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ABSTRACT
This case study, using a regional climate model (RegCM-4.7) in high horizontal resolution, allowed to obtain information on 

the intensity of the average vertical wind profile over the Alcântara Launch Center (ALC), Brazil. In the literature, on the wind 
intensity, the lack of continuous monitoring of the existence of flows in the vertical profile of the wind at heights of 400 to 600 m 
and the measurement of its magnitude make it possible to have an estimate lower than what can occur in reality at a low level in 
the region for operational purposes for the rocket launch. Therefore, this works results points to an intraseasonal variability of the 
wind intensity with maximum winds of the order of 14 to 20 m·s-1 in the core wind intensity at heights of 600 m, corresponding to 
pressure levels of the order of 930 hPa, in August, September and October 2020. These intensity values should be further studied 
with the use of observation equipment such as sound detection and ranging (SODAR) in the continuation of this research, in 
moment future, as well; the global models of reanalysis have low resolution and are not suitable for comparisons.
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INTRODUCTION

In space activities, a very important parameter of operational relevance is the vertical wind profile, which can affect the launching of rockets 
and could generate large deviations in the mission flight. The use of regional climatic models allows analyzing and generating simulations 
of a period with intraseasonal variability, allowing the estimation of predominant average parameters with circulation characteristics and 
wind intensity at low levels in the atmosphere. The use of climatic models can be an important tool to estimate atmospheric parameters, 
so the choice of domain and physical parameterization characteristics in high spatial resolution can influence the results.

An important aspect in climate modeling is the uncertainties involved in the simulations; some studies present and discuss 
this problem, such as Giorgi (2010), Vohland et al. (2014), Stagl et al. (2015) and Prein and Gobiet (2017). Climate models 
are important tools to estimate atmospheric parameters, so the choice of domain and physical parameterization schemes can 
influence the simulated results. In this context, some studies evaluate the sensitivity of climate models, such as Giorgi et al. (2012), 
Reboita et al. (2014), Souza et al. (2016), Ayar et al. (2016), Llopart et al. (2017), Pontoppidan et al. (2017) and Corrêa et al. (2018).
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At the Alcântara Launch Center (ALC), a large number of investigations were carried out to estimate the characteristics which 
affect launch operations. Gisler et al. (2011) performed statistical studies with data from an anemometric tower and radiosonde 
at ALC. This study covered the period of 1995–1999 and analyzed the wind at six different levels: 6.0, 10.0, 16.3, 28.5, 43.0 and 
70.0 m. This analysis was done for typically rainy (March) and dry (September) seasons. The total data during the wet season 
(March) were 76,882 wind profiles (time interval of ten minutes) and during the dry season (September) were 109,809 profiles. 
The mean wind speed (or intensity) was computed along with standard deviation, median, mode and the prevailing wind 
direction. The predominant direction was Northeast (NE) with 33 and 40% of the occurrences for wet and dry seasons, respectively. 
The average values of wind speed showed a dependency on height and it was observed that the highest levels of the anemometric 
tower have the strongest wind speed in the dry period (8.2 m·s-1). The average wind speeds observed were 6.4 m·s-1 for the dry 
season and 4.1 m·s-1 during the wet season.

Couto and Fisch (2014) analyzed the wind velocity at a height of 10 m between 2008 and 2010. These authors also carried 
out simulations with WRF3.6 to perform sensitivity tests and subsequently computed statistics between the model and the data 
observed during the period analyzed. This work also analyzed different physical parameters and spatial resolutions and no 
significant differences were observed between them.

Reuter et al. (2015) developed a study with the Pennsylvania State University/National Center for Atmospheric Research 
(PSU/NCAR) mesoscale model (MM5) intending to estimate meteorological parameters in the operation of the ALC, obtaining 
that the boundary layer parameterizations, using the medium-range forecast (MRF) and blackadar (BLK) parameterizations, the 
zonal and meridional wind components were underestimated by 16% in the rainy season and the average overestimated by 18% 
in the dry season.

Corrêa et al. (2017) used the RegCM4 model with a spatial resolution of 50 km to estimate the average vertical wind 
profile over five months, from August to December 2015, which observed intraseasonal variations, with predominant 
characteristics in the frequency direction (NE) and average wind intensity. The results were preliminary but present great 
potential, since they may show intraseasonal variations, which are important estimates that operationally affect rocket 
launching activities at ALC.

