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ABSTRACT 
 

The growing need to address current energy and environmental problems has sparked an interest in developing 

improved biological methods to produce liquid fuels from renewable sources. Higher-chain alcohols possess 

chemical properties that are more similar to gasoline. Ethanol and butanol are two products which are used as 
biofuel. Butanol production was more concerned than ethanol because of its high octane number. Unfortunately, 

these alcohols are not produced efficiently in natural microorganisms, and thus economical production in industrial 

volumes remains a challenge. The synthetic biology, however, offers additional tools to engineer synthetic pathways 

in user-friendly hosts to help increase titers and productivity of bio-butanol. Knock out and over-expression of genes 

is the major approaches towards genetic manipulation and metabolic engineering of microbes. Yet there are 

TargeTron Technology, Antisense RNA and CRISPR technology has a vital role in genome manipulation of 

C.acetobutylicum. This review concentrates on the recent developments for efficient production of butanol and 

butanol tolerance by various genetically engineered microbes. 
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INTRODUCTION 

 
One of the greatest challenges for mankind in the 

21st century is to meet the growing demand for 

energy which is utilized in transportation, heating 
furnaces and other industrial processes in a 

suitable way 
1
. Biofuel production is classified into 

four generation (based on raw material). First 

generation biofuel synthesized from edible plant 
material and second-generation biofuel derived 

from non-food vegetable like feed stocks (e.g. 

Lignocelluloses material). Third generation biofuel 
is derived from the oleaginous materials through 

heterotrophic mode (microbes like microalgae, 

yeast, bacteria). Fourth generation biofuel is based 

on direct use of CO2 through phototrophic mode 
1,2

. 

Ethanol is largely incorporated as biofuel in 

Brazil, USA and some European countries. 
Ethanol can be blended with petrol or used as neat 

alcohol in dedicated engines.Taking advantage of 

high octane number and heat of vaporization; it is 
an excellent fuel for future’s advanced Flex-fuel 

hybrid vehicles
 2

. In spite of all these qualities of 

ethanol, currently butanol, higher alcohols, 

alkanes, alkenes and biodiesel are preferred due to 
higher octane number and other physiochemical 

properties (as higher alcohol don’t form azeotrope 

with water)
3-5

. Traditionally, bioalcohols are 
produced by fermentation process from naturally 

occurring microbes like yeast Saccharomyces 

cerevisiae, bacteria like Zygomonas mobilis and 
Clostridium acetobutylicum 

6-8
. According to 

Grand View Research Inc. there is a steep rise in 

demand for biobutanol production in the next few 

years due to efficient fermentation technologies 

and cellulosic extraction technologies. There is a 

growing interest in butanol production from 
chemical based synthesis to biobased 

9
. According 

to literature there are 6,600 articles titled with 

butanol out of which 746 articles has title of 

butanol production and 55 articles shows enhanced 
butanol production by engineered microbe (i.e 

genetic/metabolic/other type of engineering). The 

comparative analysis of articles entitled with 
butanol production and tolerance are explained 

graphically in figure 1. 

The microbes producing butanol are of genus 

Clostridia, but are also reported in traces in 
various fungi (eg. Penicillium, Aspergillus species) 

and bacteria growing on the cereals
10

. The strain 

most commonly used in genetic engineering are 
Clostridium acetobutylicum and Clostridium 

beijerinckii. Other microbes which produce 

butanol are E.coli, Pseudomonas species and 
S.cerevisiae. The pathway followed by 

Clostridium species for acetone, butanol and 

ethanol production is depicted in figure 2. Table 1 

shows a summary of all substrates utilized for 
biobutanol production, fermentation and 

purification process which was done in the year 

2015. Table 2 depicts agricultural waste and 
industrial waste used for the production of butanol. 

There are various other microbes available for 

butanol production apart from Clostridium 
acetobutylicum. Lactobacillus and Pseudomonas 

were found to have butanol tolerance of 3% and 

6% respectively 
11-14

. 

