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We analyze the effects of dissipation in a charged oscillator in the presence of the Aharonov-Bohm effect by
using time-dependent mass (m(t)) Hamiltonians. We consider two different models for the dissipative Hamiltonian
and analyze the uncertainties (∆r and ∆p) and the quantum mechanical expectation value of energy (〈E〉) in
terms of time (t), damping parameters and flux parameter (v). For the Caldirola-Kanai model, we observe that
the flux parameter v decreases the energy dissipation in a quantum dot for a certain range of t.
Keywords: Aharanov-Bohm effect, Caldirola-Kanai oscillators, Lane-Endem oscillators, uncertainty, mean
energy, 2D parabolic quantum dot.

1. Introduction

Since the 1920s, the interaction between charged par-
ticles and electromagnetic fields has attracted a great
attention in the literature under the quantum mechanics
point of view. Surprisingly, the particle motion can
sometimes be influenced by electromagnetic fields in
regions where both magnetic field B and electric field E
are zero. As a matter of fact, the particle is affected by
electromagnetic potentials, which may exist in regions
where the fields do not exist. This effect was first
pointed out in 1949 by Ehrenburg and Siday [1]. Using
a semiclassical approach, they predicted a fringe shift
due to magnetic vector potentials in a field-free region.
Later, in 1959, Aharonov and Bohm [2] discussed the role
of the electromagnetic potentials in quantum mechanics.
In the field-free multiply connected regions, the results
of interference and scattering experiments depend on
integrals of the potentials. This phenomenon has come
to be called the Aharonov-Bohm (AB) effect.

Over the years, the AB effect has been experimentally
verified [3–5] becoming a very interesting research area.
The AB effect has been studied in several mesoscopic
systems, such as metal rings [6], carbon nanotubes [7, 8]
and monolayer [9–12] and bilayer [13] graphene. Ferkous
and Bounames [14] obtained the energy spectrum and
the eigenfunctions of a 2D Dirac oscillator in the
presence of AB effect. They showed that the energies
depend on the particle spin and the AB magnetic flux
parameter. Bouguerra, Maamache and Bounames [15]
using the invariant operator method [16] obtained the
exact wave-functions of a time-dependent 2D harmonic
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oscillator in the presence of the AB effect. They analyzed
the case of a very thin solenoid (a flux tube of zero
radius [17–19]). The AB effect in presence of dissipation
has also been investigated [20, 21]. Guinea [20] obtained
the amplitude of the AB oscillations of a particle on a
ring threaded by a magnetic flux and coupled to different
dissipative environments. One of these environments is
the Caldeira-Leggett harmonic bath model [22].

The Caldeira-Leggett model is a fundamental appro-
ach in which the system is coupled to a harmonic bath (a
collection of harmonic oscillators) having many degrees
of freedom. The energy flows from the system to the
bath. However, there exists other approaches used to in-
troduce dissipation in quantum mechanics [23–28]. Here
we consider a phenomenological description which inclu-
des dissipation by means of explicitly time-dependent
Hamiltonians [25–28]. This phenomenological approach
is based on the so-called Caldirola-Kanai (CK) [25, 26]
Hamiltonian, given by

H(t) = e−
∫
γ(t)dt p

2

2m0
+ e
∫
γ(t)dtV (x), (1)

where x and p are position and momentum coordinates,
respectively, and γ(t) is the damping coefficient. This
model has already been used to study dissipative quan-
tum tunneling [29, 30], time-dependent mesoscopic RLC
circuits [31–35], damped effects on the entanglement
of a two-level atom in a two-photon field [36], dissi-
pative relativistic motion [37], the matter black-body
problem [38], parabolic confined particles (dissipative
quantum dots) [39, 40] and the dynamics of the DNA
breathing [41]. The full correspondence between the
system-reservoir approach and time-dependent Hamil-
tonians has been shown by Yun and Sun [42, 43].
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In this work we follow the procedure by Bouguerra,
Maamache and Bounames [15] to study the effects of
dissipation in a charged oscillator in the presence of
the AB effect. This paper is organized as follows. In
Section 2, we briefly explain the fundamental definitions
needed for the calculations. In Section 3, we calculate the
uncertainties and energy to both CK and Lane-Emden
(LE) dissipative systems and summarize the results.