Due to the geographical characteristics of ALC, the presence of sea breezes on the coast, which can characterize more intense 
winds close to the surface, in the study by Silva and Corrêa (2019) using radiosonde data and a multivariate statistical technique 
from the principal components analysis (PCA), it could characterize the existence of low-level jets (LLJ) and flows at different 
heights close to the surface. Corrêa et al. (2019) used simulations carried out by the National Centers for Environmental Prediction 
(NCEP) coupled forecasting model version 2 (CFSv2)/regional climate model RegCM-4.6, the data analyzed were the information 
of the surface wind intensity through the analysis and comparison of the simulations carried out for the Alcântara region, on the 
coast of the state of Maranhão.

The analysis sought to validate with the ERA5 reanalysis data from the European Center for Medium-Term Meteorological 
Forecasts (ECMWF). The observed result shows great potential for using ensemble prediction techniques, since in the observed 
results the smallest anomalies were observed in the intraseasonal ensemble prediction for the Alcântara region in the wind intensity, 
in comparison with the simulation without an ensemble, showing greater deviations and when closer to the forecast itself, greater 
deviations presented. The intraseasonal ensemble estimate ends up filtering the high-frequency terms, being the best estimate, 
and presenting more balanced intraseasonal forecasts.

The use of regional climate modeling in high spatial resolution may not be able to observe the entire non-linearity structure 
associated with the vertical wind profile, but it can help to show certain average characteristics associated with the vertical wind 
profile. As well as estimate values of wind intensity at heights, when they do not have high-resolution measurement instruments 
or that are out of the measurement range. Therefore, in the literature, there are no estimates of the maximum intensities of the 
vertical wind profile close to the surface in the ALC, at heights of the order of 200 to 800 m, which can be associated with the sea-
breeze mechanism and even maintain an LLJ structure. The study is justified by the need to use regional models in high spatial 
horizontal resolution and, consequently, obtain average characteristics of the vertical wind profile and the possible intraseasonal 
variability in the ALC, with a focus on rocket launching.
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METHODOLOGY

This work uses the climate forecast system version 2 (CFSv2) operational forecasts data, which is operated by the NCEP 
(Saha et al. 2014), as the initial and boundary condition from RegCM4.7 (Giorgi et al. 2012; 2015). The community land model 
(CLM) model version 4.5 was also used (Oleson et al. 2008), which is the land surface model developed by the National Center 
of Atmospheric Research (NCAR) as part of the community climate system model (CCSM), described in detail in Collins et al. 
(2006). This work aims to analyze the simulations of the CFSv2/RegCM4.7 stored model, between July 15 and November 02, 
2020, when it was operationalized in the atmospheric sciences division of the Instituto de Aeronáutica e Espaço (IAE), Intraer link 
(http://www.iae.cta.intraer/cfs/), which products are available for use in intraseasonal forecasts of the vertical wind profile at the ALC.

Table 1 shows the configurations and parameterizations used in the three simulations performed, seeking to use a strategy of using 
high spatial resolutions to obtain and observe in the resulting simulation vertical characteristics of the wind intensity close to the surface.

Table 1. Parameters used in Physics ParamNameList (regcm.in) in RegCM4.7 model.

Parameter Value

Lateral boundary conditions scheme Relaxation, exponential technique, Marbaix et al. 
(2003)

Planetary boundary layer (PBL) scheme Holtslag PBL, Holtslag et al. (1990)

Cumulus convection schemes

Over land Grell (1993)

Over ocean Emanuel (1991)

Moisture scheme Explicit moisture [SUBEX, Pal et al. (2000)]

Ocean flux scheme Zeng et al. (1998)

Zeng ocean model roughness formula to used 1- > (0.0065*ustar*ustar)/egrav

Calendar Gregorian

Globdatparam ssttyp CFS01

Globdatparam dattyp CFS01

Land surface model CLM4.5

Domain 1 100 × 120 grid points 12000 points 25 km horizontal resolution

Domain 2 160 × 180 grid points 28800 points 15 km horizontal resolution

Domain 3 180 × 212 grid points 38160 points 10 km horizontal resolution

The domains are centered at the ALC in Maranhão state in latitude -02.0 and longitude -43.0 approximately. For the post-processing of the 
result, analyzes of the average vertical wind profile of the simulated wind intensity are generated through vertical cuts in time for a monthly 
period, using figures generated in the Grid Analysis and Display System (GrADS) software available on the internet (http://cola.gmu.edu/grads/).