 

 

 
Figure 1. Graphical representation of butanol related (all key words in title) research article based on google 

scholar. (engg = engineering) 
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Table 1:List of microbes showing butanol production from 2015 publications 

Microbe Substrate Mode of 

fermentation 

Purification method Butanol 

Yield  

Ref. 

S.cerevisiae 

ASA2BR Adh1+5g 

Glucose  Batch - 300mg/L 15 

C.tyrobutyricum 
Δack–adhE2 

Glucose  Fed batch Gas stripping 55g/L 16 

E.coli Bw2V Glucose  Batch - 2.8g/L 17 

C.acetobutylicum 

ATCC 824 

Glucose  continuous Ex-situ recovery fermentation 146.9g/L 18 

 
Table 2: List of microbe using waste (agricultural/domestic/industrial) as substrate for butanol production 

Microbe Waste used Pretreatment Butanol Yield 
(g/L) 

Ref. 

C.saccharoperbutylacetonicum 

N1-4 

Palm oil waste Enzymatic hydrolysis 4.37 19 

C.acetobutylicum ATCC 824 Domestic organic 

waste 

Enzyme hydrolysis 3 20 

C.acetobutylicum Industrial dairy 

waste 

Enzymatic hydrolysis 7.5 21 

C.beijerinckii 5.8 

Immobilized C.acetobutylicum Waste starch - 15.3 22 

 

GENETIC ENGINEERING IN BUTANOL 

PRODUCTION 

 
Clostridium acetobutylicum 

 

Clostridium acetobutylicum a spore producing 
anaerobic solventogenic microbe was first isolated 

by Weisman in the early 1900. The fermentation 

carried out by the biofuel producer 

C.acetobutylicum is characterized by two phases, 
acidogenesis phase and solventogenesis phase. 

Acidogenesis occurs in exponential phase 

characterized by production of acid (acetate and 
butyrate). Solventogenesis occurs during transition 

of exponential and stationary phase characterized 

by production of solvents (acetone, butanol and 
ethanol)

23
. Amador-Noguez and his group reveal 

that in the kinetics of acetone, butanol and ethanol 

production there is a pH change in transition 

between acidogenesis and solventognesis. 
Metabolic remodeling reveals significant changes 

in an ordered series of metabolite concentration, 

involving all the metabolites synthesized during 
phase change from acidogenesis to 

solventogenesis 
24

. Incorporation of induced gene 

with mathematical modeling of fermentation 

process provides a mechanical representation of 
pH induced switch between the two phases 

25
. 

Clostridium is metabolically engineered for 

butanol production. Various mutation strains are 

formed, the genetic accessibility problem has been 
resolved by the in vivo methylation protocol using 

host strains lacking the very active restriction 

endonuclease Cac824 
26

. 
The strategies used for butanol production are 

disruption of butyrate, acetone, lactate and acetate 

pathways. The disruption of the butyrate acetone 

lactate pathway is done by 1) 
knockout/knockdown gene associated with 

butyrate, acetone, lactate and acetate 2) Inserting 

genes or over expressing genes (SpoA gene, 
groESL gene) associated with solvent production. 

Integrational plasmid technology, including 

replicating and non replicating plasmid is used, but 
due to low screening efficiency TargeTron 

technology is more preferred. Both technologies 

were used for improvement in butanol titer in 

solvent fermentation, but the disruption of adc 
gene causes increase in butanol production ratio 

from 70% to 80-85%. However Antisense RNA 

Technology is a potent and flexible tool for 
microbial manipulation (silencing) of gene without 

changing the regulation of gene expression. It is 

used in silencing of the ctfB gene for enhancing 

butanol ratio in solvent fermentation. The butanol 
production ratio was also improved when aad gene 
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is inserted in the strain M5 which is lacking 

megaplasmid pSOL1 (containing aad gene and 

acetone producing gene). In fermentation process 
of butanol production by C.acetobutylicum using 

different lignocellulosic material by heterologous 

minicellulosome was confirmed in two studies 

(metabolic engineering of C.acetobutylicum using 
C.thermocellum and C.cellulolyticum). The 

deletion of CRE (catabolic responsive element) 

causes 7.5 fold increase in butanol production 
11,23-

25
. Deletion of the gene spo0A performed by 

CRISPR analysis in Closrtidium beijerinckii also 

proved for ABE production. CRISPR analysis is a 

three year old method based on natural CRISPR 
(Cluster Regulatory Interspaced Short Palindromic 

