Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of *Aspergillus*, *Penicillium* and *Talaromyces* (Eurotiales) and the description of *P. vascosobrinhous* sp. nov.

Renan do Nascimento Barbosa1* (✉), Jadson Diogo Pereira Bezerra2 (✉), Ana Carla da Silva Santos1, 3, Roger Fagner Ribeiro Melo1 (✉), Jos Houbraken4, Neiva Tinti Oliveira1 (✉) and Cristina Maria de Souza-Motta1 (✉)

Received: December 26, 2019
Accepted: May 7, 2020

ABSTRACT

A literature-based checklist of species of *Aspergillus*, *Penicillium*, and *Talaromyces* recorded in the Brazilian tropical dry forest (Caatinga), the largest tropical dry forest region in South America, is provided. A total of 130 species (60 *Aspergillus*, 57 *Penicillium*, and 13 *Talaromyces*) are reported. Soil was the most common substrate, with 122 species records. Various reported species are well known in biotechnological processes. This checklist reflects the limited knowledge of fungal species in tropical dry environments. These data provide a good starting point for biogeographical studies on species of *Aspergillus*, *Penicillium*, and *Talaromyces* in dry environments worldwide. In addition, the new species *Penicillium vascosobrinhous* is introduced, an endophytic fungus isolated from cactus of the Caatinga forest in Brazil.

Keywords: ascomycetes, Aspergillaceae, biodiversity, conservation, Trichocomaceae

Introduction

Brazil harbors the largest biodiversity in the world, including biomes regarded as hotspots for the biological diversity assessment and conservation (Françoso et al. 2015; Frehse et al. 2016; Molotoks et al. 2018). Some vegetational types/biomes, and the extent of uniqueness in the ecological complexity it harbors, are exclusive to Brazil, such as the Atlantic Forest and the two Brazilian tropical dry forests named "Cerrado" and "Caatinga". The Brazilian semiarid is one of the most important dry landscapes in the world, with about 24 million people, equivalent about 12 % of the Brazilian population (Alvalá et al. 2019). The Caatinga forest is the largest tropical dry forest in South America, and it has a substantial diversity of plants (about 123 families are reported), mammals, fish, insects, amphibians, and recently its fungal diversity has been studied from several substrates and hosts (Leal et al. 2003; Maia et al. 2015; Silva et al. 2017). The climate in the Caatinga forest is semiarid with irregular rains and elevated temperatures. On a global scale, Caatinga is part of the seasonally dry tropical forests, a global biome that was not recognized by the scientific community as distinct until a few years ago (Santos et al. 2011).

Fungi can occupy almost every habitat on Earth, and like many other taxonomic groups, most of their diversity is found in the tropics (Aime & Brearley 2012). However, many substrates still need to be examined in order to improve the knowledge on the fungal biodiversity and functional
diversity, especially those that cannot be cultivated or that are little known (Blackwell 2011). According to Maia et al. (2015), the Brazilian fungal diversity is represented by 5,719 species, distributed over 1,246 genera and 102 orders. The Caatinga forest had 999 fungal species recorded, demonstrating an underexplored diversity when considering the fungal richness of endophytes, soil and plant decaying fungi (e.g. Fiúza et al. 2017; Leão-Ferreira et al. 2017; Gusmão et al. 2017; Barbosa et al. 2016; Bezerra et al. 2013; Cruz et al. 2013a). The Caatinga forest is Brazil’s only large ecological region that is not shared with any other country. For a long time, the biodiversity of Caatinga was underestimated, which resulted in decreased research funding when compared to other Brazilian ecoregions (Santos et al. 2011).

Aspergillus, Penicillium and Talaromyces (Eurotiales, Eurotiomycetes) are phenotypically diverse filamentous ascomycetes, encompassing species important to the environment and to several sectors of economy, such as biotechnology and medicine, causing significant social impacts (Tsang et al. 2018). Species of these genera are ubiquitous and can be found in several substrates, such as soil, vegetation, dung, as well as indoor and extreme environments (e.g. Visagie et al. 2014a; Yilmaz et al. 2014; Chen et al. 2016; Barbosa et al. 2016; 2018; Diao et al. 2018). Some of the most remarkable attempts in order to present a natural classification for these groups were presented by Houbraken & Samson (2011), Samson et al. (2011), Visagie et al. (2014a) and Yilmaz et al. (2014). The number of species described in these genera increased rapidly in the last decade (e.g. Gonçalves et al. 2011; Guinea et al. 2015; Hubka et al. 2015; Visagie et al. 2015; Chen et al. 2016; Houbraken et al. 2016; Yilmaz et al. 2016; Wang et al. 2017; Barbosa et al. 2018; Frisvad et al. 2019). However, many environments remain understudied and can house a large number of species to be discovered, especially in tropical regions (Hawksworth & Lücking 2017).

Fungi are rarely considered in conservation actions, and the conservation of microfungi is even less addressed, even though there is clear evidence that many of these species may be endangered as well (for further information see www.cybertruffle.org.uk/darwin-microfungi/). A major development in the fungal conservation world happened with the launch of the Global Fungal Red Data List Initiative (see http://iucn.ekoo.se/en/iucn/welcome). Biodiversity checklists are main steps in providing relevant biodiversity information for planning applications. Although the inventory of fungi and fungus-like organisms lag behind those of animals and plants, the list is crucial for conservation, considering major threats, such as habitats’ fragmentation, degradation (pollution), exotic/invasive species and climate change (Heilmann-Clausen et al. 2015; Boddy 2015). It is particularly important to ensure the production of a check list of species adapted to dry environments, such Caatinga, aiming to allow comparison between regions, enabling identification and prioritization of threatened species and their habitats, as well as providing data for ecological/biogeographical predictive modeling of exotic species, both at the landscape level and hence, enable this knowledge to be effectively considered in overall global conservation strategies.

Considering the relevance of checklists as important tools in taxonomy, systematics and conservation, especially in poorly known biomes, this study aimed to summarize the records of Aspergillus, Penicillium and Talaromyces species/ names in the Caatinga tropical dry forest, by presenting an up to date list of valid species names, their substrate and distribution. This paper contributes to close the knowledge gaps of the fungal diversity of Caatinga. In addition, a new species of Penicillium is described here based on phenotypic and molecular data.

Materials and methods

Study area

For this list, recorded data were compared with the cities included in the Caatinga biome of Northeast region of Brazil. This region includes the territory of nine Brazilian states (Fig. 1): Alagoas, Bahia, Ceará, Maranhão, Paraíba, Pernambuco, Piauí, Rio Grande do Norte, and Sergipe, including the area of the “drought polygon” (Ab’Saber 1974; Carvalho 1988).

