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Abstract: DNA vaccines have been evaluated as an option to prevent several diseases. In this study, the 

capacity of the xanthan biopolymer to improve the DNA vaccines immune response, administered 

intramuscularly, was evaluated. The experimental vaccines consisted of genes encoding fragments of the 

proteins LigA and LigB of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Copenhageni strain 

Fiocruz L1-130. The humoral immune response was evaluated by indirect ELISA. Cytokine expression levels 

were determined by RT-qPCR. Compared to the control group, the IgG antibody levels of animals immunized 

with pTARGET/ligAni and pTARGET/ligBrep plasmids associated with xanthan biopolymer were significantly 

higher than the control group. Additionally, there was a significant increase in IL-17 expression in animals 

vaccinated with pTARGET/ligBrep and xanthan. 
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INTRODUCTION 

Vaccines have contributed significantly to the reduction of mortality and morbidity rates of many 

infectious diseases [1]. To obtain safer vaccines, different strategies have been evaluated, such as DNA 

vaccines. Compared to conventional or subunit vaccines, these have greater stability, lower production cost, 

high protective potential with low or no risk of reversion of virulence disease induction [2,3]. However, the 

results were disappointing, because of the low immunogenicity and low induction of antibody titers [2,4]. 

Considering this last point, the discovery of novel safe adjuvants is essential for the development of more 

effective DNA vaccines. 

Adjuvants are natural or synthetic substances, which, when associated with antigens, can enhance the 

immune response [1,5]. Thus, they can reduce the number of vaccine doses required to achieve protection 

and the amount of antigen, thus also reducing vaccine production costs [6]. The biopolymer xanthan is an 

extracellular polysaccharide, produced by bacterial Xanthomonas spp., and was initially described as a 

lymphocyte activator [7]. Recently, its anti-tumor activity and ability to activate the immune system to 

production antibodies [5,8] and activate cytotoxic T lymphocytes were described [9]. Despite these 

characteristics, the xanthan biopolymer has so far not been evaluated as an adjuvant in DNA vaccines. 

Leptospirosis is a neglected infectious disease of worldwide importance [10]. The vaccines currently 

available on the market have several flaws, such as short-term immunity and a lack of cross-protection 

against different serovars [1]. Currently, the most promising experimental vaccines involve the family of 

Leptospiral immunoglobulin-like proteins (Lig), namely LigA and LigB, which are present on the surface of 

pathogenic species [11]. Thus, the purpose of this study was to evaluate, in mice, the adjuvant activity of 

xanthan biopolymer on the humoral and cellular immune response to DNA vaccines. 

MATERIAL AND METHODS  

Escherichia coli TOP10 (Invitrogen) and E. coli BL21 (DE3) Star were grown in Luria-Bertani broth (LB) 

with 100 μg.ml-1 ampicillin at 37 °C in an orbital shaker at 200 rpm for 18 h. Xanthomonas arboricola pv  pruni 

strain 106, obtained from the strain bank of the Laboratório de Biopolímeros, Centro de Desenvolvimento 

Tecnológico, Biotecnologia, Universidade Federal de Pelotas, was grown as previously described [8,12]. The 

xanthan yield was calculated in grams of dry polymer per liter of fermentation broth (g.L-1) [12]. For the 

experiments, the xanthan was suspended in sterile pyrogen-free water at 1.0% (w/v).  

The vaccine plasmids were constructed with the genes ligAni (pTARGET/ligAni) and ligBrep 

(pTARGET/ligBrep), and their functionality assessed as previously described [13]. Plasmids were obtained 

from the transformation of E. coli TOP10 strains by heat shock with pTARGET/ligAni and pTARGET/ligBrep 

as described [14]. Plasmid DNA was quantified by electrophoresis on 0.8% agarose gel, using λ DNA/HindIII 

marker as reference and with a Qubit Fluorometer (Invitrogen). After stored at -20 °C until use. 