Figure 1 shows small details and differences between domains 2 and 3, which can be seen in the observed results of the 
simulations with the RegCM-4.7/CFSv2 model with 23 vertical levels. In this work, the number of vertical levels was not changed 
using the model default. However, the development of the regional climate model (RegCM-4.7) with the closing of parameters 
and the physical representation of processes makes the model a reference in the state of the art at this time, around 10 km of 
spatial resolution. The increase in the horizontal resolution allows representing more realistically the physical phenomena close 
to the surface because of the regional climate model, increasing its description of the horizontal domain. After all, it allows to 
represent a system of differential equations over a domain that obeys the uniqueness of the solution theorem because it has only 
one solution and it also obeys the conservation of energy and mass when closing numerical equations.

http://www.iae.cta.intraer/cfs/
http://regcm.in
http://cola.gmu.edu/grads/
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Figure 1. The topography (meters) and the domain used in the test simulations of RegCM4.7 with CFSv2, with the geographic 
center on the ALC. The geographical location of the ALC is marked with a black dot. Presenting (a) - domains 2 with resolutions of 

160 × 180 grid points and 15 km horizontal resolution and (b) - domains 3 with 180 × 212 grid points and 10 km horizontal resolution.

For the same period, the ERA5 reanalyzes the global model of the ECMWF, Copernicus Climate Change Service (C3S 2017), 
which is using comparatively the months of August, September and October 2020. The variables analyzed were u and v from the 
ERA5 dataset hourly data on pressure levels from 1979 to present (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-pressure-levels?tab=form). The information was analyzed using graphs generated by Grads.

The ERA5 is produced using 4D-Var data assimilation in CY41R2 of ECMWF integrated forecast system (IFS), with 137 hybrid 
sigma/pressure (model) levels in the vertical, with the top-level at 0.01 hPa. Atmospheric data are available on these levels and 
they are also interpolated to 37 pressure, 16 potential temperature and one potential vorticity level (s). Surface or single level data 
are also available, containing 2D parameters such as precipitation, 2 m temperature, top of atmosphere radiation and vertical 
integrals over the entire atmosphere. The ERA5 dataset contains one (hourly, 31 km) high-resolution realization (referred to as 
reanalysis or HRES) and a reduced resolution ten-member ensemble (referred to as ensemble or EDA). The information from 
the global ERA5 model was used for the latitude and longitude of the ALC.

RESULTS

The structure of the vertical wind profile with an ocean breeze close to the surface presents a very complex vertical structure 
and specific characteristics as example. Its thickness is thin with tens of meters and its occurrence in periods of three to five days, 
therefore for its observation to continue it must be done by remote sensing equipment, such as wind profiler, which is a type of 
weather observing equipment that uses radar or sound waves (SODAR) to detect the wind speed and direction. Another type 
that can also be used is the light detection and ranging (Lider), it is an optical remote sensing technology that measures reflected 
light properties. At the ALC, it was observed utilizing radiosondes at night and in the morning. Silva and Corrêa (2019) could 
observe flows in the vertical wind profile, these flows would characterize local circulations and were associated with sea-breeze 
circulations and regionally characterize circulations at the synoptic mesoscale level, such as LLJ.

The results for the study period, from July 1 to November 30, 2014, show the presence of the LLJ-weak type, LLJ-0 and LLJ-1, 
classification of LLJ proposed by Corrêa et al. (2001), with 85% of the variance explained in the first, second and third components 
in the night period. The first component with a height of 800 m (average direction 60 to 70° and with a magnitude greater than 
10 m·s-1 and shear of the order of 5 m·s-1), the second component with a height of 400 m (average direction 40 to 50° and with a 
magnitude of approximately 9 m·s-1, shear on the order of 5 m·s-1) and the third component with 200 m (direction average 50 to 60° 
and with a magnitude greater than 7 m·s-1 and shear of the order of 5 m·s-1). This characteristic can be associated with a complex 
dynamic response of different associated meteorological synoptic scales, the average wind associated with the sea-breeze, in the case 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form
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of the highest height (800 m) and the lowest height of the order of 200 m with processes associated with the planetary boundary 
layer (PBL) in the night period, as the inversion maximum wind and sea-breeze. Therefore, the vertical profile of the wind close 
to the surface presents a complex and non-linear structure, in a complex physical response to the mechanisms that created them.

