Predictive power of task orientation, general self-efficacy and self-determined motivation on fun and boredom

Lorena Ruiz-González
Antonio Videra
Universidad de Málaga, Málaga, Spain

Juan Antonio Moreno-Murcia
Universidad Miguel Hernández de Elche, Elche, Spain

Abstract—The aim of this study was to test the predictive power of dispositional orientations, general self-efficacy and self-determined motivation on fun and boredom in physical education classes, with a sample of 459 adolescents between 13 and 18 with a mean age of 15 years ($SD = 0.88$). The adolescents responded to four Likert scales: Perceptions of Success Questionnaire, General Self-Efficacy Scale, Sport Motivation Scale and Intrinsic Satisfaction Questionnaire in Sport. The results showed the structural regression model showed that task orientation and general self-efficacy positively predicted self-determined motivation and this in turn positively predicted more fun and less boredom in physical education classes. Consequently, the promotion of an educational task-oriented environment where learners perceive their progress and make them feel more competent, will allow them to overcome the intrinsically motivated tasks, and therefore they will have more fun. Pedagogical implications for less boredom and more fun in physical education classes are discussed.

Keywords: self-determination, self-efficacy, achievement goals, satisfaction

Resumo—"Poder preditivo da orientação para a tarefa, a autoeficácia geral e motivação autodeterminada sobre diversão e tédio." O objetivo desse estudo foi comprovar a predição das orientações disposicionais, autoeficácia geral e a motivação autodeterminada sobre a diversão e o aborrecimento nas aulas de educação física, com uma amostra composta por 459 adolescentes de 13 a 18 anos com uma média de idade de 15 anos ($DP = 0.88$). Os adolescentes responderam a quatro escalas do tipo Likert: Questionário de Percepção do Éxito, Escala Geral da Auto-eficácia, Escala de Motivação no Esporte e Questionário de Satisfação Intrínseca no Esporte. Os resultados do modelo de regressão estrutural mostraram que a orientação para a tarefa e a autoeficácia geral prediziam positivamente a motivação autodeterminada, e esta última predizia positivamente a mais diversão e menos ao aborrecimento nas aulas de educação física. Promover um ambiente educativo orientado à tarefa, onde os discentes percebam seus progressos e que se sintam mais competentes permitirá que eles possam superar tarefas com uma motivação intrínseca, portanto, se divertirão mais. Indaga-se sobre as diferentes pedagogias para diminuir o aborrecimento em aula.

Palavras-chave: autodeterminação, autoeficácia, metas de realização, satisfação

Resumen—“Poder predictivo de la orientación tarea, la autoeficacia general y la motivación autodeterminada sobre la diversión y el aburrimiento.” El objetivo de este estudio fue comprobar el poder de predicción de las orientaciones disposicionales, la autoeficacia general y la motivación autodeterminada sobre la diversión y el aburrimiento en clases de educación física, con una muestra compuesta por 459 adolescentes de entre 13 y 18 años con una media de edad de 15 años ($DS = 0.88$). Los adolescentes contestaron a cuatro escalas tipo Likert: Cuestionario de Percepción de Éxito, Escala de Autoeficacia General, Escala de Motivación en el Deporte y Cuestionario de Satisfacción Intrínseca en el Deporte. Los resultados revelan que el modelo de regresión estructural mostró que la orientación hacia la tarea y la autoeficacia general predecían positivamente la motivación autodeterminada, y ésta a su vez, predecía positivamente una mayor diversión y un menor aburrimiento en las clases de educación física. El fomento de un entorno educativo orientado a la tarea, donde los discentes perciban sus progresos y les hagan sentir más competentes, les permitirán superar las tareas motivados intrínsecamente, y por tanto, se divertirán más. Se discuten las implicaciones pedagógicas para un menor aburrimiento.