2. Basic Definitions

Consider the time-dependent Hamiltonian given by

H(t) = (p− eA)2

2M(t) + 1
2M(t)ω2(t)(x2 + y2), (2)

where A is the potential vector. Following
Refs. [15, 17–19], for a flux tube of zero radius the
corresponding potential A in the Coulomb gauge is
given by

eA = ν

(
y

x2 + y2 , −
x

x2 + y2 , 0
)
, (3)

where ν is a finite nonzero flux parameter. The time-
dependent Schrödinger equation for the Hamiltonian (2)
with potential vector (3) reads

i}
∂

∂t
ψn(r, t) =

[
p2

2M(t) + 1
2M(t)ω2(x2 + y2)

+ (2νLz + ν2)
2M(t)(x2 + y2)

]
ψn(r, t), (4)

and Lz = xpy − ypx is the angular momentum in the ẑ
direction.

According to Ref. [15] the solution of the time-
dependent Schrödinger equation (4) reads

ψn,m(x, y, t) = Cn,m
ρ

eimθ

× exp
[
−i
(

2n+
∣∣∣m+ ν

}

∣∣∣+ 1
)∫ t

0

1
Mρ2 dt

′
]

× exp
[
(x2 + y2)

(
iMρ̇

2}ρ −
1

2}ρ2

)]

× (x2 + y2)
|m+ ν

} |
2

× 1F1

(
−n,

∣∣∣m+ ν

}

∣∣∣+ 1, x
2 + y2

}ρ2

)
(5)

where Cn,m = 1
Γ(|m+ ν

} |+1)

[
Γ(n+|m+ ν

} |+1)
n! π }|m+ ν

} |+1

]1/2
, θ =

tan−1 ( y
x

)
, 1F1(a, b, c) denotes the confluent hypergeo-

metric function of the first kind and ρ(t) satisfies the
generalized Milne-Pinney (MP) [44, 45] equation

ρ̈+ Ṁ

M
ρ̇+ ω2ρ = 1

M2(t)ρ3 . (6)

3. Results and Discussion

From Eq. (5) we write the following relations〈
r2〉

n,m
= }ρ2

(
2n+

∣∣∣m+ ν

}

∣∣∣+ 1
)
, (7)

〈x〉n,m = 〈y〉n,m = 0, (8)

〈p2〉0,0 = }
(
|v|
}
M2ρ̇2 + 1 +M2ρ2ρ̇2

ρ2

)
, (9)

〈px〉0,0 = 〈py〉0,0 = 0. (10)

Equations (7)–(10) are written in terms of ρ, a
c-number quantity satisfying the generalized MP equa-
tion (see Eq. (6)). For a given M(t) and ω(t) one has
to solve Eq. (6) and consider only real solutions of ρ so
that I(t) is Hermitian. Observe that the Hamiltonian (2)
describes the dynamics of dissipation in a 2D parabolic
quantum dot in the presence of a Aharanov-Bohm effect
if ω(t) = ω0.

Now let us consider the Caldirola-Kanai (CK) mo-
del, where M(t) = m0e

γt and ω(t) = ω0. In this
case, the solution of the Milne-Pinney equation (6) is
ρ = 1√

m0Ωe
−( γt2 ) (with Ω =

√
ω2

0 −
γ2

4 > 0) [46]. In
Figs. 1(a)–(b), we show plots of the uncertainties in
position (Fig. 1(a)) and momentum (Fig. 1(b)) spaces
of the system in the ground state. We show that both
∆r and ∆p increase with increasing ν. Figure 1(a) also
shows that ∆r tends to zero with increasing time as
an effect of the dissipation (remember that classically
the position of a damped oscillator tends to zero with
increasing time, leading to a minimum uncertainty in
the position). For v = 0, we observed that the particle’s
localization due to the CK dissipation is always lower
than the uncertainty of a 2D parabolic quantum dot
without dissipation and AB effect. On the other hand,
for v = 5 (v = 10), the particle’s delocalization is
greater than that of a 2D parabolic quantum dot without
dissipation and AB effect in the range t < 1.9 (t < 2.5).

From Eqs. (7)–(10) we see that the uncertainty pro-
duct ∆r∆p obeys the Heisenberg Uncertainty Princi-
ple (∆r∆p ≥ }) and it does not depend on t. In
Figs. 2(a)–(b) we plot ∆r∆p as function of γ and v,
respectively. We observe that ∆r∆p increases nonline-
arly (linearly) with the increasing of γ (v). Note also that
∆r∆p(γ) increases abruptly as γ approaches to γ → 2ω0
in the limit Ω→ 0.