Repeats) and CRISPR/Cas system (provide 

immune system by cleaving foreign DNA in 
bacteria and archea group). CRISPR analysis is a 

markerless and highly efficient deletion method of 

genome engineering done by simple cloning 
method. In this technique CRISPR array of target 

sequence transcribed and processed to form 

CRISPR-RNA (crRNA) guide Cas nuclease and 

cleave the target site with the help of protospacer-
adjacent motif (PAM). In type-II CRISPR analysis 

Cas9 is activated only with Trans Activating 

CRISPR RNA (TracrRNA) and CrRNA. It is a 
dual RNA complex guiding system. CRISPR 

technique has some limitations like the accuracy of 

CRISPR analysis depends on homologous 
recombinant efficiency of microbe, and the precise 

prediction of insertion site especially when target 

site is short 
27-29

. 

 
 

 

 
 

Escherichia coli 

E. coli is engineered for various biotechnological 

applications. There are 62 articles found in google 
scolar with titled butanol and coli as key word out 

of which 22 articles related to butanol production . 

In last half decades, there are 13 articles (total 42 

articles titled with coli butanol key words) 
showing butanol production from coli. Thus, it 

shows various advances in E.coli for biobutanol 

production 
6,30

. The acetone-butanol-ethanol 
(ABE) fermentation pathway of C.acetobutylicum 

used in production of butanol was first constructed 

in E.coli to establish a baseline for comparison to 

other hosts 31,32. Improved titers were seem to be 
achieved due to the co expression of S.cerevisiae 

formate dehydrogenase while over expression of 

E.coli glyceraldehyde3-phosphate dehydrogenase 
to elevate glycolytic flux improved titers to 

580mg/L and butanol production to 200mg/L 
31,33

. 

Currently the overall production of n-butanol and 
isobutanol is 0.001g/L to 30g/L and 4 to 50 g/L 

respectively 
6,17,31

. It was observed that the 

mutation of transcription factor of camp receptor 

protein causes increased tolerance of isobutanol up 
to 1.2% (v/v) against 2% isobutanol and 

productivity was 9.8g/L 
34

. However butanol 

production reached upto 2278±29g/(L*d) due to 
stereo selectivity of butanone as proR over proS 

for production of R-2-butanol over S-2-butanol 
35

. 

Recently E.coli was tested for potentials for the 
native promoter of hydrogenase I cluster Phya 

Bw2Vcarries plasmid pCNA-PHC and pENA-TA 

in anaerobic fermentation with extra glucose, the 

butanol production was up to 2.8g/l in batch 
culture bioreactor 

17
. 
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Figure 2. Pathway depicting butanol, acetone and ethanol production.E1 to E9 are enzymes involved in ABE 

pathway. E1-PTA-Phoshate acetyl transferase, E2-AK-Acetate kinase, E3-THL-ThiolaseA, E4-AAD-Alcohol 

aldehyde dehydrogenase, E5-CoAT- Co-A transferase, E6-AADC-Acetoacetate decarboxylase, E7-HBD-3 

Hydroxybutryl CoA dehydrogenase, E8-CRO-Crontonase, E9-BCD-Butyryl-CoA dehydrogenase, E10-PTB-

Phosphate butryl-transferase, E11-BK-Butyrate Kinase ( modified 36) 