Palabras claves: autodeterminación, autoeficacia, metas de logro, satisfacción
Introduction

One of the main concerns of teachers when choosing the content to be taught has to be motivating and novel (Robles, Giménez, & Abad, 2010). Moreover, Cecchini (2006) states that at sport school age should have a clear orientation to promote the recreational participation, self-improvement, fun, friendship, relaxation and an active lifestyle in order to improve health and physical and mental wellbeing. Moreover, this desire for fun is one of the main reasons given by youngsters to engage in physical activities (Almagro, Saénz-López, González-Cutre, & Moreno-Murcia, 2011; Castillo & Balaguer, 2001; Martínez et al., 2012; Pavón & Moreno, 2006), being positive and significant their relationships (Balaguer, 2000; Stucky-Ropp & DiLorenzo, 1993). Despite the benefits that regular physical activity has, both physical health and psychological health, a large proportion of adolescents maintain a suboptimal level of physical activity, offering evidence that physical inactivity during adolescence increases with advancing age (Balaguer & Castillo, 2002; King, Wold, Tudor-Smith, & Harel, 1996; Mendoza, Sagrera, & Batista, 1994; Nilsson et al., 2009). This phenomenon can have detrimental effects on the health of adolescents and be the genesis of the establishment of sedentary lifestyles (Garn & Sun, 2009). The physical education classes should help solve this problem by creating habits that will last a lifetime. In this line, the motivational regulation of students during physical education classes has been identified as a contributory factor on promoting healthy lifestyle (Barkoukis, Hagger, Lambropoulos, & Tsorbatzoudis, 2010; Hagger et al., 2009).

In the field of the study of motivation, Achievement Goal theory (Nicholls, 1989) notes that there are at least two independent achievement goals that reflect the criterion that young people follow to judge their level of competence in the sporting context and subjectively defined by success and failure: task and ego orientation. From this context, one of the theories that has been more associated with the goal theory has been the Self-efficacy theory (Bandura, 1987). Typically, self-efficacy is a construct that has been understood in specific contexts, such as physical and sporting activities (Balaguer, Escartí, & Villamarín, 1995). However, this construct has also been understood in a comprehensive manner, as a general self-efficacy (Scholz, Gutiérrez-Doña, Sud, & Schwarzer, 2002), which makes reference to the stable belief that a person has about his ability to properly handle a wide range of stressing situations in everyday life (Sanjuán Pérez, & Bermúdez, 2000; Schwarzer & Jerusalem, 1995).

In this regard, in relation to goal orientation, the involvement in the task encourages people perceptions in their ability in different sports skills in 8 and 14 year old children, found that self-efficacy beliefs before carrying out a task would have an impact on self-efficacy beliefs after these. The author adds that it can be predicted that self-efficacy beliefs influence motivational intentions, which are involved in self-efficacy and so on. There are numerous studies that point out that indicators of discomfort as demotivation and boredom are greater as one moves from primary to secondary education (Gómez, Gámez, & Martínez, 2011; Moreno, Rodríguez, & Gutiérrez, 2003), so there is a need for research to understand the functioning of these variables in order to be able to establish appropriate preventive measures in schools. In this line, an experimental study (Moreno-Murcia, Huéscar, & Parra, 2013) showed that promotion of a task motivational climate significantly increases self-determined motivation and reduces boredom. Other correlational studies confirm that task-involving motivational climate is positively related to intrinsic motivation (Moreno-Murcia & Conte, 2011), while the ego-involving motivational climate is not related or negatively related to this variable and other exercise adaptive consequences (see Ntoumanis & Biddle, 1999). Also, Grastén, Jaakkola, Liukkonen, Watt, and Yli-Piipari (2012) found that task-involving motivational climate was
positively related to enjoyment. In this sense, analyzing studies to assess the relationship between self-determination theory and the fun and boredom in physical education, they all go hand in hand (Krzysztof, 2008; Wang & Liu, 2007; Yi- Piipari, Watt, Jaakkola, Liukkonen, & Nurmi, 2009), which showed positive relationships between practical reasons more self-determined and enjoyment in the activity.

Based on these theories aforementioned, encouraging an educational climate towards the task is essential by the teacher in order to ensure that students are able to observe their own progressions. In short, to ensure they feel more self-efficacious beating intrinsically motivated tasks leading to greater enjoyment in the learners. The main objective of this study was to test the predictive power of dispositional orientations, general self-efficacy and self-determined motivation on fun and boredom. Considering the research results mentioned, we expect to find a predictive model where task orientation and self-efficacy positively will predict self-determined motivation, which in turn positively and negatively will predict fun and boredom that teenage student perceives in physical education classes.

