern
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Equine encephalitis, as well as filarial nematodes (Turell et al.
2005, Ndiaye et al. 2016).

Understanding the structure patterns and gene flow of the
populations of A. vexans and other mosquitoes is important in
the development of more adequate vector control programs (Bal-
dacchino et al. 2015). Another important aspect to investigate
is the transmission of pathogens to humans, and the resistance
these insects develop to insecticides (Becker and Ludwig 1993,
Dunbar et al. 2018). For example, a population genetic study
was carried out in two locations in Queensland (Australia), to
determine the viability of releasing Aedes aegypti (Linnaeus,
1762) infected with Wolbachia pipientis Hertig, 1936 to control
the transmission of the dengue arbovirus. That study, concluded
that there were two partially isolated populations (Endersby et
al. 2009, 2011). Based in those findings, mosquitos infected
with W. pipientis were released on the two populations, and the
transmission of the dengue virus was successfully suppressed
(Hoffmann et al. 2011).

Molecular markers are widely used to understand the bi-
ology and population dynamics of arbovirus vectors (Rasi¢ et al.
2014). Among the molecular markers used in population genetics
studies of mosquitoes is the mitochondrial DNA (mtDNA). It
has several advantages over other genes: it is widely available,
is small, has simple genomic structure, rapid rate of evolution,
and is passed on exclusively by the females, with low genetic
recombination rates (Avise et al. 1987).

Since no previous study has analyzed the genetic infor-
mation available worldwide concerning the flood mosquito,
we endeavored to map the global mtDNA diversity and gene
flow of A. vexans, using sequences available on GenBank and
BOLD Systems.

MATERIAL AND METHODS

A GenBank search revealed that the mtDNA Cytochrome
oxidase subunit I (COI) gene was the most representative, and
because BOLD Systems is the official repository of COI, sequences
downloaded from there were also included here. The search
criteria in GenBank included two words Aedes vexans AND COI,
while for BOLD Systems only the species name, Aedes vexans,
was used. To confirm the identity of the species, the sequences
were analyzed using the BLAST tool in the NCBI website (http://
blast.ncbi.nlm.nih.gov/Blast.cgi). Only sequences that matched
A. vexans sequences at 98-100% match with were used in our
analysis. The selected sequences were separated according to the
continent and country of origin. In addition, geographic data
were extracted for each sequence, to geo-reference on a map;
sequences without geographic information were eliminated
from the analysis. These data were filtered and organized in the
RStudio platform using Bold packages version 0.9 (Chamberlain
2017) and Ape version 5.3 (Paradis and Schliep 2018).

The sequences were aligned using MAFFT version 7 (Katoh
and Standley 2013). Each haplotype (H) detected was numbered
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based on its frequency. For instance, the most frequent haplotype
was named H1, the second most frequent was named H2, and
so forth. To detect potential NUMTSs, we searched for additional
stop codons in the alignment (Haran et al. 2015). When a NUMT
was detected, the sequence was removed from the analysis. After
eliminating the sequences that were NUMTs, the haplotype
network was constructed by median-joining methods using
the Pegas package version 0.11 (Paradis 2010) in the Rstudio
platform (Rstudio Team 2020).

Diversity and neutrality were estimated using the DnaSP
program version 6.0 (Rozas et al. 2017). The analysis of molecular
variance (AMOVA) was conducted using the Arlequin program
version 3.5 (Excoffier and Lischer 2010), which evaluated the
genetic variation between populations in continents and coun-
tries. Population genetic structuring was tested using the fixation
index (F,) proposed by Wright (1921), and gene flow (Nm) was
calculated through the Arlequin program version 3.5 (Excoffier
and Lischer 2010) followed by the Bonferroni correction.