 
Cyanobacteria 

Carbon Dioxide as a sole source of carbon for all 

plants, which can also be used for chemicals as 
well as in biofuel production 

37
. Synthetic pathway 

(Figure 3) was constructed in cyanobacteria 

Synechococcus elongates PCC7942 for the 

production of ethanol, n-butanol and 2,3-butandiol 
38-41

. The n-butanol production was 14.5mg/L in 

strain EL14 containing plasmid NSI T.d- ter (his 

tag) and plasmid NSII atoB, hbd, crt and adhE2 
whereas NADH driven metabolism (NADP 

dependent Adh from E.coli and Bldh from 

C.beijerinckii) in Synechococcus elongates EL22 

shows 29.9mg/L. The low productivity was due to 
toxicity 

38-40
. Butandiol was targeted because of the 

less toxicity and matches with the pathway of 

cyanobacteria. Production of butandiol was 
2.38g/L, which is significant in terms of 

exogenous pathway in cyanobacteria 
41

. 

Thermoanaerobacterium saccharolyticum 

Thermoanaerobacterium saccharolyticum strain 

JW/SL-YS485 closely related to thermophilic 
anaerobe, a gram positive bacteria. 

Thermoanaerobacterium were well characterized 

and engineered for the production of biohydrogen, 

ethanol and butanol
42,43

. The gene cluster used 
were hbd, crt, bcd, eftA, eftB from 

Thermoanaerobacterium thermosaccharolyticum 

DSM571 and adhE2 from C.acetobutylicum. The 
pathway for butanol production from 

C.acetobutylicum which shows that from 10g/L of 

xylose produces 0.84g/L (21% of theoretical) 

however lactate deficient strains shows 1.05g/L 
(26% of theoretical)

44
. 
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Figure 3:The pathway for acetoin and 2,3 butandiol 
production in S.elongates PCC7942. The acetoin/2,3-

butandiol production pathway contains three enzymatic 

steps from pyruvate 41. 

 

Klebsiella pneumoniae 

Klebsiella a gram negative, rod shaped bacteria 
was genetically modified for 1-butanol, 2-butanol, 

butandiol, propanediol, ethanol and hydrogen 
45-47

. 

Klebsiella pneumoniae was engineered to produce 

2-butanol and 1-butanol from crude glycerol as a 
sole carbon source. 1-butanol production from the 

Klebsiella was done by modifying CoA-dependent 

pathway and 2-2-keto acid pathway was 
established by expressing the genes for ter-bdhB-

bdhA and kivd respectively. The butanol titer and 

butanol production were found to be 15.03 mg/L 

and 27.79 mg butanol/g-cell and 28.7mg/L and 
51.58mg butanol/g cell. The native products are 

suppressed by antisense RNA strategy 
46

. 1-

butanol was produced by engineering a-
ketoisovalerate decarboxylase (kivd) and alcohol 

dehydrogenase (adh) from Lactococcus lactis into 

Klebsiella pneumoniae which bypassed the 
pathway for production of 2,3-butandiol. The yield 

was 320mg/L which shows increment by 2 folds 
48-50

. 

Geobacillus thermoglucosidasius 
The Geobacillus is a facultative anaerobic, rod-

shaped, gram-positive and endospore-forming 

bacterium. Geobacillus species are capable to 
grows between 40°C and 70°C 

51
. The Geobacillus 

was engineered for the production ethanol and 

isobutanol 
52,53

. The Geobacillus 

thermoglucosidasius was engineered with 
acetohydroxy acid synthase gene and 2-

ketoisovalerate dehydrogenase gene from 

B.subtilis and L.lactis respectively and promoter 

region of lactate dehydrogenase gene from 
Geobacillus thermodenitrificans. The isobutanol 

produced was 3.3g/L from glucose as substrate. 

Lin et al., showed that isobutanol was produced at 
elevated temperature of 50°C 

53
. 