Data collection

An extensive literature review was made. It includes data gathered on published papers and books up to December 2019 issued in English and Portuguese. We located papers using the internet search engines Thomson Reuters’ ISI Web of Science and Google Scholar, as well as by scanning bibliographies and reading books. With exception of the online version of the List of Species of the Brazilian Flora (Flora do Brasil 2020 em construção 2019 - http://floradobrasil.jbrj.gov.br/), information from websites and Masters/PhD dissertations were not considered. Unidentified taxa were not included (e.g. Aspergillus sp.). This study was improved by invited experts who studied the Aspergillus, Penicillium and Talaromyces diversity on different substrates and habitats (e.g. soil, endophytic, coprophilous). The used species names are based on the most recent taxonomic insights. These names were mainly retrieved from the Index Fungorum and MycoBank database, and the lists of accepted species in Samson et al. (2014), Visagie et al. (2014a), Yilmaz et al. (2014), and Frisvad et al. (2019). Species description

The new species described here was collected as described by Bezerra et al. (2013). Morphological and molecular
Analyses were performed following Houbraken et al. (2011). The phylogenetic relationship of the new species within section *Citrina* was studied using single gene and a combined dataset of ITS, β-tubulin, calmodulin, and RPB2 sequences. Sequence datasets were generated by combining the newly generated sequences with reference (preferably ex-type) sequences from Houbraken et al. (2011), Visagie et al. (2014a), and Phookamsak et al. (2019), all deposited at the National Center for Biotechnology Information (NCBI) (Tab. S1 in supplementary material). The sequences were aligned using MAFFT v.7 (Katoh & Standley 2013) and manually optimized using MEGA v. 6.06 (Tamura et al. 2013). Individual alignments were concatenated by using Mesquite v. 3.61 (Maddison & Maddison 2019). The most suitable substitution model (Tab. S2 in supplementary material) was determined using jModelTest v. 2.1.7 (Posada 2008). Phylogenetic trees were constructed using Maximum Likelihood analyses (ML) using RAxML-HPC v. 8.2.8 (Stamatakis 2014) BlackBox with 1,000 rapid bootstrap inferences via the CIPRES science gateway (http://www.phylo.org/) (Miller et al. 2012), while Bayesian inference (BI) analysis was performed in MrBayes 3.2.2 (Ronquist et al. 2012). In the Bayesian analyses, every 1,000 generations was sampled and the first 25 % of the samples were discarded. Trees were visualized in FigTree v. 1.4.3 (Rambaut 2016) and edited in Adobe Illustrator v. 5.1. Bayesian inference (BI) posterior probabilities (pp) values and bootstrap (bs) values are labelled at the nodes. Sequences generated in this study are deposited in NCBI. The name of the new species is deposited at the MycoBank.

Results

According to the literature survey carried out, 35 papers published between 1964 and 2019 reported members of Eurotiales, and were included in this checklist. In total, 130 species (60 *Aspergillus*, 57 *Penicillium*, and 13 *Talaromyces*) have been recorded in the Caatinga forest. In *Aspergillus*, 14 sections are reported, with *Flavi*, *Fumigati*, *Nidulantes*, *Nigri* and *Terrei* as the most common. In *Penicillium*, species names from 16 sections are listed, mainly in sections *Aspergilloides*, *Citrina*, *Exilicaulis* and *Fasciculata*. A new species, *P. vascosobrinhous*, isolated as an endophyte from *Melocactus zehntneri*, one of the more common cactuses from Brazil, is introduced in the *Penicillium* section *Citrina*. Regarding the genus *Talaromyces*, four sections have been recorded in the Caatinga, with *Islandici* and *Talaromyces* being the most common.

Regarding the distribution of records by Brazilian states, Pernambuco has the highest number of records. The most common substrates associated with the records are soil (122 records) and plant organs (as endophytes) (25 records). A total of 22 species occur in both substrates, and 100 species were registered only in soil. Based on this list, 88 species were exclusively recorded from soil, two species were reported only as endophytes, and two from termite nests. Grapes, seeds and "as phytopathogenic" fungus have also reports (one each).

Considering the Caatinga’s expansion, some species have been registered only in the following states so far: Alagoas-

New species

Penicillium vascosob鸬nho R.N. Barbosa & J.D.P. Bezerra, sp. nov.

Fig. 2 Mycobank MB833816

Etymology: In honour of Professor João Vasconcelos Sobrinho, a leading Brazilian ecologist and environmentalist.

Type: Brazil: Pernambuco: Itaíba, as endophyte from *Melocactus* zehntneri (Cactaceae), September 2013, J.D.P. Bezerra. Holotype URM 94140 (slide preparation) is deposited in the URM fungarium (Recife, Brazil); ex-type strain URM 8193.

ITS barcode: LR744067. Alternative markers: BenA = LR744069; CaM = LR744063; RP2B = LR744065.

Colony diam, 7 days (mm): CYA 20–22; CYA 15 °C 4–5; CYA 30 °C 25–27; CYA 37 °C 5–9; MEA 20–25; DG18 15–20; CYAS 18–20; OA 16–20; CREA 7–9; YES 15–27.

Colony characters:

CCYA, 25 °C, 7 days: colonies plane to moderately deep at centre, radially sulcate; margins irregular, low, narrow; mycelium inconspicuously white to greyish; colony texture velvety; sporulation moderate; conidial colour *en masse* greyish; exudate and soluble pigment absent; reverse brownish. MEA, 25 °C, 7 days: colonies plane, radially sulcate; margins entire, low, narrow; mycelium white; colony texture velvety to floccose at centre; sporulation poorly to moderate; conidial colour *en masse* greyish turquoise; exudate present as clear droplets; soluble pigment absent; reverse brownish. MEA, 25 °C, 7 days: colonies plane, radially sulcate; margins entire, low, narrow; mycelium white; colony texture velvety to floccose at centre; sporulation poorly to moderate; conidial colour *en masse* greyish turquoise; exudate present as clear droplets; soluble pigment absent; reverse brownish. DG18, 25 °C, 7 days: colonies plane; margins low, entire; mycelium white; colony texture floccose; sporulation sparsely after prolonged incubation; conidial colour *en masse* indeterminate; exudate absent; soluble pigment absent; reverse cream to clear brown close centre. OA, 25 °C, 7 days: colonies plane, entire; margins regular; mycelium white; colony texture velvety; sporulation moderate to sparse; conidial colour *en masse* greyish green; exudate absent; soluble pigment absent; reverse pale to white. YES, 25 °C, 7 days: colonies moderately deep, randomly sulcate, raised; margins regular, low, narrow; mycelium inconspicuously white to greenish; colony texture velvety; sporulation poor to moderate; conidial colour *en masse* greyish; exudate and soluble pigment absent; reverse brownish. CREA, 25 °C, 7 days: growth poor, acid production absent.

Micromorphology: Conidiophores monoverticillate. Stipes smooth walled, 10.5–50 × 2–2.5 μm, apex slightly swollen. Phialides 3–4 per stipe, amputiform, tapering to very fine necks, 4–5.0 (~5.5) × 2.0–2.5 μm; conidia globose to subglobose, smooth, 2.0–2.5 (~3.0) μm. Ascomata and sclerotia not observed.

Additional material examined: URM 8194 (ITS: LR744068, BenA: LR744062, CaM: LR744064, RP2B: LR744066).

Check list of*Aspergillus, Penicillium and Talaromyces from the Caatinga Dry Forest*

A. chevalieri (L. Magin) Thom & Church, The Aspergilli: 111. 1926. [MB292839].

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Paraíba-PB, Batista et al. 1970); As endophyte from cladodes of *Cereus jamacaru* (Pernambuco-PE, Pires et al. 2015).

Record: Seeds (Paraíba-PB, Nascimento et al. 2018).

Record: (as *A. amstelodami*) Soil (Maranhão-MA, Batista et al. 1964).

Note: *Aspergillus amstelodami* is considered a synonym of *A. montevidensis* (Pitt 1985 and also see taxonomy clarification in Hubka et al. 2013).

A. pseudoglaucus Blobwitz, Ann. Mycol. 27: 207. 1929. [MB275429].

Record: (as *A. repens*) Soil (Maranhão-MA, Batista et al. 1964).