To test isolation by distance, the Mantel test was used to
estimate the correlation between genetic (F;) and geographic
(Km) distances, using the Vegan package version 2.5 (Oksanen
et al. 2017) on the Rstudio platform (Rstudio Team 2020).
Geographic distances were obtained from Google Earth. To
estimate the genetic affinity between A. vexans populations, a
clustering analysis was performed using maximum likelihood
(ML) and Bayesian inference (BI). For this, we initially searched
for the nucleotide substitution model that best fits our data in
the jModelTest program version 2.1.1, which selected the model
with the lowest value from the Akaike information criterion,
AIC (Darriba et al. 2012). Then, the model selected was used in
the ML and BI analyses. The ML analysis was conducted using
the RaxML software (Stamatakis 2006), under the following
parameters: ML+ thorough Bootstrap and 1,000 boot replicas.
In turn, the Bl analysis was conducted in the Mr.Bayes program
version 3.2.7, under the following parameters: number of gener-
ations = 2,000,000, with ¢ < 0.01 of the frequencies to indicate
robustness of the hypothesis (Ronquist et al. 2012). Visualization
and editing of the clusters obtained were carried out in Mr.Ent
version 2.5 (Zuccon and Zuccon 2014).

RESULTS

We obtained 2,420 sequences from the Bold System
(82.64%) and GenBank (17.35%) databases, distributed among
America (94.50%; represented by EUA and Canada), Europe
(3.68%), Asia (1.23%), and Africa (0.58%). The median length
of these sequences was 467 bp, varying between 114 and 879
bp. Nevertheless, after the alignment was completed, 1,184 se-
quences were selected, each 340 bp (the shorter sequences were
excluded and the longer ones were trimmed), all distributed
among the continents mentioned. Among the sequences that
had to be trimmed, most were from EUA and Canada (88.60%),
followed by Europe (7.35%), Asia (3.89%), and Africa (0.17%).
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Figures 1-2. Map (1) showing the origin of COI gene sequences for Aedes vexans, and haplotype network (2) based on COI sequences
showing the genetic relationship between populations. On the map (1), the circles indicate the location of the sequences used and the
arrows, the genetic relationships between the populations. In the haplotypes network (2), the size of the circles is proportional to the
haplotype frequency and each circle in color belongs to a haplotype that is respectively numbered; black docks represent ancestral hap-
lotypes. On the map (1) and in the haplotype network (2), the following colors, group the cluster observed on the network and in the
ML and Bl trees (see Figs 4, 5 for details): (®) America (Canada and USA) + Europe (Turkey); (®) Asia (China, India, Japan, Singapore and
South Korea); (©) Europe (Sweden and Belgium) + Asia (China); (') Eurasia (Romania, Sweden, Belgium, Russia, Kosovo, the Netherlands,
China, Spain, Germany, Iran, Austria and Hungary); (®) Africa (South Africa); (®) America (USA) + Africa (South Africa).
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The Americas were represented by sequences from Canada
(64.10%) and USA (24.49%). Europe was represented by Sweden
(2.87%), Belgium (1.35%), Spain (1.27%), Netherlands (0.84%),
Austria (1.35%), Germany (0.17%), Rumania (0.17%), Germa-
ny (0.17%), Kosovo (0.17%), Hungary (0.17%), and Turkey
(0.17%). Asia was represented by Japan (1.10%), China (1.10%),
Iran (0.59%), Russia (0.42%), Singapore (0.25%), South Korea
(0.25%), and India (0.17%). Finally, Africa was represented only
by South Africa (0.17%).

Table S1 (Supplementary material S1) shows the global
distribution of the haplotypes while the Table S2 (Supplemen-
tary material S2) shows that none of the them have NUMTs. In
total, 395 H were observed, with H1 being the most frequent
(24.58%), followed by H2 (7.77%), H3 (4.39%), H4 (3.38%),
HS (2.28%), H6-H11 ranging between 1.86% (H6) and 1.10%
(H11), and H112-H39S5 varying between 0.93% (H112) and

0.08% (H395). Although H1 was the most frequent, it was only
observed in Canada and the USA. Nevertheless, the haplotype
with the widest distribution was H7, present in eight countries:
Austria (11.76%), Belgium (17.64%), Hungary (11.76%), Kosovo
(5.88%), Netherlands (17.64%), Russia (5.88%), Spain (11.76%),
and Sweden (17.64%). Figures 1 and 2 displays the origin of the
genetic material extracted (Fig. 1), and the haplotype network
(Fig. 2). The highest Hd was found in America (EUA and Canada),
followed by Africa and Europe.