The cloning, expression, and purification of the proteins rLigAni and rLigBrep were obtained as previously 

described [11]. Proteins expression was verified by 12% SDS-PAGE and Western blot using peroxidase-

conjugated monoclonal anti-6xHis-tag antibody (Sigma-Aldrich) at 1:10,000 dilution according to the 

manufacturer's instructions. Recombinant proteins were purified by Ni+2 affinity chromatography in 1 ml 

columns (Invitrogen), using a solubilization buffer (0.2 M NaH2PO4; 0.5 M NaCl; 10 mM Imidazole, 8M urea). 

The purified proteins were dialyzed against phosphate-buffered saline (PBS pH 7.2) at 4 °C for 24 h, 

quantified with BCATM Protein Assay Kit (Thermo Scientific Pierce) according to the manufacturer's 

instructions and stored at -20 °C until further use.  

Four to six weeks old female mice were randomly divided into four groups containing 12 animals each. 

The immunization protocol consisted of three doses given intramuscularly on days zero, 14 and 21. 

Approximately 45 min before immunization, all animals received 100 µL of a solution containing 25 % sucrose 

at the application site of the vaccine to promote further DNA absorption. Groups 1 and 2 were inoculated with 

100 µg of pTARGET/ligAni, while groups 3 and 4 received the same dose of pTARGET/ligBrep. Groups 2 

and 4 received, together with the plasmid, 50 µL of 1 % xanthan biopolymer (w/v). Blood samples were 

collected by puncturing the retro-orbital venous plexus one day before each immunization and one week after 

the last (days -1, 13, 20, and 28) and centrifuged (3,000 × g, 5 min) for serum collection to assess the humoral 

immune response. Serum samples were stored at -20 °C until further use. 

For cellular immune response evaluation, blood samples were collected on day 38 and stored at -70°C 

for RNA extraction. To increase the immune response against the targets, an intraperitoneal booster dose 

with recombinant protein was performed on day 35. Groups 1 and 2 received 50 µg of rLigAni, and groups 3 

and 4 received 50 µg of rLigBrep. Samples for RNA extraction were stored at -70 °C. In this study, no negative 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


  Xanthan as adjuvant for DNA  3 
 

 
Brazilian Archives of Biology and Technology. Vol.63: e20190090, 2020 www.scielo.br/babt 

control group inoculated with empty pTARGET plasmid was added. The reason was that this had already 

been reported by Forster and colleagues [13], allowing a reduction in the number of animals used in the 

experiment.  

Indirect ELISA using sera before and after immunizations was used to evaluate the IgG antibody levels 

as previously described [15]. Briefly, 96-well polystyrene microplates (CralPlast) were coated with 200 ng/well 

of rLigAni or rLigBrep diluted in carbonate-bicarbonate buffer 0.05 M (pH 9.6). The serum of each animal, 

collected on days -1, 13, 20, and 28, were diluted 1:30 in PBS-T and added to each well (sera from group 1 

and 2 were tested against rLigAni, while group 3 and 4 against rLigBrep). Peroxidase-conjugated goat anti-

mouse polyvalent antibody (Sigma-Aldrich) diluted in PBS-T (1:4,000) was used as secondary antibody. The 

incubation steps with antibodies (50 µL/well) occurred for 1 h at 37 °C. The plates were washed thrice with 

200 µL/well of PBS-T between incubations (after the secondary antibody, the plates were washed five instead 

of three times). The reactions were developed by adding orthophenylenediamine solution (OPD) diluted in 

phosphate-citrate buffer 0.2 M (pH 4.0) with 0.01 % H2O2. The plates were maintained in the dark for 15 min 

at room temperature and read at 450 nm in a microplate spectrophotometer (Thermo Plate). The serum of 

each animal was evaluated in duplicate. The IgG antibody levels were expressed as ELISA units, dividing 

the arithmetic mean of the serum absorbance of each animal by the arithmetic mean absorbance of each 

animals on day -1 [16].  