Pyrococcus furiosus 

Pyrococcus furiosus is a heterophilic 

archaebacteria. It is cocci shaped, flagellated 
bacterium whose metabolic products are CO2 and 

H2 
54,55

. The Pyrococcus furiosus was genetically 

engineered for butanol production at elevated 
temperature. Lactate dehydrogenase gene from 

Caldicellulosiruptor bescii was expressed in 

Pyrococcus for the production of 3-
hydroxypropionate (further used as electrofuel) 

using hydrogen as a substrate 
56-59

. 1-butanol and 

2-butanol production pathway was established in 

Pyrococcus furiosus. Genes responsible for the 
enzyme involved in first three reactions acetylCoA 

to crontylCoA isolated from Thermoanaerobacter 

tengcongensis and trans-2-enoyl-CoA reductase 
(ter) was from Spirochaete thermophila and 

butyraldehyde dehydrogenase (Bad) and butanol 

dehydrogenase (Bdh) was obtained from 
Thermoanaerobacter sp. X514. The production of 

1-butanol and 2 butanol was 70mg/L and 15mg/L 

after 48 hr from genetically engineered 

Pyrococcus furiosus at 60°C respectively 
60

. 
Yeast 

Saccharomyces is well known as yeast used in 

various fermentation processes, especially 
beverage industry and alcohol production 

61
. 

Saccharomyces cerevisiae has been genetically 

modified, for the production of 1-butanol, 

isobutanol and 2-butanol. The optimal 1-butanol 
and isobutanol production was approximately 

matched with the theoretical production of butanol 

product. The maxima was 242.8mg/L from 
glucose by deleting gene ∆adh1, ∆ilv2 of YSG52 

strain and 92mg/L from glycine as a single protein 

source by using novel pathway by converting 
glycine into glyoxylate further β-ethylmalate then 

α-ketovalerate into butanol by following Ehlich 

pathway 
62

. The maxima for optimum production 

of isobutanol was 1620mg/L in a YPH499 strain 
by using full cytoplasmic pathway with 

concomitant mitochondrial gene ILv2,ILV2, 
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ILV2∆54, ILV3∆41, ILV5∆47,ADH6, MAE1 

Lactococcus lactis gene kivD 
63

. 

 

 
Table 3: List of genetically engineered microbes to produce butanol 

Microorganism Modification Product Yield Ref. 

E.coli Deletion of adh, ldh, frd, fnr and pta 

and insertion of bcd-etfAB from 

C.acetobutylicum 

n-Butanol 

 

0.37g/L 31 

GapA from E.coli over-expression 
Fdh1 from Saccharomycesis 

cerevisiae adhE2, bcd, etfAB from C. 

acetobutylicum 

0.58g/L 33 

over-expression of kivd (L.lactis), 
ADH2 (S.cerevisiae), and the E.coli 

ilvA, leuABCD, thrAfbrBC 

1.250g/L 79 

S.cerevisiae ERG10 (E.coli) hbd, crt, adhE2 
(C.beijerinckii) ccr from S.collinus 

n-Butanol 2.5mg/L 80 

C.acetobutylicum Synthetic isopropanol operon n-Butanol 14.74g/L* 81 

Knock out of Plasmid SOL1, and aad 

(ptb promoter) 

 11.396g/L# 82 

Ribosomal engineering 12.48g/L(butanol 
tolerance of 1.2 

to 1.4%) 

83 

Coprodution of riboflavin 14.09*# 84 

Adc promoter insertion 8.9g/L 85 

Integrated DNA tech approach 23.4g/L 86 

C.tyrobutyricum Knock out of ack n-Butanol 16g/L 87 

S.elongatusEL14 Plasmid NSI T.d- ter(his tag) 
Plasmid NSII atoB, hbd, crt and 

adhE2 

n-butanol 14.5mg/L 39 

S.elongatusEL22 NADP dependent Adh from E.coli and 

Bldh from C.beijerinckii 

 29.9mg/L 40 

S.elongatus PCC7942 Adh from C.beijerinckii butandiol 2.38g/L 41 

T.saccharolyticum C.acetobutylicum n-butanol 1.05g/L 44 

K.pneumoniae 

 