Table 1 shows, by continent and countries, the results of
Hd, = and the different neutrality tests. In general, the global
Hd was 0.92. Haplotypic diversity varied between 0.90 (Europe)
and 1.0 (Africa). The Hd by countries was between 0.0 (Austria,
Turkey, Hungary, Singapore, and India) and 1.0 (Germany, Koso-
vo, Rumania, Russia, South Korea, and South Africa). In turn,
the global @ was 0.01, varing between 0.005 (Europe) and 0.08

Table 1. Haplotype diversity (Hd), nucleotide diversity (w) and neutrality test results calculated for the flood mosquito, Aedes vexans, by

country and continent.

Genetic diversity

Neutrality tests

Countries by continent Number of sequences

Number of haplotypes Hd o] Tajimas’ D Fus's F
Africa 2 2 1 0.08511 N/A N/A
South Africa 2 2 1 0.08511 N/A N/A
...... S Sorers o . S eseras
Canada 759 191 0.90113 0.00518 -2.435669* -5.13490*

SA 0.93120 0.01088 -2.306334*

o 0.9HZS9 0.02135 (')‘.7167907'“““ o . 008 N
China 13 9 0.98717 0.02515 -0.0748804 -0.51062
South Korea 3 1 0.01176 N/A N/A
Iran 7 3 0.80952 0.00405 0.4024933 0.4229
India 2 1 0 0 N/A N/A
Japan 13 8 0.94871 0.01481 -0.3390129 -0.52121
Russia 4 1 0.00588 0.2734498 0.27834
Singapore 3 1 0 0 N/A N/A

...... Europe B so0es R oo, . s e
Germany 2 2 1 0.00294 N/A N/A
Austria 2 1 0 0 N/A N/A
Belgium 16 8 0.89166 0.01455 -116233 -0.48408
Spain 15 7 0.88571 0.00577 -1619073 -229068
Hungary 2 1 0.0000 0 N/A N/A
Kosovo 2 2 1 0.00294 N/A N/A
Netherlands 10 4 0.71111 0.00320 0.0964613 0.17394
Rumania 2 1 1 0.01176 N/A N/A
Sweden 34 12 0.95365 0.02759 1301434 0.12606
Turkey 2 1 0 0 N/A N/A

Total 1182 395 0.92853 0.01099 -2.208676* -5.22367*

N/A = Not available, *p < 0.05.

Table 2. Analysis of molecular variance (AMOVA) of populations of Aedes vexans at continental level, by countries, and within them.

Variation source d.f. Sum of Squares Variation components Variation percentage F, p - value’
Between continents 3 10.820 0.03508 Va 7.07 0.08697 0.04059+-0.00196
Between countries within continents 16 11.450 0.00804 Vb 1.62
Within countries 1164 526.956 0.45271 Vc 91.30
Total 1183 549.226 0.49584

*Value obtained from 10000 random permutations.
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Figures 4-5. Phylogenetic tree for Aedes vexans populations constructed from 395 haplotypes from the COI gene by using Bayesian In-
ference, Bl (4) and Maximum Likelihood, ML (5). The evolutionary history for both analyses was inferred by using the GTR + G model, as
suggested by jModelTest version 2.1.10. The Bl tree was obtained by using 2-million generations, while the ML used 1,000 replicas. For
Bl, the support of the branches is indicated by the subsequent probability values, while for ML the bootstrap values are shown. Numbers
in blue represent sequences from the A. nipponii subspecies. In both figures the colors below denote the continents and their respective
countries: (®) America (Canada and USA) + Europe (Turkey); (®) Asia (China, India, Japan, Singapore and South Korea); () Europe
(Sweden and Belgium) + Asia (China); (") Eurasia (Romania, Sweden, Belgium, Russia, Kosovo, the Netherlands, China, Spain, Germany,
Iran, Austria and Hungary); (®) Africa (South Africa); (®) America (USA) + Africa (South Africa).
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China, Spain, Germany, Iran, Austria, and Hungary (n = 31 H);
clade V, populations from South Africa (n = 1 H); and clade VI,
populations from USA and South Africa (n = 4 H). Similar results
were observed in the haplotype network (Fig. 2).