Method

Sample

The sample consisted of 459 students (246 boys and 213 girls) from the 3rd and 4th years, 10 were public secondary schools and 3 were private secondary schools, with a mean age of 15 years (SD = 0.88). The selection of the sample is done by a selection of centers according to a cluster random sampling.

Instruments

Dispositional orientation. The Spanish version was used (Cervelló, Escartí, & Balagué, 1999; Martínez-Galindo, Alonso & Moreno, 2006) of the Perception of Success Questionnaire (Roberts & Balagué, 1991; Roberts, Treasure, & Balagué, 1998) to measure goal orientations. The questionnaire is a 12-item scale composed of six task (e.g. “When I show clear personal improvement”) and six ego (e.g. “When I am clearly superior”) items. In the present study, each participant responded to the stem ‘When participating in physical education, I feel most successful when . . . ’ Each item was rated on a 10-point Likert scale anchored by 0 ‘strongly disagree’ to 10 ‘strongly agree’. This questionnaire demonstrated good internal reliability in the present study with Cronbach alpha values of .78 for the task subscale and .88 for the ego subscale.

Self-Efficacy. To measure the self-efficacy of the student the General Self-Efficacy Scale (GSE) of Bäessler and Schwarcer (1996) was used in the Spanish version (Schwarcer, Bäessler, Kwiatek, Schröder, & Zhang, 1997). The scale was created to assess a general sense of perceived self-efficacy with the aim in mind to predict coping with daily hassles as well as adaptation after experiencing all kinds of stressful life events. The scale is designed to the general adult population, including adolescents.

It consists of 10 items (e.g. “I can always manage to solve difficult problems if I try hard enough.”) and respond according to a Likert scale with a response range from 1 (strongly disagree) to 4 (strongly agree). The Spanish adaptation of this scale includes the following psychometric data: internal consistency/reliability = .87 and split-half correlation = .88 (Sanjuán et al., 2000). Cronbach’s alpha of .82 was obtained in the present study.

Motivation. The validated version to Spanish by Núñez, Martín-Albo, Navarro and González (2006) and adapted physical education version was used. The original scale was called Échelle de Motivation dans les Sports (EMS ; Brière, Vallerand, Blais, & Pelletier, 1995) and was translated into English by Pelletier et al. (1995) and renamed Sport Motivation Scale (SMS). It consists of 28 items, 4 items for each scale, led by the statement “I take part and exert myself in the practice of my physical education classes...” which are answered with a Likert scale ranging from 1 (strongly disagree) to 7 (strongly agree). Consists of 7 subscales that measure three types of intrinsic motivation: toward knowledge (e.g., “For the pleasure it gives me to know more about the sport that I practice”), accomplishment (e.g., “I feel a lot of personal satisfaction while mastering certain difficult training physical-sports activities”) and stimulation (e.g., “For the pleasure I feel in living exciting experiences.”); and the three forms of regulation for extrinsic motivation: identified (e.g., “Because it is one of the best ways I have chosen to develop other aspects of myself”), introjected (e.g., “Because it is absolutely necessary to do sports if one wants to be in shape”), external (e.g., “Because people around me think it is important to be in shape.”), amotivation (e.g., “I often ask myself, I can’t seem to achieve the goals that I set for myself”). Alpha values of .69 for the intrinsic motivation to know, .70 for the intrinsic motivation to experience stimulation, .70 for the intrinsic motivation to accomplish, .64 for identified regulation, .64 for introjected regulation, .69 for external regulation and .73 for amotivation were found in this study. As noted, not all factors have obtained a recommended .70 internal consistency (Nunnally, 1978), but given the small number of items composing the subfactor, the observed internal consistency may be marginally acceptable (Hair, Anderson, Tatham & Black, 1998; Nunnally & Bernstein, 1994). Jointly, the seven factors have achieved a .75 internal consistency.