Note: According to Hubka et al. (2013), *Aspergillus repens* (de Bary) Fischer is a later homonym of *Aspergillus repens* (Corda) Sac. 1882 pertaining to a different species, and *A. pseudoglaucus* is considered the correct name for *Eurotium repens*.

A. ruber (Jos. König et al.) Thom & Church, Aspergillus: 112. 1926. [MB276893].

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Pernambuco-PE, Barbosa et al. 2016).
Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of *Aspergillus*, *Penicillium* and *Talaromyces* (Eurotiales) and the description of *P. vascosobrinhous* sp. nov.

Section **Candidi** Gams *et al.* Advances in *Penicillium* and *Aspergillus* systematics. 1985. [MB832512].

Records: Soil (Maranhão-MA, Batista *et al.* 1964); Soil (Paraíba-PB, Batista *et al.* 1970); Soil (Pernambuco-PE, Cruz *et al.* 2013a; Cruz *et al.* 2017); Seeds (Paraíba-PB, Nascimento *et al.* 2018).

Section **Cervini** Gams *et al.* Advances in *Penicillium* and *Aspergillus* systematics. 1985. [MB832497].

Record: Soil (Bahia-BA, Costa *et al.* 2006).

Section **Circumdati** Gams *et al.* Advances in *Penicillium* and *Aspergillus* systematics. 1985. [MB832508].

Figure 2. Morphological features of the new species *Penicillium vascosobrinhous*. **A**- Colonies from left to right (top row) MEA, CYA and DG18; (bottom row) CYAS, YES and CREA. **B, C, D**- Conidiophores. **E**- Conidia. Scale bars 10 μm.
Records: (as A. sulphureus [nom. illeg.]) Soil (Maranhão-MA, Batista et al. 1964); Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Bahia-BA, Costa et al. 2006); Soil (Pernambuco-PE, Ramos & Upadhyay 1966; Cruz et al. 2013a; 2017).
Note: Previously incorrectly named A. sulphureus (Fresen.) Wehmer (see taxonomy clarification in Visagie et al. 2014b).

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Pernambuco-PE, Batista et al. 1970).

Records: Soil (Paraíba-PB, Batista et al. 1970); Soil (Bahia-BA, Costa et al. 2006); As endophyte from cladodes of Cereus jamacaru (Paraíba-PE, Bezerra et al. 2013); Soil (Pernambuco-PE, Cruz et al. 2013a; 2017; Oliveira et al. 2013); Seeds (Pernambuco-PE, Nascimento et al. 2018).

Record: Soil (Pernambuco-PE, Oliveira et al. 2013).

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Bahia-BA, Costa et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013a; Cruz et al. 2017).

Record: Soil (Pernambuco-PE, Barbosa et al. 2016).

Record: Soil (Maranhão-MA, Batista et al. 1964).

Record: Soil (Pernambuco-PE, Barbosa et al. 2016).

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013a; Cruz et al. 2017).

Record: Soil (Pernambuco-PE, Cruz et al. 2013a, 2017).

Record: Soil (Pernambuco-PE, Barbosa et al. 2016).

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Paraíba-PB, Batista et al. 1970); Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Bahia-BA, Costa et al. 2006); As endophyte from cladodes of C. jamacaru (Paraíba-PE, Bezerra et al. 2013); Soil (Pernambuco-PE, Cruz et al. 2013a; 2017; Oliveira et al. 2013); Seeds (Pernambuco-PE, Nascimento et al. 2018).

Records: (as A. parasiticus is the domesticated form of A. flavus) (Paraíba-PB, Barbosa-Silva et al. 2016); Termite nests (Constrictotermes cyphergaster) (Paraíba-PE, Mello et al. 2016); Seeds (Pernambuco-PE, Nascimento et al. 2018); Goat dung (Pernambuco-PE, Melo et al. 2017); Grapes (Pernambuco-PE and Bahia-BA, Freire et al. 2017). Also reported as A. oryzae as endophyte from leaves of Combretum leprosum (Ceará-CE, Santos et al. 2012).
Note: A. oryzae is the domesticated form of A. flavus (Frisvad et al. 2019).

Records: Soil (Bahia-BA, Costa et al. 2006); As endophyte from cladodes of C. jamacaru (Paraíba-PE, Bezerra et al. 2013); Soil (Pernambuco-PE, Cruz et al. 2013a; 2017; Oliveira et al. 2013; Reis et al. 2015); Termite nests (Constrictotermes cyphergaster) (Paraíba-PE, Barbosa-Silva et al. 2016); Goat dung (Pernambuco-PE, Melo et al. 2017). Also reported as A. sojae in Grapes (Pernambuco-PE and Bahia-BA, Freire et al. 2017).
Note: A. sojae is the domesticated form of A. parasiticus (Frisvad et al. 2019).

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Bahia-BA, Costa et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013a; 2017; Oliveira et al. 2013; Barbosa et al. 2016; Fonseca et al. 2017); Caves (Minas Gerais-MG, Bahia-BA and Piauí-PI, Melo et al. 2013); Termite nests (Constrictotermes
cyphergaster) (Paraíba-PB, Barbosa-Silva et al. 2016). Also reported as A. flavofurcatus in soil (Bahia-BA, Costa et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013a; 2017).

Note: According to Frisvad et al. (2019) representative strains of A. flavofurcatus, including Brazilian strains, cluster together with the type of A. tamarii (NRRL 20818) in all phylogenetic analysis performed by these authors.

A. flavipes (Bainier & Sartoy) Thom & Church, Aspergilli: 155. 1926. [MB265045].

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Bahia-BA, Costa et al. 2006).

A. arcoverdensis Y. Horie, Matsuz., Yaguchi & Takaki, Mycoscience 56: 130. 2015. [MB804028].

Record: Soil (Pernambuco-PE, Matsuzawa et al. 2015).

A. aureolus Fennell & Raper, Mycologia 47: 71. 1955. [MB292836].

Record: Soil (Pernambuco-PE, Barbosa et al. 2016).

Record: Soil (Pernambuco-PE, Oliveira et al. 2013).

Record: Soil (Pernambuco-PE, Matsuzawa et al. 2014).

Records: Soil (Bahia-BA, Costa et al. 2006); Soil (Pernambuco-PE, Oliveira et al. 2013).

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Paraíba-PB, Batista et al. 1970); Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Bahia-BA, Costa et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013a; 2017; Oliveira et al. 2013, Barbosa et al. 2016); As endophyte from cladodes of Opuntia ficus-indica and Pilosocereus gounellei (Pernambuco-PE, Freire et al. 2015 and Pires et al. 2015); Termite nests (Nasutitermes corniger) (Paraíba-PB, Mello et al. 2016); As endophyte from plant barks of Anacardium occidentale (Paraíba-PB, Cavalcanti et al. 2017); Cattle dung (Pernambuco-PE, Mello et al. 2017).

Record: Soil, misspelled as "lentilus" (Pernambuco-PE, Barbosa et al. 2016).

Record: Soil (Pernambuco-PE, Matsuzawa et al. 2014).

Records: Soil (Pernambuco-PE, Cruz et al. 2013a; 2017; Oliveira et al. 2013; Barbosa et al. 2016); Soil (Bahia-BA, Costa et al. 2006).

A. asperescens Stolk, Antonie van Leeuwenhoek 20: 303. 1954. [MB292835].

Record: Soil (Bahia-BA, Costa et al. 2006).