The cellular immune response was assessed according to the protocol as previously described [17] with 

modifications. Blood samples of the animals were collected three days after the intraperitoneal injection of 

50 µg of recombinant proteins LigAni (groups 1 and 2) and LigBrep (groups 3 and 4). Blood samples of each 

group were used for three pooled samples containing 50 µL of blood of each animal. From the three pools 

per group, peripheral blood mononuclear cell (PBMC) total RNA was extracted by the Gene JET Whole Blood 

RNA Purification Mini Kit (Thermo Scientific) according to the manufacturer's instructions. The contaminating 

genomic DNA was removed using an RNase-Free DNase (Promega) according to the manufacturer’s 

instructions and the total RNA was quantified with NanoVue spectrophotometer (GE Healthcare, UK). The 

cDNA synthesis was performed employing PBMC total RNA (0.5 µg) and the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems™, UK) according to the manufacturer's protocol. The expression levels 

of mRNA cytokines (IL-4, IL-12, IL-17, IFN-γ and TGF-β) was quantified by qPCR by using specific primers 

(18-20).  The qPCR reactions were performed using Stratagene® Mx3005P™ Real-Time PCR System 

(Agilent Technologies, USA) and reactions were carried out in duplicate. The qPCR using SYBR Green PCR 

Master Mix (Applied Biosystems™, UK) was carried out in a 12.5 μL reaction volume (50 ng of cDNA, 6.25 

μL of Master Mix, 0.1 to 0.4 μM of each primer). The reaction conditions consisted of 95°C for 10 min; 40 

cycles of 95 °C for 15 s and 60 °C for 60 s. A melting curve was included for each run in order to ensure the 

specificity of the amplified products. To determine the qPCR efficiencies and R2 values for each reaction, a 

dilution series was made from the cDNA template for each target gene. The Ct data were analyzed by 2-

ΔΔCt method with efficiencies (E) correction using software REST 2009 (21). The relative change in the gene 

transcription ratio (relative expression) for each target gene was calculated by normalizing gene expression 

to the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) reference gene.  

Student t test was used to determine significant differences (P < 0.05) between ELISA units of vaccinated 

animals. Tukey test was used to determine significant differences (P < 0.05) between the mRNA levels for 

cytokines. Software Prism 5 (GraphPad) was used for all statistical analyses.  

Animals were maintained according to international standards and in line with the ethical principles of 

animal experimentation determined by the Brazilian College of Animal Experimentation (COBEA). The study 

outline was approved by the Committee of Ethics in Animal Experimentation (CEEA) of UFPel (registration 

No. 7603).  

RESULTS 

The plasmids pTARGET/ligAni and pTARGET/ligBrep were extracted yielding approximately 12 mg of 

plasmid per liter of culture. rLigAni and rLigBrep expression in E. coli BL21 (DE3) Star was effective, since 

bands of 64 and 72 kDa were detected by Western blot with anti-6xHis antibody (data not shown). 

Vaccination with a three-dose strategy using xanthan biopolymer as adjuvant, enhanced the specific 

humoral immune response of both DNA vaccines tested (Figure 1). Antibody levels of the group vaccinated 

with pTARGET/ligAni and the xanthan biopolymer were higher than the antibody levels of the group 

vaccinated with the plasmid alone after the 2nd dose. The antibody levels of animals treated with 

pTARGET/ligBrep and the xanthan biopolymer were only higher than those of the group vaccinated with the 

plasmid alone after the 3rd dose (P < 0.05).  
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The cytokine mRNA levels involved in the TH1 (IFN-γ, IL-12), TH2 (IL-4), Treg (TGF-β), and TH17 (IL-17) 

responses were assessed by RT-qPCR of PBMCs after in vivo stimulation with the recombinant antigens. 