Modifying CoA-dependent and 2-2-

ketoacid pathway Ter-bdhB-bdhA and 

kivd 

1-butanol 

 

 

27.79mg 1-

butanol/g cell 

51.58mg 2-

butanol/g cell 

50 

 α-ketoisovalerate decarboxylase and 

alcohol dehydrogenase from L.lactis 

2-butanol 320mg/L 48 

G.thermoglucosidasius Aceto-hydroxy-acid sythase 
(B.subtilis) and 2-keto-isovalerate 

dehydrogenase (L.lacti) 

Isobutanol 3.3g/L 53 
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P.furiosus Enzymes from acetylCoA to 
crontylCoA (T.tengcogensis), ter 

(S.thermophila)Bad and Bdh ( 

Thermoacetobacter sp.X514) 

1-butanol 
2-butanol 

70mg/L 
15mg/L 

60 

Keys # = calculated; * used for n-butanol however isopropanol operon is not produced that much amount at 

optimized condition; ldh (lactate dehydrogenase); pta (phosphate acetyltransferase), Kivd (2-ketoacid 

decarboxylase); ter (NADH dependent crotonyl-CoA specific trans-enoyl-CoA reductase); T.d-ter histidine tag 

(NADH dependent crotonyl-CoA especific to trans-enoyl-CoA reductase from Treponema denticola); ccr (Butyryl-

CoA dehydrogenase); ERG10 (acetoacetyl-CoA thiolase); fnr (DNA-binding transcriptional dual regulator, a global 

regulator for anaerobic growth), gapA (glyceraldehyde-3-phosphate dehydrogenase A); ack (acetate kinase); hbd 

(beta-hydroxybutyryl-CoA dehydrogenase); crt (crotonase); bcd (butyryl-CoA dehydrogenase); ptb (phosphor-trans-

butyrylase); adh (alcohol dehydrogenase); bdh (butanol dehydrogenase); adhE2 (aldehyde-alcohol dehydrogenase); 

frd (fumarate reductase); atoB (acetyl-CoA acetyltransferase); Bad (butyraldehyde dehydrogenase); aad (alcohol 

aldehyde dehydrogenase); etfAB (electron transfer flavoprotein); bldh (butyraldehyde dehydrogenase); fdh1 

(NAD(+)-dependent formate dehydrogenase); ilvA; leuABCD (2-isopropylmalate synthase (LeuA), Isopropylmalate 
isomerase (consisting of two subunits LeuC and LeuD), metal-dependent 3-isopropylmalate dehydrogenase (LeuB)) 

; thrAfbrBC ( thiolase Afeedback resistant with A and B thiolase) 

 

GENETIC ENGINEERING FOR BUTANOL 

TOLERANCE 
Solvent toxicity, is a one of the major limiting 

factors which hampers the cost-effective bio-

production of butanol and ethanol. Butanol as like 

other alcohol is toxic to cells in slightly higher 
concentrations. In Clostridium acetobutylicum, a 

functionally unknown protein encoded by SMB 

G1518 showing the alcohol interesting site was 
identified. Disruption of SMB G1518 and/or its 

down regulating gene SMB G1519 resulting 

increase in butanol tolerance, while decrements 
was observed when overexpressed. These genes 

also influence the production of 

pyruvate:ferredoxin oxidoreductase (PFOR) and 

flagellar protein hag, which maintain cell motility 
64

. The mutants of C.acetobutylicum ATCC824 

shows tolerance to 1.8% butanol 
65-67

. Membrane 

composition shows similarity with a strain of 
Staphylococcus haemolyticus which has shown 

tolerance to increased solvent concentration 
6
. 