A. caespitosus Raper & Thom, Mycologia 36: 563. 1944. [MB284298].

Record: Soil (Alagoas-AL, Cavalcanti et al. 2006).

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Pernambuco-PE, Barbosa et al. 2016).

Record: Soil (Pernambuco-PE, Barbosa et al. 2016).

Record: Soil (Alagoas-AL, Cavalcanti et al. 2006).

A. sydowii (Bainier & Sartoy) Thom & Church, Aspergilli: 147. 1926. [MB279636].

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Paraíba-PB, Batista et al. 1970); Soil (Bahia-BA, Costa et al. 2006); As endophyte from cladodes of C. jamacaru (Paraíba-PB, Bezerra et al. 2013); Soil (Pernambuco-PE, Ramos & Upadhay 1966; Barbosa et al. 2016; Cruz et al. 2017). Misspelled as "sidowii" from soil (Pernambuco-PE, Cavalcanti & Maia 1994); Soil (Alagoas-AL, Cavalcanti et al. 2006).

Record: Soil (Maranhão-MA, Batista et al. 1964).

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Paraíba-PB, Batista et al. 1970); Soil (Pernambuco-PB, Cavalcanti & Maia 1994); Soil (Bahia-BA, Costa et al. 2006); As endophyte from cladodes of C. jamacaru (Paraíba-PB, Bezerra et al. 2013); Soil (Pernambuco-PB, Cruz et al. 2013a; 2017; Oliveira et al. 2013; Barbosa et al. 2016); Termite nests (Constrictotermes cyphergaster) (Paraíba-PB, Barbosa-Silva et al. 2016).

Section **Nigri** Gams et al. Advances in *Penicillium* and *Aspergillus* systematics. 1985. [MB832511].

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PB, Cruz et al. 2013a; 2017; Oliveira et al. 2013; Barbosa et al. 2016); Grapes (Pernambuco-PB and Bahia-BA, Freire et al. 2017).

Record: Soil (Petrolina-PB, Coutinho et al. 2014).

A. carbonarius (Bainier) Thom, J. Agric. Res. 7: 12. 1916. [MB100545].

Records: Soil (Pernambuco-PB, Cruz et al. 2013a; 2017; Oliveira et al. 2013); Grapes (Pernambuco-PB and Bahia-BA, Freire et al. 2017).

Records: Soil (Pernambuco-PB, Cavalcanti & Maia 1994); Soil (Bahia-BA, Simões & Tauk-Tornisielo 2005b); Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Bahia-BA, Costa et al. 2006); As endophyte from cladodes of *O. ficus-indica* and *C. jamacaru* (Pernambuco-PB, Bezerra et al. 2012; Paraíba-PB, Bezerra et al. 2013); Caves (Minas Gerais-MG, Bahia-BA and Piauí-PI, Melo et al. 2013); Soil (Pernambuco-PB, Oliveira et al. 2013); Horse dung (Pernambuco-PB, Melo et al. 2017). Also reported as *A.violaceofuscus* in soil (Pernambuco-PB, Cruz et al. 2013a) and as *A. foetidus* in caves (Minas Gerais-MG, Bahia-BA and Piauí-PI, Melo et al. 2013).

Note: *Aspergillus foetidus* and *A. lacticoffeatus* is considered a synonym of *A. niger* (Varga et al. 2011).

Record: Soil (Pernambuco-PB, Crous et al. 2018).

Records: Sisal bole rot disease (Bahia-BA, Duarte et al. 2018). Also reported as *A. awamori* in soil (Bahia-BA, Costa et al. 2006); Soil (Pernambuco-PB, Cruz et al. 2013a, Cruz et al. 2017).

Note: *A. awamori* is a synonym of *A. welwitschiae* (Perrone et al. 2011).

Section **Restricti** Gams et al. Advances in *Penicillium* and *Aspergillus* systematics. 1985. [MB832494].

Record: Soil (Bahia-BA, Costa et al. 2006).

Record: Soil (Alagoas-AL, Cavalcanti et al. 2006).

Section **Terrei** Gams et al. Advances in *Penicillium* and *Aspergillus* systematics. 1985. [MB832505].

Records: (as *A. terreus var. aureus*) in Soil (Bahia-BA, Costa et al. 2006); Soil (Pernambuco-PB, Cruz et al. 2013a; Barbosa et al. 2016).
Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of *Aspergillus*, *Penicillium* and *Talaromyces* (Eurotiales) and the description of *P. vascosobrinous* sp. nov.

Note: *A. terreus* var. *aureus* has been previously recognized as a variety of *A. terreus* based on morphological characteristics, and the phenotype of this species is strikingly distinct from that of *A. terreus* (Balajee 2009; Samson et al. 2011).

Records: Soil (Paraíba-PB, Cavalcanti et al. 2006); Soil (Bahia-BA, Costa et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013a; 2017).

Records: Soil (Paraíba-PB, Cavalcanti et al. 2006); Soil (Bahia-BA, Costa et al. 2006); Soil (Pernambuco-PE, Ramos & Upadhyay 1966; Cruz et al. 2013a; Oliveira et al. 2013; Barbosa et al. 2016); As endophyte from cladodes of *C. jamacaru* (Pernambuco-PE, Pires et al. 2015); Goat dung (Pernambuco-PE, Melo et al. 2017).

A. terreus Thom, Am. J. Bot. 5: 85. 1918. [MB191719].
Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Paraiba-PB, Batista et al. 1970); Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Bahia-BA, Costa et al. 2006); Stingless bees (Mossoró-RN, Ferraz et al. 2008); As endophyte from cladodes of *C. jamacaru* (Paraiba-PB, Bezerra et al. 2013); Soil (Pernambuco-PE, Cruz et al. 2013a; 2017; Oliveira et al. 2013; Barbosa et al. 2016); Cattle, goat and horse dung (Pernambuco-PE, Melo et al. 2017).

Section *Usti* Gams et al. Advances in *Penicillium* and *Aspergillus* systematics. 1985. [MB832504].

Records: Soil (Pernambuco-PE, Cavalcanti & Maia 1994); Soil (Bahia-BA, Costa et al. 2006).

A. granulosus Raper & Thom, Mycologia 36: 565. 1944. [MB284302].
Record: Soil (Alagoas-AL, Cavalcanti et al. 2006).

Record: Soil (Pernambuco-PE, Barbosa et al. 2016).

Record: Termite nests (*Constrictotermes cyphergaster*) (Paraiba-PB, Barbosa-Silva et al. 2016).

Record: Soil (Pernambuco-PE, Oliveira et al. 2013).

A. ustus (Bainier) Thom & Church, Aspergilli: 152. 1926. [MB281216].
Records: Soil (Paraiba-PB, Batista et al. 1970); Soil (Pernambuco-PE, Cavalcanti & Maia 1994); Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Bahia-BA, Costa et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013a; 2017; Oliveira et al. 2013); As endophyte from cladodes of *C. jamacaru* (Pernambuco-PE, Pires et al. 2015).

P. aurantioviolaceum Biourge, Cellule 33: 282. 1923. [MB257885].
Record: Soil (Paraiba-PB, Batista et al. 1970).

P. frequentans Westling, Ark. Bot. 11: 133. 1911. [MB152118].

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013a; 2017; Oliveira et al. 2013); Grapes (Pernambuco-PE and Bahia - BA, Freire et al. 2017).