Comparing the cytokine gene expression levels between the control (groups inoculated with plasmid 

pTARGET/ligAni and pTARGET/ligBrep without adjuvant) and those treated with the xanthan biopolymer as 

adjuvant, there were no differences between the cytokine levels in groups 1 and 2, which received plasmid 

pTARGET/ligAni (Figure 2A). However, between groups 3 and 4, which received the pTARGET/ligBrep 

plasmid, there was an increase in TH17 response characterized by the induction of a significant increase in 

IL-17 levels in the xanthan-treated group (P < 0.01) (Figure 2B).  The IL-17 plays a fundamental role in tissue 

inflammation and activation of neutrophils to combat extracellular bacteria [22,23]. 

 

Figure 1. Evaluation of the humoral immune response induced by the DNA vaccines using xanthan biopolymer as 
adjuvant. Panels A, B, and C represent IgG antibody levels after the first, second, and third dose, respectively, for groups 
1 and 2, treated with plasmid pTARGET/ligAni. Panels D, E, and F represent IgG antibody levels after the first, second, 
and third doses, respectively, for groups 3 and 4, which received the pTARGET/ligBrep plasmid. Control groups were 
inoculated with plasmid pTARGET/ligAni and pTARGET/ligBrep without adjuvant.  Data were analysed using t Sudent 
test and asterisks (*) represent statistical difference to the control group (P < 0.05).  
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Figure 2. Relative cytokine gene expression.  Gene expression of IL-4, IL-12, IL-17, IFN-γ, and TGF-β was measured 
in PBMCs of the mice groups 1 and 2 treated with plasmid pTARGET/ligAni, (A), and PBMCs of the mice groups 3 and 
4, which received the pTARGET/ligBrep plasmid, (B). The mice groups 2 and 4 were treated with the recombinant 
plasmids plus biopolymer xanthan as adjuvant. Relative gene expression was determined by qPCR and calculated using 
the 2-ΔΔCt method with E correction, using gadph mRNA expression as reference gene. Data were analysed using 
Tukey test and asterisks (**) represent statistical difference to the control group (P < 0.01). 

DISCUSSION 

This study demonstrated that the xanthan biopolymer enhanced the humoral immune response to DNA 

vaccines against leptospirosis. The xanthan biopolymer adjuvant effect exact mechanism of action is not yet 

fully understood. However, different effects on the immune system have been reported, such as the ability to 

increase nasal IgA levels in an influenza vaccine [24] and liposome efficiency as delivery system for a nasal 

vaccine, also for the virus influenza [25]. In addition, it is able to induce the production of IL-12 and TNF-α by 

macrophages [9]. Studies with mice have shown that signaling through toll-like receptors (TLR) is sufficient 

to initiate an adaptive immune response, and since xanthan biopolymer contains mannose on its structure, it 

may act as an agonist to TLR-2 [25]. However, it had never been evaluated as an adjuvant for a DNA vaccine. 

Previous studies have found promising results using the xanthan biopolymer as an adjuvant in a subunit 

vaccine for leptospirosis employing rLigAni as antigen. In this study, the use of the xanthan biopolymer 

increased the IgG levels and consequently improved protection hamsters against challenge. In addition, no 

cytotoxicity was observed in CHO cells in vitro [8]. A low incidence of adverse events is important for the 

advancement of new vaccine. The biosafety of xanthan biopolymer is evident in the fact it has been used as 

an FDA-approved food additive [5, 25, 26]. Moreover, previous studies have demonstrated that xanthan 

biopolymer preparations have a record of safety [8,27].  

The major protective effect of vaccines against leptospirosis was obtained in a vaccine using the rLigAni 

as immunogen and Freund's complete adjuvant. However, these adjuvants can cause a number of side 

effects such as granuloma, pain, sensitivity, and erythema [28]. Other adjuvants evaluated in DNA vaccines 

were also able to enhance the humoral immune response, often leading to a reduction of symptoms and 

increased survival, but not preventing the infection completely [29].  