DISCUSSION

To our knowledge, this is the first study of the genetic
structure of A. vexans using the genetic information available
for the COI gene from the GenBank and Boldsystem databases
(as of April and May 2020). Both the haplotype network and the
clustering analysis recovered six clades; clade I grouped mosquito
populations from America (EUA and Canada) and Europe; clade
II, populations from Asia; clades III and IV, populations from
Europe and Asia; clade V, populations from Africa; and clade VI,
populations from America and Africa.

Aedes vexans has been previously subdivided into three
subspecies: A. vexans vexans, A. vexans arabiensis, and A. vexans
nipponii. Aedes vexans vexans has been reported from east Asia
and Oceania, A. vexans arabiensis from Africa and Europe, and
A. vexans nipponii from southeast Asia (Reinert 1973, Reinert et
al. 2004, Johansen et al. 2005, Cywinska et al. 2006, Fall et al.
2012, Francuski et al. 2016, Sanborn 2019). Our results support
neither the division of the genus into three subspecies, nor
their putative geographic distributions. Further investigations
including mitochondrial or nuclear genomes or some nuclear
genes, are necessary to test the monophyly of the proposed
subspecies (Lilja et al. 2018).

Haplotype diversity and the number of haplotypes were
higher in EUA and Canada (Hd = 0.97; H = 325, with 245 being
private haplotypes) than in other continents; for example,
Europe (Hd = 0.90; H = 39, with 27 being private haplotypes).
This result could be a function of sample bias, since 88.60% of
the haplotypes in our sample came from this region. Another
possible explanation, which needs further testing, is that North
America may be the ancestral distribution A. vexans. There
is evidence from other studies that genetic diversity is often
higher in areas where it a species is native (Gloria-Soria et al.
2016, Ruiling et al. 2018). However, more genetic data from the
other continents where A. vexans is presented are necessary to
test this hypothesis.

The F, between the populations of the flood mosquito
in the USA and Canada were more divergent among than the
F,, between populations of other two continents, Europe and
Asia (Table 3). Krtini¢ et al. (2013), analyzing natural A. vexans
populations from USA and Germany, found that these do not
share a common gene pool, and proposed that the geographic
barriers formed by the Atlantic and Pacific Oceans preclude gene
flow between the evolutionary lineages of A. vexans. However,
our results do not support this putative genetic isolation. Ad-
ditionally, for most populations, the results of the neutrality
tests, Tajima’s D and Fu'’s FS were negative (Table 1), suggesting
that these populations have experienced recent bottlenecks and
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population expansion (Zawani et al. 2014). This may be due to
recent vector-control initiates, followed by colonization events,
which are commonly observed in mosquitos of medical and
veterinary importance (Harris et al. 2010). Mosquito popula-
tions are targeted to elimination, to decrease the epidemiologic
transmission of the arboviruses they transmit (Ocampo and
Wesson 2004, Koou et al. 2014, Zhu et al. 2016). Subsequently,
mosquitoes from neighboring zones are able to re-colonize the
areas from which they had been mostly eliminated (Szalanski et
al. 2006, Monteiro et al. 2014, Diaz-Nieto et al. 2016).
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Table S2. Nucleotide diversity of the COI gene for Aedes vexans
populations. Mafft alignment to compare the haplotypes from
this study. The amino acid sequence translated is represented by
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ing codon. Invariable sites are indicated with points, contrary to
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