Another class of damped system is the LE oscil-
lator [47–50] where M(t) = m0t

α and ω(t) = ω0.
In this system the damping coefficient depends on time,
γ(t) = α

t . For α = 2, the solution of the Milne-Pinney
equation (6) is ρ = t−1

√
m0ω0

[48]. In Figs. 3(a)–(b) we show
plots comparing the uncertainties in position (Fig. 3(a))
and momentum (Fig. 3(b)) spaces for a 2D quantum dot
in the presence of the AB effect obtained from CK and
LE dissipation in the ground state. For t < 2, we observe
that the decrease of ∆r due to the LE dissipation is
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Figure 1: Plots of (a) ∆r and (b) ∆p for v = 0 (solid line), v = 5 (large dashed line) and v = 10 (short dashed line) for the ground
state of the system by considering the CK dissipation. The dotted line corresponds to the uncertainties of a 2D parabolic quantum
dot without dissipation and AB effect, where M(t) = m0, ω(t) = ω0 and v = 0. In this figure we use } = m0 = ω0 = γ = 1.

Figure 2: Plots of ∆r∆p as function of (a) γ and (b) v for the ground state of the system by considering the CK dissipation.
In Figure 2(a) we keep v = 1, while in Figure 2(b) γ = 1. The dotted line corresponds to the uncertainties of a 2D parabolic quantum
dot without dissipation and AB effect, where M(t) = m0, ω(t) = ω0 and v = 0. In both figures we use } = m0 = ω0 = t = 1.

Figure 3: Plots of (a) ∆r and (b) ∆p for CK (solid line) and LE (dashed line) oscillators for the ground state of the system.
The dotted line corresponds to the uncertainties of a 2D parabolic quantum dot without dissipation and AB effect, where M(t) = m0,
ω(t) = ω0 and v = 0. In this figure we use v = γ = } = m0 = ω0 = 1.

steeper than that for the CK one. In this range, the LE
damping coefficient is always greater than 1 and tends
to +∞ in the limit that t → 0. We also observe that
the particle is less localized due to LE dissipation for all
values of t.

Using the procedure described by Hasse [27], the time-
dependent quantum mechanical expectation value of

energy for the lowest-lying state is given by

〈E〉0,0 = }m0

2M(t) (1 + |v|)

×
(

1
M(t)ρ2(t) +M(t)ρ̇2(t) +M(t)ω2

0ρ
2(t)

)
.

(11)
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Figure 4: Plots of 〈E〉0,0 for v = 0 (solid line), v = 5 (dashed
line) and v = 10 (dotted line) for the ground state of the system
by considering the CK dissipation. In this figure we use } =
m0 = ω0 = γ = 1.

Figure 5: Plots of 〈E〉0,0 for CK (solid line) and LE (dashed
line) oscillators for the ground state of the system. In this figure
we use v = γ = } = m0 = ω0 = 1.

In Fig. 4 we show plots of 〈E〉0,0 for different values
of ν in a CK dissipative system. As expected, the
energy decreases with increasing t. However, in the range
t < 3.5 s we can minimize the dissipation in the 2D
parabolic quantum dot by increasing ν. In Fig. 5 we
compare the energies for both CK and LE systems. We
observe that for t < 2 the LE dissipation is steeper than
that of the CK one. This result is also due to the behavior
of the LE damping coefficient in that range.

Summing up, we studied the effects of dissipation in a
charged oscillator in the presence of the AB effect by
using time-dependent mass (m(t)) Hamiltonians. The
procedure used describes the dynamics of the dissipation
in 2D parabolic quantum dot in the presence of AB
effect. From the exact wavefunctions [15], we calcula-
ted the uncertainties (∆r and ∆p) and the quantum
mechanical expectation value of energy (〈E〉) for two
kinds of dissipations and analyzed them with respect to

time (t), damping parameters and flux parameter (v).
For the CK system, we observed that ∆r (∆p) decreases
(increases) with increasing t and fixed v and γ, indicating
that the particle becomes more and more localized. Since
the oscillating particle radiates, the motion is damped
and the particle oscillates between two closer and closer
points reducing ∆r.

On the other hand, as v increases both ∆r and ∆p
increase for a fixed t. The flux parameter depends on
the transversal area A of the classical orbit. Therefore,
the number of accessible points for the particle increases
with increasing A leading to an increase of ∆r. The
increase of ∆p results from the fact that when the orbit
radius increase, the particle velocity must increase to
keep the orbital period constant.

By comparing the uncertainties ∆r(t) for LE and CK
dissipations in the range t < 2, we observed that the ∆r
decreasing due to the LE dissipation is sharper than that
for the CK one. By analyzing the system under the CK
dissipation, we also observed that the flux parameter v
decreases the energy dissipation in a quantum dot for
a certain range of t. This result can be useful to the
improvement of quantum devices. A natural extension
of this problem is the analysis of the quantum dynamics
of a charged particle in an ion trap in the presence of
dissipation.
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