Figure 2 shows the simulations performed with different domains and spatial resolutions. The results are important because they 
show that the increase in spatial resolution of the model improves the observation of flows at low levels, with a better definition of 
intensities and heights about the surface of these flows. The result shows that, at the end of August 2020 and the beginning of September, 
it presents an intensity cycle of the average vertical wind profile in ALC. It also shows that the maximum winds in the vertical profile 
are grouped in groups of three to five days. The complexity is great, and physically, these represent nonlinear relationships associated 
with the turbulence and synoptic processes close to the surface at low levels. The regional climate model can be used to simulate 
intraseasonal time scales and to observe maximum structures in the wind intensity close to the surface in the three-month time scale.
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Figure 2. The vertical section of the average vertical wind profile over time over ALC is in meters per second. 
Domain 1 - (a) August 2020, (b) September 2020 and (c) October 2020, with 25 km horizontal resolution. 
Domain 2 - (d) August 2020, (e) September 2020 and (f) October 2020, with 15 km horizontal resolution. 

Domain 3 - (g) August 2020, (h) September 2020 and (i) October 2020, with 10 km with horizontal resolution.
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Figures 2a, d and g, month of August 2020, show periods with wind speeds of the order of 14 m·s-1, in the pressure levels of the 
order of 960 to 870 hPa with a more intense core at the level of 930 to 900 hPa. Figures 2b, e and h, the month of September 2020, 
show periods with wind speeds of the order of 20 m·s-1 with a more intense core at the level of 930 hPa, in the pressure levels of 
the order of 980 to 840 hPa. Figure 2c, f, and i, the month of October 2020, the intensity of the wind decreases with a maximum 
core of 870 hPa and wind speeds of the order of 14 m·s-1. The pressure levels in the order of 930 hPa correspond to a physical 
height in the order of 600 meters in the ALC. Such results show an intraseasonal variability in wind intensity at low levels and the 
results are consistent with the work of Silva and Corrêa (2019).

The simulations were important because they show results associated with the observations of radiosondes. However, the 
model used in this case study does not have adequate vertical resolution details, but a high horizontal resolution was used, which 
does not allow the regional model to separate the levels vertically with greater precision.

Figure 3 shows the vertical wind profile over the ALC, can be seen in the ERA5 reanalysis is that it maintains a profile intensity 
indicator at the height of 930 to 960 hPa corresponding to the height below 600 m. Although the reanalysis has a low resolution 
of 31 km, speeds of 14 m·s-1 and small ones of 20 m·s-1 can be observed in August and September 2020. These characteristics 
allow underestimating the nature of the flows associated with the breeze phenomenon in Alcântara, the CFS/RegCM-4.7 in high 
resolution presents more information that must be confirmed in future works, using information from the vertical wind profile 
obtained with the SODAR.
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Figure 3. The vertical section of the vertical wind profile over time over ALC, shows the ERA5 Reanalysis global 
model of the European Center for Medium-Range Weather Forecasts (ECMWF) on which the vertical wind 

profile information (u, v) dataset hourly data on pressure levels, (a) August 2020, (b) September 2020 and 
(c) October 2020, with 31 km horizontal resolution, the vertical wind profile is in meters per second.

CONCLUSIONS

This work shows an intensity estimate of the vertical wind profile in Alcântara, order intensities of 14 to 20 m·s-1, and 
shows intraseasonal variability in the studied period. It also shows that the regional climate model can make estimates of wind 
intensity by making intraseasonal forecasts. The increase in horizontal resolution showed that qualitatively more information 
on the simulated vertical wind profile compared to the low horizontal resolution of ERA5 reanalysis. More research will be 
developed in more detail in the observation of the vertical wind profile with the SODAR equipment, which may generate 
more detailed results of the breeze phenomenon in Alcântara. The regional climatic model had a significant improvement in 
representing the wind intensity processes with the increase in resolution horizontal. However, the increase in vertical levels of 
the model was not used in this work, which will be carried out in future researches, as well as the use of continuous monitoring 
equipment at the ALC.
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