P. lividum Westling, Ark. Bot. 11: 134. 1911. [MB178817].
Records: Soil (Paraiba-PB, Batista et al. 1970); Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013b; 2017; Oliveira et al. 2013).

P. montanense M. Chr. & Backus, Mycologia 54: 574. 1962. [MB335752].
Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); As endophyte from cladodes of *O. ficus-indica* (Pernambuco-PE, Pires et al. 2015); Soil (Pernambuco-PE, Cruz et al. 2017).

P. purpurescens (Sopp) Biourge [as “purpurascens”] Biourge, La Cellule 33:5. 1923. [MB335761].
Record: Soil. Reported as *P. purpurescens* (Paraiba-PB, Batista et al. 1970).

Note: The original Sopp epithet “purpurascens” presents a correctable orthographic error (there is no Latin word “purpurreas”). The *Penicillium* combination was first published by Biourge, who corrected the –rr– error, but replaced the original –escens ending with “–ascens” (another correctable error) [these two endings are both acceptable Latin and convey the same meaning, but they are not interchangeable]. The basionym author and date are cited,
and the basionym genus is indicated by the abbreviation "(Citr.)." So, the correct citation is *Penicillium purpurascens* (Sopp) Biourge [as “purpurascens”], and the Raper & Thom "combination" is an isonym (with no nomenclatural standing). (Pers. comm. K. Bensch).

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013b; 2017; Barbosa et al. 2016).

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Oliveira et al. 2013).

Section *Brevicompacta* Thom, The Penicillia: 289. 1930. [MB834006].

Records: Soil, misspelled as "brevi-compactum" (Paraíba-PB, Bezerra et al. 2013); Soil (Pernambuco-PE, Cruz et al. 2013b; 2017). Also reported as *Penicillium stoloniferum* in soil (Pernambuco-PE, Ramos & Upadhyay 1966).

Note: *P. stoloniferum* was described by Thom (1910) from a decaying mushroom in Connecticut. Later, Thom (1930) reduced this species to synonymy with *P. brevicompactum*. Pitt (1980) suggested that isolates of *P. stoloniferum* and *P. brevicompactum* showed a continuum of variation, and confirmed the synonymy.

Section *Canescentia* Houbraken & Samson, Studies in Mycology 70. 2011. [MB 563135].

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013b; 2017; Oliveira et al. 2013).

Record: Soil (Pernambuco-PE, Cruz et al. 2013b; 2017; Barbosa et al. 2016).

P. nigricans Bainier ex Thom, Penicillia: 351. 1930. [MB119303].

Note: The taxonomy of *Penicillium section Canescentia* is not yet resolved, but recent data (Visagie et al. 2016) indicated that *P. nigricans* is an accepted species in this section.

P. novae-zeelandiae J.F.H. Beyma, Antonie van Leeuwenhoek 6: 275. 1940. [MB522253].

Record: Soil (Maranhão-MA, Batista et al. 1964).

Section *Chrysogetia* Houbraken & Samson, Studies in Mycology 70. 2011. [MB563125].

P. fellutanum Biourge, Cellule 33: 262. 1923. [MB264748].

Records: Soil (Paraíba-PB, Batista et al. 1970); Soil (Pernambuco-PE, Cruz et al. 2013b; Oliveira et al. 2013).

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Paraíba-PB, Batista et al. 1970); As endophyte from cladodes of *C. jamacaru* (Paraíba-PB, Bezerra et al. 2013); Soil (Pernambuco-PE, Ramos & Upadhyay 1966; Cruz et al. 2013b). Goat and horse dung (Pernambuco-PE, Melo et al. 2017). Also reported as *P. notatum* in soil (Maranhão-MA, Batista et al. 1964).

Note: *Penicillium notatum* Westling is considered a synonym of *P. chrysogenum* (Samson et al. 1977).

Record: Soil (Maranhão-MA, Batista et al. 1964). Note: Misspelled as "egyptianum" in Batista et al. 1964.

Section *Citrina* Houbraken & Samson, Studies in Mycology 70. 2011. [MB563132].

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Paraíba-PB, Batista et al. 1970); Soil (Pernambuco-PE, Ramos & Upadhyay 1966; Cruz et al. 2013b; 2017; Barbosa et al. 2016); As endophyte from cladodes of *O. ficus-indica* and *P. gournellei* (Pernambuco-PE, Freire et al. 2015; Pires et al. 2015); Cattle dung (Pernambuco-PE, Melo et al. 2017); Grapes (Pernambuco-PE and Bahia - BA, Freire et al. 2017). Also reported as *P. implicatum* in soil (Maranhão-MA, Batista et al. 1964); Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013b; 2017; Oliveira et al. 2013; Barbosa et al. 2016); Grapes (Pernambuco -PE and Bahia - BA, Freire et al. 2017).

Note: *Penicillium implicatum* Biourge is considered a synonym of *P. citrinum* (Houbraken et al. 2010).

Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of Aspergillus, Penicillium and Talaromyces (Eurotiales) and the description of P. vascosobrinhus sp. nov.

Records: Soil (Pernambuco-PE, Barbosa et al. 2016; Cruz et al. 2017).

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Oliveira et al. 2013).

P. vascosobrinhus R.N. Barbosa & J.D.P. Bezerra. This study. [MB833816].
Record: Endophyte (Pernambuco-PE, Barbosa et al. – this study)

Records: Soil (Maranhão-MA, Batista et al. 1964); misspelled as "P. walksmanii" from Soil (Pernambuco-PE, Cavalcanti & Maia 1994); Soil (Alagoas-AL, Cavalcanti et al. 2006); As endophyte from cladodes of C. jamaicara (Paraiba-PB, Bezerra et al. 2013); Soil (Pernambuco-PE, Oliveira et al. 2013; Cruz et al. 2013b; 2017; Barbosa et al. 2016); Horse dung (Pernambuco-PE, Melo et al. 2017).

Note: P. humuli is a synonym of P. corylophilum (Visagie et al. 2016).

Records: Soil (Pernambuco-PE, Cruz et al. 2013b; 2017; Oliveira et al. 2013; Barbosa et al. 2016); Grapes (Pernambuco-PE and Bahia-BA, Freire et al. 2017).

P. lapidosum Raper & Fennell, Mycologia 40: 524. 1948. [MB289094].
Record: Soil (Pernambuco-PE, Cruz et al. 2013b; 2017).

P. melini Thom, Penicillia: 273. 1930. [MB270876].
Records: Soil (Pernambuco-PE, Cruz et al. 2013b; 2017; Oliveira et al. 2013).

Record: Soil (Maranhão-MA, Batista et al. 1964).

Record: Soil (Paraiba-PB, Batista et al. 1970).

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); As endophyte from cladodes of C. jamaicara and P. gounellei (Paraiba-PB and Pernambuco-PE, Bezerra et al. 2013; Pires et al. 2015); Soil (Pernambuco-PE, Oliveira et al. 2013; Cruz et al. 2013b; 2017; Barbosa et al. 2016).

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Paraiba-PB, Batista et al. 1970); Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Oliveira et al. 2013; Barbosa et al. 2016).

Section Fasciculata Thom, The Penicillia: 374. 1930. [MB834008].

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); Forage cactus (Itaíba-PE, Bezerra et al. 2012); As endophyte from cladodes of O. ficus-indica and C. jamaicara (Pernambuco-PE, Bezerra et al. 2012; Paraiba-PA, Bezerra et al. 2013); Soil (Pernambuco-PE, Cruz et al. 2013b; 2017; Oliveira et al. 2013; Barbosa et al. 2016).