Fun and boredom. The Spanish version adapted to physical education context (SSI-PE) (Baena-Extremera, Granero-Gallegos, Bracho-Amador, & Pérez-Quero, 2012) of the original Sport Satisfaction Instrument (Balagué, Atienza, Castillo, Moreno, & Duda, 1997; Castillo, Balagué, & Duda, 2002) was used to measure the satisfaction. This instrument consists of 8 items measuring intrinsic satisfaction in PE classes by two subscales: satisfaction / fun (e.g., “I usually have fun in the physical education classes”) and boredom (e.g., “In physical education, I usually wish the class would end quickly”). Participants were requested to rate their degree of agreement with the items that reflect fun or boredom on a 5-point Likert-type scale, ranging from 1 (strongly disagree) to 5 (strongly agree). The value of internal consistency obtained in this study was .87 for fun and .84 for boredom.
Procedure

We contacted the directors of the various secondary schools to inform them of the purpose of the research and request their co-operation. For underage students to participate in the study, written consent from their parents was required, which also informed them of the purpose of the research. The questionnaires were administered by the same person during tutoring or physical education periods, according to the availability of the center in a counterbalanced manner. Students were asked to fill out the questionnaire individually and taking into account also the explanation of the research, took approximately 30 minutes to be completed. Participation was anonymous and voluntary. The University of Málaga ethics’ committee approved the study.

Data analysis

Descriptive statistics for all the variables under study (means and standard deviations) were calculated, the internal consistency of each factor was analyzed using Cronbach’s alpha coefficient and bivariate correlations for all variables. To test the model, firstly, a measurement model was performed and, later on its subsequent analysis was made using the structural regression model. Data were analyzed using SPSS 21.0 and AMOS 21.0.

Results

Descriptive and correlation analysis of all variables

The task orientation was more valued than ego orientation. The general self-efficacy showed a mean of 2.96 and 5.02 self-determined motivation. The fun was better valued than boredom. All variables used in the study, and positively correlated with each other, except boredom correlated negatively with task orientation, self-determined motivation and fun, while not correlated with ego orientation or the general self-efficacy (Table 1).

Table 1. Descriptives and correlations among study variables.

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>ST</th>
<th>α</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Task orientation</td>
<td>6.05</td>
<td>0.56</td>
<td>.78</td>
<td>-</td>
<td>.41**</td>
<td>.23**</td>
<td>.19**</td>
<td>.26**</td>
<td>-.18**</td>
</tr>
<tr>
<td>2. Ego orientation</td>
<td>4.21</td>
<td>1.05</td>
<td>.68</td>
<td>-</td>
<td>-</td>
<td>.20**</td>
<td>.10*</td>
<td>.11*</td>
<td>.09</td>
</tr>
<tr>
<td>3. General self-efficacy</td>
<td>2.96</td>
<td>0.43</td>
<td>.88</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.34**</td>
<td>.37**</td>
<td>-.06</td>
</tr>
<tr>
<td>4. Self-determined motivation</td>
<td>5.02</td>
<td>5.69</td>
<td>.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.58**</td>
<td>-.51**</td>
</tr>
<tr>
<td>5. Fun</td>
<td>4.05</td>
<td>0.90</td>
<td>.87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-.57**</td>
</tr>
<tr>
<td>6. Boredom</td>
<td>1.95</td>
<td>1.20</td>
<td>.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: * p < .05 ** p < .001

Analysis of the measurement model

To be able to perform the analysis of the measurement model and test the structural regression model number of latent variables was reduced by factor, this is especially recommended when the sample size is not particularly large compared to the number of variables model (Marsh, Richards, Johnson, Roche, & Tremayne, 1994; Vallerand, 2001, 2007). This reduction may be achieved by the combination of the items in pairs. Thus, half first items of each subscale were averaged to be part of the first set of items and the second half of items were averaged to be part of the second set of items, and so on until the last one. Marsh et al. (1994) proposed the use of pairs of items because the results of these are more reliable, tend to be distributed more normally and because it halved the ratio of the number of measured variables in the model and the number of study participants.