Our findings represent an important contribution to the field of vaccine development. This is the first 

report on the capacity of xanthan biopolymer to improve mainly the humoral immune response of DNA 

vaccines. In addition, for being a natural polysaccharide, it is assumed that there are no adverse or side 
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effects to xanthan biopolymer and thus it can safely act as an adjuvant for DNA vaccines, as highlighted in 

this study.   

Conflicts of Interest: The authors declare no conflict of interest. 

REFERENCES  

1. Silveira MM, Oliveira TL, Schuch RA, McBride AJA, Dellagostin OA, Hartwig DD. DNA vaccines against

leptospirosis: A literature review. Vaccine. 2017;35(42):5559-67.

2. Coban C, Kobiyama K, Jounai N, Tozuka M, Ishii KJ. DNA vaccines: a simple DNA sensing matter? Hum Vaccin

Immunother. 2013;9(10):2216-21.

3. Yurina V. Live Bacterial Vectors-A Promising DNA Vaccine Delivery System. Medical sciences. 2018;6(2).

4. Houser KV, Yamshchikov GV, Bellamy AR, May J, Enama ME, Sarwar U, et al. DNA vaccine priming for

seasonal influenza vaccine in children and adolescents 6 to 17 years of age: A phase 1 randomized clinical trial.

PloS one. 2018;13(11):e0206837.

5. Schuch RA, Oliveira TL, Collares TF, Monte LG, Inda GR, Dellagostin OA, et al. The Use of Xanthan Gum as

Vaccine Adjuvant: An Evaluation of Immunostimulatory Potential in BALB/c Mice and Cytotoxicity In Vitro.

BioMed research international. 2017;2017:3925024.

6. Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends

Immunol. 2009;30(1):23-32.

7. Ishizaka S, Sugawara I, Hasuma T, Morisawa S, Moller G. Immune responses to xanthan gum. I. The

characteristics of lymphocyte activation by xanthan gum. Eur J Immunol. 1983;13(3):225-31.

8. Bacelo KL, Hartwig DD, Seixas FK, Schuch R, Moreira Ada S, Amaral M, et al. Xanthan gum as an adjuvant in

a subunit vaccine preparation against leptospirosis. Biomed Res Int. 2014;2014:636491.

9. Takeuchi A, Kamiryou Y, Yamada H, Eto M, Shibata K, Haruna K, et al. Oral administration of xanthan gum

enhances antitumor activity through Toll-like receptor 4. Int Immunopharmacol. 2009;9(13-14):1562-7.

10. Monte L G,  Leal FMA, Hartwig DD, Vasconcellos SA, Brihuega B, Dellagostin OA, Hartleben CP, Production

of Leptospiral LipL32 Antigen in Pichia pastoris and Its Use in an Enzyme-Linked Immunosorbent Assay.

Brazilian Archives of Biology and Technology. 2014; 57 (3): 357-360.

11. Conrad NL, Cruz McBride FW, Souza JD, Silveira MM, Felix S, Mendonca KS, et al. LigB subunit vaccine

confers sterile immunity against challenge in the hamster model of leptospirosis. PLoS neglected tropical

diseases. 2017;11(3):e0005441.

12. Vendruscolo CT,   invento; Federal University of Pelotas, assignee. Process for Preparing a Xanthan 

Biopolymer. Brazil Patent WO/2006/047845. 2005. 

13. Forster KM, Hartwig DD, Seixas FK, Bacelo KL, Amaral M, Hartleben CP, et al. A conserved region of leptospiral

immunoglobulin-like A and B proteins as a DNA vaccine elicits a prophylactic immune response against

leptospirosis. Clin Vaccine Immunol. 2013;20(5):725-31.

14. Green M, Sambrook J. Molecular Cloning: A Laboratory Manual. 4 ed. New York: Cold Spring Harbor Laboratory

Press; 2012.

15. Silveira MM, Conceicao FR, Mendonca M, Moreira GM, Da Cunha CE, Conrad NL, et al. Saccharomyces

boulardii improves humoral immune response to DNA vaccines against leptospirosis. Journal of medical

microbiology. 2017;66(2):184-90.