P. cyclopium Westling, Ark. Bot. 11: 90. 1911. [MB156739].
Record: Reported as P. puberulum in soil (Pernambuco-PE, Cavalcanti & Maia 1994).

Note: Frisvad & Samson (2004) treated P. puberulum as a synonym of P. cyclopium; however, they were uncertain about this result. Unpublished molecular data confirms this finding, which can have impact on the use of the name P. cyclopium. Penicillium puberulum predates P. cyclopium. We applied the current taxonomic insights and use P. cyclopium.

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Alagoas-AL, Cavalcanti et al. 2006); As endophyte...
from cladodes of *C. jamacaru* (Paraíba-PB, Bezerra et al. 2013); Soil (Pernambuco-PE, Oliveira et al. 2013; Cruz et al. 2013b; Barbosa et al. 2016); Termite nests (*Constrictotermes cyphergaster*) (Paraíba-PE, Barbosa-Silva et al. 2016).

P. crustosum Thom, *The Penicillia*: 399. 1930. [MB262401].

Record: Soil (Pernambuco-PE, Oliveira et al. 2013).

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Oliveira et al. 2013); Grapes (Pernambuco-PE and Bahia - BA, Freire et al. 2017).

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Oliveira et al. 2013).

Section *Laurnata-Divaricata* Thom, *The Penicillia*: 328. 1930. [MB834002].

Note: Dodge (1933) based on CBS 235.81 described *P. brefeldianum* as a holomorphic species. Pitt (1980) did not accept teleomorph species in *Penicillium* and a neotype (CBS 233.81) was selected of *Penicillium* distributed and a neotype *Penicillium* (as *Eupenicillium brefeldianum*) Dodge’s strain (CBS 235.81) was used for the description of the anamorph of *Eupenicillium brefeldianum* (*Penicillium dodgii*), therefore Dodge’s *P. brefeldianum* was re-instated (Houbraken & Samson 2011).

P. janthinellum Biourge, *Cellule* 33: 258. 1923. [MB119134].

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013b; Oliveira et al. 2013; Barbosa et al. 2016); As endophyte from cladodes of *C. jamacaru* (Paraíba-PB, Bezerra et al. 2016); As endophyte from cladodes of *O. ficus-indica* (Paraíba-PB, Batista et al. 1970); Soil (Alagoas-AL, Cavalcanti et al. 2006); Records: Soil (Pernambuco-PE, Cruz et al. 2013b; 2017; Oliveira et al. 2013; Barbosa et al. 2016).

Record: Termite nests (*Constrictotermes cyphergaster*) (Paraíba-PE, Barbosa-Silva et al. 2016).

Record: Soil (Pernambuco-PE, Cruz et al. 2013b).

Record: Soil (Maranhão-MA, Batista et al. 1964).

P. cyanneum (Bainier & Sartory) Biourge, *Cellule* 33: 102. 1923. [MB251712].

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Paraíba-PE, Batista et al. 1970).

Records: Soil (Paraíba-PE, Batista et al. 1970); Soil (Pernambuco-PE, Ramos & Upadhyay 1966; Cruz et al. 2013b; 2017).

Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of *Aspergillus*, *Penicillium* and *Talaromyces* (Eurotiales) and the description of *P. vascosobrinhou* sp. nov.

Section **Robsamsonia** Houbraken & Frisvad, Persoonia 36: 309. 2016. [MB815870].

Record: As endophyte from cladodes of *O. ficus-indica* (Pernambuco-PE, Bezerra et al. 2016). Also reported as *P. sublevisporus* in soil (Pernambuco-PE, Ramos & Upadhyay 1966).

Note: *Penicillium urticae* is currently known as *P. griseofulvum*.

Records: Soil (Alagoas-AL, Cavalcanti et al. 2006); As endophyte from cladodes of *C. jamacaru* (Paraíba-PB, Bezerra et al. 2013); Soil (Pernambuco-PE, Cruz et al. 2013b; 2017; Oliveira et al. 2013; Barbosa et al. 2016). Also reported as *Penicillium urticae* in soil (Pernambuco-PE, Ramos & Upadhyay 1966).

Note: *Penicillium urticae* and *P. vascosobrinhou* are synonyms of *P. griseofulvum*.

Records: Soil (Pernambuco-PE, Cruz et al. 2013a; 2017).

Section **Sclerotiora** Houbraken & Samson, Studies in Mycology 70. 2011. [MB563124].

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Paraíba-PB, Batista et al. 1970).

Records: Soil (Maranhão-MA, Batista et al. 1964); Soil (Paraíba-PB, Batista et al. 1970); Soil (Pernambuco-PE, Cruz et al. 2013b; Barbosa et al. 2016); Grapes (Pernambuco-PE and Bahia-BA, Freire et al. 2017).

Section **Turbata** Houbraken & Samson, Studies in Mycology 70. 2011. [MB563133].

Record: As *P. varians* in soil (Maranhão-MA, Batista et al. 1964).

Note: *P. varians* does not belong to *Penicillium* s. str. and was recombined as *T. varians* (Samson et al. 2011).

Records: As *P. islandicum* in soil (Alagoas-AL, Cavalcanti et al. 2006); Soil (Paraíba-PB, Batista et al. 1970).

Note: *P. islandicum* does not belong to *Penicillium* s. str. and was recombined as *T. islandicum* (Samson et al. 2011)

Records: As *P. tardum* in soil (Maranhão-MA, Batista et al. 1964); Soil (Paraíba-PB, Batista et al. 1970); reported as *P. rugulosum* in soil (Alagoas-AL, Cavalcanti et al. 2006).

Note: *P. chrysitis*, *P. tardum* and *T. echinosporus* are synonyms of *T. rugulosus* (Yilmaz et al. 2014).

Note: Four-gene phylogeny, morphology and extrolite data revealed that *T. variabilis*, *P. concavorugulosum* and *T. sublevisporus* are synonyms of *T. wortmannii* (Yilmaz et al. 2014).

Section **Talaromyces** Stolk & Samson, Studies in Mycology 2: 56. 1972. [MB549314].

Record: As *P. duclauxii* in soil (Paraíba-PB, Batista et al. 1970).

Note: *P. duclauxii* does not belong to *Penicillium* s. str. and was recombined as *T. duclauxii* (Samson et al. 2011).

Record: As *P. vermiculatum* in Soil (Paraíba-PB, Batista et al. 1970).

Note: *P. vermiculatum* was described by Dangeard (1907) and transferred to Talaromyces by Benjamin (1955). According to Yilmaz et al. 2014 "Orr et al. (1963) considered Gymnoascus flavus and *T. vermiculatus* as synonyms and this was followed by Stolk & Samson (1972) and Pitt (1980). Ghosh et al. (1961) re-evaluated the type strains of Arachniotus indicus and *A. indicus* var. major and both isolates proved to represent Talaromyces vermiculatus and therefore they synonymised it with *T. flavus."

Records: As *P. funiculosum* in Soil (Maranhão-MA, Batista et al. 1964); Soil (Pernambuco-PE, Ramos & Upadhyay 1966; Cavalcanti & Maia 1994); Soil (Alagoas-Al, Cavalcanti et al. 2006); As endophyte from cladodes of *Cereus jamacaru* (Paraíba-PB, Bezerra et al. 2013); Caves (Minas Gerais-MG, Bahia-BA and Piauí-PI, Melo et al. 2013); As endophyte from cladodes of *O. ficus-indica* and *P. gounellei* (Pernambuco-PE, Freire et al. 2015); Soil (Pernambuco-PE, Cruz et al. 2013a; 2017).