Thus, on the perception of success scale, both task orientation and ego factor were composed of two groups of three items, the general self-efficacy scale was formed by two groups of five items on the motivation sports scale, each of the seven factors were divided into two groups of two items and the scale used to measure the fun and boredom they were composed of two groups of two and items respectively. For the scale of motivation in physical education classes on self-determination index (SDI) was calculated. This index is calculated with the following formula: \((2 \times (\text{intrinsic motivation toward knowledge + intrinsic motivation toward execution + intrinsic motivation toward stimulation})/3)+\text{identified regulation} - ((\text{external regulation + introjection})/2) + (2 \times \text{demotivation})\) (Vallerand, 1997). In this study the index ranged between -11.17 and 13.75 (M = 5.02, SD = 4.57). Two indexes of self-determination were obtained due to the division into two groups of the items that composed the SMS factors. This factor was calculated by dividing each into two sub-factors of two items each, and then the formula SDI was reapplied.

So, once divided the items making up the latent factors into two groups, an approach in two steps was used, as Anderson and Gerbing (1988) recommend, firstly doing a measurement model, which allowed to give construct validity to scales and corresponded to a confirmatory factor analysis (CFA) based on 12 observed measures and the six latent constructs (see Figure 1). As Anderson and Gerbing (1988) recommended, the latent
factors will allow one to correlate freely during the assessment of the measurement submodels.

Because the Mardia coefficient was high (39.90), the estimation method of maximum likelihood was used together with the bootstrapping procedure that allowed to assume that the data were robust by the lack of non-normality (Byrne, 2001). The skewness and kurtosis rates were close to zero and below the value two as Bollen and Long (1993) recommends, which denotes similarity to the normal curve in univariate data. Likewise, we considered a number of fit coefficients to assess the goodness of fit of the measurement models with empirical data. So, based on contributions from different authors (Bentler, 1990; Bollen & Long, 1993; McDonald & Marsh, 1990), the fit indexes or goodness of fit indexes that were considered to evaluate the goodness of the measurement model were the following ones: χ^2, χ^2/d.f., RMSEA (Root Mean Square Error of Approximation), RMSR (Root Mean Square Residual) and incremental indexes (CFI, IFI and TLI). These goodness of fit indices are considered acceptable when the χ^2/df is less than 5, the incremental indexes (CFI, IFI and TLI) are greater than .90 and error rates (RMSEA and RMSR) are less than .08 (Browne & Cudeck, 1993; Hu & Bentler, 1999). The rates obtained were adequate: χ^2 (39, N = 459) = 78.85, $p = .00$; χ^2/d.f. = 2.60; CFI = .98; NFI = .97; TLI = .97; RMSEA = .05; RMSR = .03.

Analysis of structural regression model

The second step of the method (structural equation model) was to simultaneously test the structural model and measurement, allowing us to focus on the conceptual interactions between goal orientations, self-efficacy, motivation, fun and boredom. As can be seen in Figure 1, goal orientations and self-efficacy appear as exogenous variables and other variables that made the model acted as endogenous variables. Thus, the model offered goal orientations and self-efficacy as predictor variables of self-determination index and this one as predictor of fun and boredom. The method of maximum likelihood estimation and the covariance matrix between items as input to data analysis was used. The results of the hypothesized model were acceptable: χ^2 (46, N = 459) = 165.93, $p = .00$; χ^2/d.f. = 3.61; CFI = .95; NFI = .93; TLI = .93; RMSEA = .07; RMSR = .06. All relationships were significant.

So, you can see that the task orientation and self-efficacy positively predicted self-determined motivation, however, ego orientation negatively predicted self-determination index and this in turn positively predicted fun (61 % explained variance) and negatively boredom (52 % explained variance).

Figure 1. Structural regression model to analyze the relations between goal orientations, self-efficacy and satisfaction in sport (fun and boredom). All parameters are standardized and are significant at $p < .05$.
Discussion

This study tested the predictive power of dispositional orientations, general self-efficacy and self-determined motivation on the fun and boredom in physical education classes. So far, according to the review carried out, most studies analyzing the relationship between goal orientations and general self-efficacy has been focused in other contexts, so this research is a first approach to the study of these variables together with teenagers in physical education classes. As hypothesized, it is confirmed that both task orientation and self-efficacy positively predicts self-determined motivation, which in turn positively predicts fun and negatively predicts that teenage students perceived in physical education classes.