16. Roos TB, de Lara AP, Dummer LA, Fischer G, Leite FP. The immune modulation of Bacillus cereus var. Toyoi

in mice immunized with experimental inactivated Bovine Herpesvirus Type 5 vaccine. Vaccine.

2012;30(12):2173-7.

17. Barjesteh N, Hodgins DC, St Paul M, Quinteiro-Filho WM, DePass C, Monteiro MA, et al. Induction of chicken

cytokine responses in vivo and in vitro by lipooligosaccharide of Campylobacter jejuni HS:10. Vet Microbiol.

2013;164(1-2):122-30.

18. Cardona PJ, Gordillo S, Diaz J, Tapia G, Amat I, Pallares A, et al. Widespread bronchogenic dissemination

makes DBA/2 mice more susceptible than C57BL/6 mice to experimental aerosol infection with Mycobacterium

tuberculosis. Infection and immunity. 2003;71(10):5845-54.

19. Jacob E, Hod-Dvorai R, Ben-Mordechai OL, Boyko Y, Avni O. Dual function of polycomb group proteins in

differentiated murine T helper (CD4+) cells. Journal of molecular signaling. 2011;6:5.

20. Narita K, Hu DL, Mori F, Wakabayashi K, Iwakura Y, Nakane A. Role of interleukin-17A in cell-mediated

protection against Staphylococcus aureus infection in mice immunized with the fibrinogen-binding domain of

clumping factor A. Infection and immunity. 2010;78(10):4234-42.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


  Xanthan as adjuvant for DNA  7 
 

 
Brazilian Archives of Biology and Technology. Vol.63: e20190090, 2020 www.scielo.br/babt 

21. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and 

statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36. 

22. Benchetrit F, Ciree A, Vives V, Warnier G, Gey A, Sautes-Fridman C, et al. Interleukin-17 inhibits tumor cell 

growth by means of a T-cell-dependent mechanism. Blood. 2002;99(6):2114-21. 

23. Kaiko GE, Horvat JC, Beagley KW, Hansbro PM. Immunological decision-making: how does the immune system 

decide to mount a helper T-cell response? Immunology. 2008;123(3):326-38. 

24. Bertram U, Bernard MC, Haensler J, Maincent P, Bodmeier R. In situ gelling nasal inserts for influenza vaccine 

delivery. Drug Dev Ind Pharm. 2010;36(5):581-93. 

25. Melo C, Garcia PS, Grossmann MVE, Yamashita F, Antônia LHD, Mali S. Properties of Extruded Xanthan-

Starch-Clay Nanocomposite Films. Brazilian Archives of Biology and Technology. 2011;54 (6): 1223-1333.  

26. Bellini MZ, Oliva-Neto P, Moraes AM. Properties of Films Obtained from Biopolymers of Different 

27. Origins for Skin Lesions Therapy. Brazilian Archives of Biology and Technology. 2015; 58 (2): 289-299. 

28. Chiou CJ, Tseng LP, Deng MC, Jiang PR, Tasi SL, Chung TW, et al. Mucoadhesive liposomes for intranasal 

immunization with an avian influenza virus vaccine in chickens. Biomaterials. 2009;30(29):5862-8. 

29. Aucouturier J, Ascarateil S, Dupuis L. The use of oil adjuvants in therapeutic vaccines. Vaccine. 2006;24 Suppl 

2:S2-44-5. 

30. Lin WH, Vilalta A, Adams RJ, Rolland A, Sullivan SM, Griffin DE. Vaxfectin adjuvant improves antibody 

responses of juvenile rhesus macaques to a DNA vaccine encoding the measles virus hemagglutinin and fusion 

proteins. J Virol. 2013;87(12):6560-8. 

 
 

© 2020 by the authors. Submitted for possible open access publication under the terms 

and conditions of the Creative Commons Attribution (CC BY NC) license 

(https://creativecommons.org/licenses/by-nc/4.0/). 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