Records: As *P. verruculosum* in Soil (Pernambuco-PE, Cavalcanti & Maia 1994); Soil (Alagoas-Al, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013b; Oliveira et al. 2013; Barbosa et al. 2016).

Note: *P. verruculosum* does not belong to Penicillium s. str. and was combined in Talaromyces as *T. verruculosus* (Samson et al. 2011).

Records: As *P. pinophilum* in Soil (Pernambuco-PE, Cavalcanti & Maia 1994); Soil (Alagoas-Al, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013b; 2017; Oliveira et al. 2013).

Note: Note: *P. pinophilum* does not belong to Penicillium s. str. and was combined in Talaromyces as *T. pinophilus* (Samson et al. 2011).

Records: Soil (Pernambuco-PE, Cruz et al. 2017). Reported as *P. purpurogenum* in Soil (Paraíba-PB, Batista et al. 1970); Soil (Alagoas-Al, Cavalcanti et al. 2006); Soil (Pernambuco-PE, Cruz et al. 2013b); As endophyte from cladodes of *C. jamacaru* (Pernambuco-PE, Pires et al. 2015); Horse dung (Pernambuco-PE, Melo et al. 2017).

Note: *P. purpurogenum* does not belong to Penicillium s. str. and was combined in Talaromyces as *T. purpurogenus* (Samson et al. 2011).

Records: As *P. rubrum* in Soil (Pernambuco-PE, Ramos & Upadhyay, 1966); Soil (Paraíba-PB, Batista et al. 1970). Note: *P. rubrum* does not belong to Penicillium s. str. and was combined in Talaromyces as *T. ruber* (Yilmaz et al. 2012).

Section *Trachyspermi* Yaguchi & Udagawa. Mycoscience 37. 1996. [MB701485].

Records: Soil (Pernambuco-PE, Cruz et al. 2017). Also reported as *P. minioluteum* in soil (Alagoas-Al, Cavalcanti et al. 2006); As endophyte from cladodes of *C. jamacaru* (Paraíba-PB, Bezerra et al. 2013); Soil (Pernambuco-PE, Cruz et al. 2013b; Oliveira et al. 2013; Barbosa et al. 2016).

Note: *P. minioluteum* does not belong to Penicillium s. str. and was combined in Talaromyces as *T. minioluteus* (Samson et al. 2011).

Record: Soil (Pernambuco-PE, Crous et al. 2019).

Discussion

The Eurotiales is a relatively large order with members frequently impinging upon human activities. The most well-known species of this order belong to the genera *Aspergillus*, *Penicillium* and *Talaromyces*. Those genera comprise a diverse group of species, which have significant impacts on biotechnology, food production, indoor environments, and human health (Pitt & Hocking 2009, Houbraken & Samson 2011). Species can survive in diverse habitats, ranging from soil, vegetation, air, indoor environments, and various food products (Visagie et al. 2014a; Diao et al. 2018; Barbosa et al. 2018; Frisvad et al. 2019).

In our compilation of studies, soil is the most frequently reported as a source of *Aspergillus*, *Penicillium* and *Talaromyces* isolations from the Caatinga forest. Fungi living in dry soils are specially adapted to high temperature, low moisture and less availability of organic carbon, giving those fungal communities have unique properties. Species of *Aspergillus*, *Penicillium* and *Talaromyces* are highly diverse allowing them to survive at different temperatures, low water activity and variations of pH and O₂ concentration in soil (Pitt & Hocking 2009; Cruz et al. 2013a; b; Oliveira et al. 2013; Barbosa et al. 2016).

Some species, such as *A. arcoverdensis*, *A. caatingensis*, *A. pernambucoensis*, *A. serratalhadenis* and *T. pernambucoensis*, has only been reported from Caatinga soils, and there are no records found elsewhere in the world until the date of
our study. It is possible that these species will be discovered in other parts of the planet. Allen & Lendemer (2015) assume that climatically similar regions will share similar fungal communities leading to unending uncertainty about the distribution of species, resulting in the idea that fungi cannot have narrowly endemic ranges or follow biogeographic patterns such as those documented for other organism groups. However, it is important to mention the fungal diversity can be directly and indirectly affected by soil and plant properties, providing evidence for strong links between soil fungal diversity and plant and soil properties (Yang et al. 2017). The Caatinga forest harbors rare and/or endemic species highlighting the importance of its conservation. The highest number of fungal records is registered for the Brazilian state named Pernambuco. Since 1954, the fungal diversity in Pernambuco state has been studied by several mycologists because of the existence of the former Institute of Mycology of the University of Recife (Currently the Departamento de Micologia at the Universidade Federal de Pernambuco) which was founded by Augusto Chaves Batista and many fungal surveys in the area has been focused on soil (Bezerra et al. 2017).

Aspergillus species belonging to sections Fumigati, Nidulantes and Nigri are most frequently reported in our list. Species of those sections are saprophytic and have been isolated from soils around the world (Klich & Pitt 1988; Varga et al. 1994; Samson et al. 2007). Aspergillus fumigatus is the most reported species in section Fumigati. This is a ubiquitous fungus, well adapted to colonize diverse environments through its metabolic diversity, broad stress and thermal tolerances, and easily dispersed conidia. This species is also an important opportunistic human pathogen. Aspergillus niger is the most common species from section Nigri, widely distributed and is often found in dry regions, and its distribution is related to the climate, vegetation and soil. Klich (2002a), when studying the biogeography of Aspergillus in samples of soil and leaf litter, noted that species of this genus occurs more frequently in desert environments. In our study, species belonging to section Nidulantes are also common in soil samples. The number of reports (richness) of section Nigri is high when compared with section Nidulantes; however, the number of species (diversity) reported from soil is similar. It is important to mention the taxonomy of many sections of Aspergillus, such the section Nigri, is most confusing and complex due to the subtle differences between the many species, thus the polyphasic taxonomy is strongly recommended.

Members of Penicillium section Citrina are abundant in Caatinga. Species of this section have a worldwide distribution, are very common in soil (Monteiro 2012), but are also found in foods, indoor air and many other substrates. The distribution of species appears to be climate-related, for example P. citrinum is more common in (sub) tropical soils, but present in low numbers in temperate regions (e.g. The Netherlands). Species of this section are good producers of secondary metabolites that may confer benefit by providing a competitive advantage when colonizing a new substrate (Houbraken et al. 2011). The new species described here as Penicillium vascosobrinhous belongs to this section. The data from the single-gene analyses showed that the new species is placed as a distinct lineage between the clade of P. roseopurpureum CBS 266.29 and P. sanguifluum CBS 127032 (Fig. 3) and the combined sequence analyses of the four loci (Fig. 4) with the clade of P. anatolicum CBS 47966, P. argentinense CBS 130371 and P. euglaucum CBS 323.71. The new species differs from those in several morphological features. For example, the reverse colour of P. roseopurpureum and P. sanguifluum on CYA is in shades of red with red-brown diffusible pigments, while the reverse colour in P. vascosobrinhous is brownish and soluble pigment production is absent. The conidiophores of P. vascosobrinhous are monoverticillate and no sclerotia or cleistotheca are produced. In contrast, P. anatolicum predominantly produces biverticillate conidiophores and cleistotheca on most agar media, the conidiophores in P. argentinense are monoverticillate or biverticillate, and cleistotheca are produced on CYA and oatmeal agar, and in P. euglaucum the conidiophores are simple when young becoming biverticillate in age. This last species is characterised by the production of warm-grey coloured cleistotheca, strong yellow soluble pigment production and good growth at 30 °C.