After analysis of the data, there is a greater task orientation than ego, as Cervelló and Santos-Rosa (2000) indicated these results differ from those referred to competitive sport, possibly due to the objectives pursued in classes physical education in the classrooms or that classroom teachers do not emphasize competitiveness (Fry, 2001) and promotes participatory, cooperative activities and in which the effort is valued more than the result. In agreement with previous studies (Fernández, 2008; García-Fernández et al., 2010; Pajares, Britner, & Valiante, 2000), which analyze different aspects within the school environment, the positive relationship between task orientation is confirmed and self-efficacy. This finding is consistent with the proposed theory, for being self-efficacy evaluative cognitive aspect of one’s ability to properly handle different situations of daily life (Bandura, 1986) and being task orientation intrinsic motivational aspect that drives students to improve their own skills (Nicholls, 1989), both constructs bring to the internal field of the participant, share a similar conceptual axis and reinforce each other.

In regard to the relationship between task orientation and self-determined motivation, both constructs establish a positive and significant relationship. These results are consistent with those found in other studies (Gutiérrez & Escartí, 2006). Similarly, it has been found that the higher the level of self-efficacy the higher the level of intrinsic motivation will be, as guarantee extensive research in other contexts (Boyd & Yin, 1999; McAuley, 1992; McAuley & Jacobson, 1991; Sallis et al., 1986; Weigand & Broadhurst, 1998).

Similarly, it has been proved the important correlation between self-determined motivation and fun. It is confirmed that the most self-determined students are those who enjoy physical and sporting activities (Krzysztof, 2008; Yli- Piipari et al., 2009), thus, highlighting the importance of fun, considered an excellent predictor of participation in physical activities (Gómez et al., 2011).

In light of obtained results, it is important to emphasize the role of physical educational teachers in the design of their classes. Therefore, providing an educational environment where the climate is mainly task-oriented, in that effort and personal growth is prioritized, you can get the students to focus more on mastery. This is achieved by giving importance to aspects of personal improvement and learning, contributing to perceive their personal progress more effectively, feeling autonomous, competent and assuming a modifiable belief of their ability. These factors will enable them to overcome the tasks motivated intrinsically, resulting in a positive psychological balance that can generate greater enjoyment and less boredom by students, for the fun experienced in physical education classes may be an important variable for the adolescents continuing sports outside school hours (Mandigo & Thompson, 1998).

Finally, we note a limitation of this study as a correlational methodology used and experimental studies would be needed to analyze relations of cause and effect with respect to the variables studied, so that the common method bias is controlled (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). Regarding the analysis of structural equations, the suggested model is the one which presented the best adjustment, but due to the problem of equivalent models that presents structural equation technical (Hershberger, 2006) assumes that the model proposed would be only one of the possible ones.

Conclusion

It is deduced that these three theories are emerging as a useful basis to explain how dispositional orientations (task orientation) and self-efficacy act as triggers for increased levels of self-determined motivation, and thus turn the perceived sense of fun and less boredom in physical education classes. The key to ensure fun in classes by teachers lie in the way they transmit their knowledge. Task-oriented climate must be provided to make students aware of their progress and self-efficacy. Finally, this would lead students to enjoy both the process and outcome of the activities carried out in physical education classes.

References

Cervelló, E.M., Escartí, A., & Balagüe, G. (1999). Relaciones entre la orientación de metas disposicional y la satisfacción con los resultados deportivos, las creencias sobre las casas de éxito en deporte y la diversión con la práctica deportiva (Relationship between dispositional goals orientation and satisfaction with sports results, beliefs about wedges them success in sport and fun with sports). Revista de Psicología del Deporte, 8, 7-19.

In M.A. González, J.A. Sánchez, and A. Arecés (Eds.), IV Congreso de la Asociación Española de Ciencias del Deporte (pp. 757-761).

A Coruña: Xunta de Galicia.

Authors’ note

Corresponding author
Lorena Ruiz González
C/Guillén de Pina nº1 4b, 30800 Lorca (Murcia) Spain
E-mail: ruizlork@gmail.com
Tel: +34 660 59 52 45

Manuscript received on March 2, 2015
Manuscript accepted on August 30, 2015

Motriz. The Journal of Physical Education. UNESP. Rio Claro, SP, Brazil - eISSN: 1980-6574 – under a license Creative Commons - Version 3.0