However limited growth in butanol was found in 

S.cerevisiae upto 2% but some microbe shows 

tolerance to 3% butanol while simulation results 
showed maximum tolerance of 4% by 

C.acetobutylicum 
73,91,95,96,98,99

. Shuttle vector 

pCAC1839 due gene have similarity with the 

xenobiotic responsive element and it shows an 
increase in tolerance of 13 to 81% on introduction 

to C.acetobutylicum ATCC 824 
6,68

. The over 

expression of genes entC (isochorismate synthase) 
and FeoA (small iron tansport protein) shows an 

increase in butanol tolerance by 32.8% and 49.1% 

respectively, and by astE gene deletion butanol 
tolerance was enhanced by 48.7%. By knock out 

of Cac-3319 gene (histidine kinase production) by 

cis tron group II intron based inactivation system it 

enhances the biobutanol tolerance by 44.4% 
69

. 
Isobutyrlaldehyde (an intermediate metabolite) 

toxic to cyanobacteria due to its high 

concentration. Therefore isobutyrlaldehyde 
production was eluded by use of different pathway 

for the production of 2.3-butandiol 
70

. 

 
Table 4: List of microbes used for butanol tolerance 

Microorganism Method Tolerance Ref. 

E.coli Over-expressing rob 2.1% 88 

Proton irradiation 1.2% 89 

Protoplast fusion 2% 90 

Deletion of astE over-expression of entC, 

FeoA, factor cyclic AMP and OmpT 

3% 91 

L.brevis - 3% 73 

C.beijerinckii Antisense RNA down regulating gldA 0.6% 92 
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C.acetobutylicum Over-expression of groESL 0.75% 93 

Auxotrophic method 1.6% 67 

Ribosomal mutation 1.9% 94 

Nitrogen Ion beam implantation 3% 95 

Artificial simulation of bioevolution 4% 96 

S.cerevisiae Mutation 1.9% (2% very less strains) 97 

Enterococcus 

faecalis 

Natural 3.5% 98 

Eubacterium 
cylindroides 

Natural 3% 

Synechocystis Over-expression of SigB 2.5-3% 99 
Keys: rob(Right oriC binding); astE(Succinylglutamate desuccinylase); entC ( enterobactin C); FeoA(ferrous iron 

transport protein A); ompT( outer membrane protein); gldA(glycerol dehydrogenase); groESL( Heat shock proteins); 

SigB (RNA polymerase sigma B factor) 

Integration of heterologous (HSPs) has been used to improve the tolerance of solvent in E.coli 70,71. Overexpression of 

autonomous HSPs genes mainly GroES, GroEL, ClpB, GrpE and Lpl promoter increases E.coli tolerance to ethanol 

and biobutanol 67,72-74. In addition to HSPs gene, mar-sol regulon genes which are responsible for solvent tolerance, 

mmsB, zwf a member of mar-sol was used for the ethanol tolerance. The researchers indicate that this regulon 

changes the membrane pumps for exportation of solvents 75-77. 

 

CONCLUSION  
 
Butanol or isomer of butanol was not up to the 

mark for commercial use as biofuel. There are 

various microbes, including cyanobacteria, 
thermophilic bacteria, archeobacteria used for the 

production of butanol. The thermophilic bacteria is 

used as a key microbe for increasing the yield of 

butanol production and it also reduces the steps 
involved in downstream processing. Yet 

productivity was not satisfactory. Geobacillus 

thermodenitrificans and cyanobacteria are 
promising microbes for butanol yield and in case 

of eukaryotes isobutanol production of yeast was 

less than 1g/L. Sterioselectivity also shows 
promising results. Heat shock proteins plays 

important role in enhancing cell tolerances 

towards solvent toxicity. In addition to it there is a 

regulon which increases the cell permeability 
towards butanol extraction by changing the 

membrane composition and increasing the number 

of solvent extraction pumps. Cyanobacteria and 
themophilic bacteria seem to be the best option in 

the future for the production of butanol as biofuel. 

The butanol tolerance and butanol ratio were most 

concerned factors for enhanced production of 
biobutanol in industrial scale. 

CRISPR approach is a new technique and can be 

used as efficient technology for improving butanol 

tolerance, production and downstream processing. 
A wide range of thermophilic fungi and bacteria 

are identified which can be genetically 

manipulated for cost effective butanol production. 
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