The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium was reviewed by Samson et al. (2011). They concluded that the subgenus Biverticillium is distinct from other subgenera in Penicillium and transferred all accepted species of subgenus Biverticillium to Talaromyces. Applying the current taxonomic classification, nine species marked in the literature for Caatinga and originally classified in Penicillium, currently belong to Talaromyces. For Talaromyces, the species classified in section Talaromyces are most commonly occurring in our study. Initially, this section was introduced for species producing yellow, white, creamish, pinkish or reddish ascomata and yellow ascospores, but currently contains both asexual and sexual morphs. This group is the largest section of the genus and the members show a great diversity in morphological characters (Yilmaz et al. 2014). Species belonging to this section are frequently isolated from soil, indoor environments and food products. In this study, the most common species were T. funiculosus and T. purpurogenus. These species are known as producers of biotechnologically interesting enzymes (Rando et al. 1997; Sukhacheva et al. 2004). Talaromyces purpurogenus produces rubatoxin, which is a well-known hepa-carcinogenic toxin (Kihara et al. 2001; Frisvad et al. 2013).

In our checklist, the melanic fungi such A. niger and A. fumigatus were prevalent. For example, in Aspergillus section Fumigati, A. fumigatus can produce two types of melanin (dihydroxynaphthalene melanin and pyomelanin). These
Figure 3. Single gene phylogenies of *Penicillium* section *Citrina* strains and the new species *P. vascosobrinhous*. A- ITS phylogeny; B- *BenA* phylogeny, C- *CaM* phylogeny, D- *RPB2* phylogeny. The new species is highlighted. Values below 0.95 pp and 70 % are not shown and indicated with a hyphen. Branches with posterior probability values of 1.00 and >95 % are thickened.
Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of *Aspergillus*, *Penicillium* and *Talaromyces* (Eurotiales) and the description of *P. vascosobrinhous* sp. nov.

Figure 4. Phylogenetic position of *Penicillium* section *Citrina* strains and the new species *P. vascosobrinhous* based on a combined dataset containing ITS, *BenA*, *CaM* and *RPB2* sequences. The new species is highlighted. Values below 0.95 pp and 70% are not shown and indicated with a hyphen.
pigments are considered important resistance mechanisms to stress, as well as virulence factors (Perez-Cuesta et al. 2019). Fungal melanins are brown to black pigments formed by oxidative polymerization of phenolic compounds (Jacobson 2000). The melanins are not essential for normal growth; however, these pigments confer on the fungus the ability to several stress-tolerant, such as solar radiation, high temperature, water deficiency (Butler & Day 1998), common features in the Caatinga.

Aspergillus, Penicillium and Talaromyces species are known as important producers of several bioactive secondary metabolites that provide ecological fitness roles (Frisvad 2008; Drott et al. 2017; Rohlfs & Churchill 2011). The loss or overproduction of specific compounds can alter fungal development, survival or inter-kingdom and intra-kingdom encounters, for example, the secondary metabolite aflatoxin produced by A. flavus has toxic properties towards insects, providing a fitness advantage to A. flavus when the fungus encounters insects (Rohlfs 2014; Drott et al. 2017; Keller 2019).

In this study we did not include unidentified taxa (e.g. Aspergillus sp., Penicillium sp. and Talaromyces sp.) because they cannot be placed in a correct section or species in which genus, and in some cases, they can represent the same species. In this paper, our proposal was to present a list of valid names for fungal species reported in the Caatinga forest, thus we choose not to consider these records. However, we understand that unidentified records at the species level may represent an unexplored diversity in the Caatinga which needs to be studied in future studies (if strains are available).

Aspergillus, Penicillium, and Talaromyces were traditionally classified according to their morphological features. The identification of the majority of species ranked in our list was mostly based on Raper & Fennell (1965), Pitt (1973; 1980), Domsch et al. (1980), Klich & Pitt (1988), Klich (2002b) and Pitt & Hocking (2009). The modern concept to the identification of species belonging to those genera are based on polyphasic approach including morphology, multigene phylogenies, physiology and extrolite data (e.g. Hong et al. 2005; Frisvad et al. 2007; Chen et al. 2016; 2017; Barbosa et al. 2018). We recommend following the standardised methods described in e.g. Samson et al. (2010), Houbraken et al. (2011), Visagie et al. (2014a), Yilmaz et al. (2014), and Frisvad et al. (2019). In addition, it is extremely important to preserve strains (at minimum a representative) in a public reference fungal culture collection, such as the Micoteca URM in Brazil (https://www.ufpe.br/micoteca), and whenever possible in an international collection such as the CBS collection housed in the Westerdijk Fungal Biodiversity Institute in The Netherlands (http://www.wi.knaw.nl/Collections) and/or the Micoteca da Universidade do Minho (MUM) in Portugal (http://www.micoteca.deb.uminho.pt/en/). These guidelines should be used not just to describe new species, but for all studies of species prospection.

In tropical countries like Brazil, it is still necessary to increase and to incentive the development of research including collection and preservation of specimens in fungal herbaria and culture collections. The collection, isolation, identification and conservation of fungi is relevant to agriculture, pharmacology, food and biotechnology industries, and this research can be used as basis for political decisions. In the last years, Brazilian government had put forward some initiatives in order to better preserve the Caatinga biodiversity. However, these strategies suffer with lack of taxonomic data, and species lists for each area are an important tool to establish protected areas.

Conclusions

This checklist shows that the Caatinga forest has been scarcely studied so far. The characterization of fungi in unique ecosystems, apart from being a fundamental step to the taxonomic survey of a group, can lead to the development of studies on biotechnology, ecological roles and conservation status of this ecosystem. This also reflects the importance to increase the number of mycologists, in particular specialists in taxonomy, to perform research on dry environments. Otherwise, fungal diversity of extreme environments such as the Caatinga forest will largely remain unexplored. Our data is a framework to a study of biogeography of Aspergillus, Penicillium, and Talaromyces species in dry environments worldwide.

Acknowledgements

Renan N. Barbosa, Jadson D.P. Bezerra, Ana Carla S. Santos thank the FACEPE, CAPES and CNPq for scholarships and/or financial support. We thank Konstanze Bensch for nomenclatural assistance. The authors wish to thank reviewers for the critical revision of the manuscript.

References

Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of Aspergillus, Penicillium and Talaromyces (Eurotiales) and the description of P. vascosobrinhous sp. nov.

Hubka V, Kolarik M. 2012. β-tubulin parologue tubC is frequently misidentified as the benA gene in *Aspergillus section Nigri* taxonomy: primer specificity testing and taxonomic consequences. Persoonia: Molecular Phylogeny and Evolution of Fungi 29: 1-10.

Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of *Aspergillus*, *Penicillium* and *Talaromyces* (Eurotiales) and the description of *P. vascosobrinhous* sp. nov.

Reis RLS, Leao NSR, Souza AF, et al. 2015. Avaliação do potencial biotecnológico de *Aspergillus parasiticus* UCP 1281 no biotratamento de efluentes da indústria de laticínios e produção de lipídeos. E-xarta 8: 31-42.

