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Abstract

The production rate of a mining operation has an important effect on the opera-
tional cycle and gross profit, which are often evaluated based on engineering practices. 
Assessment of the economic performance of mine operations in mining engineering 
is of great importance because an incorrect production rate can result in significant 
financial losses. The production rate is composed of two bases: the cost estimation and 
the price scenario. Bureau of Mines studies performed on American mines indicated 
that processing costs can be estimated through the production rate. This article pro-
poses to connect the model presented by the Bureau of Mines and queuing theory to 
describe the operational costs, which are used to develop a production optimization 
methodology. The proposed cost composition describes a production system to verify 
the law of diminishing returns and the economy of scale. Between these regions of the 
production curve, the optimum point was determined with mathematical precision.
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1. Introduction

Mining costs are generally high, 
both in the development and operational 
phases; therefore, it is important to use 
robust data for estimates. Another im-
portant consideration for an accurate cost 
estimation is the production rate, which 
must be defined before the beginning of 
operations and should be recalculated 
whenever necessary. The optimum pro-
duction rate follows changes in sales price 
and costs and is influenced by market 
demand (Runge, 1998) and several factors 
related to the operation. Strategic mine 
planning should be periodically rebuilt to 
adapt to new possible market scenarios, 

follow the commodity price fluctuation 
and, if necessary, change the production 
rate over the mine life.

Taylor’s rule has been used to 
estimate the mine production rate 
based mainly on the expected total 
reserve, but this rule has several gaps 
that do not consider operational and 
financial parameters in the estimation. 
Taylor (Taylor, 1986) showed that the 
empirical formulation was based on a 
study that analysed 30 projects. From 
Taylor’s rule, the US Bureau of Mines 
(USBM) (Camm, 1991) performed a 
more detailed analysis using regression 

techniques that included the capital and 
operating costs of the formulation.

 Sabour (Abdel Sabour, 2002) pre-
sented a review of the various methods 
for proposing the correct production rate. 
Dowd (Dowd, 1976) addressed the issue 
through dynamic programming with the 
premise that both costs and prices could 
be predicted accurately. Lizotte and El-
brond (Lizotte; Elbrond, 1982) reviewed 
this theory, demonstrating that there are 
fundamental differences between the dy-
namic programming model and the real 
processes. Wells (Wells, 1978) proposed 
a methodology for the optimization of 
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the production rate based on the maxi-
mization of the present value ratio (PVR), 
that is, seeking the greatest relationship 
between the positive present value of the 
cash flow divided by the negative present 
value of the cash flow.

Cavender (Cavender, 1992) pro-
posed a theory to find the optimum 
production rate through the net present 
value (NPV) optimization considering 
cash flow, stochastic modelling and 
prices. However, since this model was not 
composed of real operation constraints, 
it has not been widely applied. Smith 
(Smith, 1999) apud (Abdel Sabour, 2002) 
proposed an optimum range for the pro-
duction rates with the highest value being 
the NPV maximum value point, and the 
lowest value was determined by the point 
at which the cash flow is the most efficient 
at repaying twice the capital cost.

Abdel Sabour (Abdel Sabour, 2002) 
developed a model based on marginal 
analysis, assuming that the production 
rate is optimized when the current mar-
ginal cost value is equal to the present 
value of the marginal revenue. Kizilkale 
and Dimitrakopoulos (Kizilkale; Dimi-
trakopoulos, 2014) presented a dynamic 
programming structure to estimate the 
optimum production rate under financial 
uncertainty. Their methodology was 
performed using a nonlinear formulation 
since complex mining systems can be 
modelled by linear equations. Their article 
presented an interactive and nonlinear 
formulation to account for the decrease 

in the reserve with each new period of 
operation. Mariz (2018) proved a cor-
relation between the commodity and the 
equation used to represent the behavior. 
Each commodity present similar mining 
method, equipment, processing and rev-
enue developing a similar behavior of the 
regression equation.

The main purpose of this study is 
to determine a mathematical formulation 
to optimize the mine production rate to 
achieve the maximum profit based on 
costs and revenues, as well as the method-
ology proposed by Abdel Sabour (Abdel 
Sabour, 2002). However, the main differ-
ence in the present approach is problem 
modelling, since the formulation of Abdel 
Sabour cannot correlate the production 
costs with the extraction rate.

The methodology considers the 
processing and mining costs individually 
to quantify the total cost. The process-
ing cost is defined by the sum of the 
individual costs of each operation, such 
as crushing, sizing and concentration 
(Franco-Sepulveda; Campuzano; Pineda, 
2017). For mining costs, the definition is 
based on the sum of unit operations such 
as drilling, blasting, and hauling.

Queuing theory is the mathematical 
study of waiting lines. This theory is mod-
elled using two events: arrival and service 
(Kappas; Yegulalp, 1991). According to 
(Gross et al., 2008), a queuing system is 
one in which customers arrive for service, 
wait for service if it is not immediately 
available, and move on to the next server 

once they have been serviced. Usually, 
the arrival is modelled by the average rate 
of clients in the system, and the service 
is determined by the average number of 
visits performed per time interval (Chwif; 
Medina, 2007). Kappas and Yegulap 
(1991) developed a methodology to model 
the behaviour of the productive cycle of 
mining using their previous knowledge 
of the service and arrival models. Because 
the system exhibits Markovian behavior, 
linearly chained events, the classic formu-
lations present in (Chwif; Medina, 2007), 
are used to determine the ideal quantity of 
equipment for the productive cycle.

Based on the concept of marginal 
revenue developed by the economic engi-
neering theory, the proposed formulation 
determines how much an extracted unity 
increases the profit. The result is an in-
crease in the productive capacity as revenue 
grows (Rendu, 2014). An increase in plant 
production leads to a decrease in the cost 
of ore production due to the economy of 
scale (Runge, 1998); the same approach 
can be applied to the mining cost. This 
study presents a formulation adaptable to 
each operation, and this formulation can 
provide a production rate according to 
financial changes. In scenarios regarding 
price reductions or increments, the produc-
tion rate is adjusted to reach the maximum 
marginal profit. One hundred simulated 
scenario prices, representing 10 years of 
operation, were developed through geo-
metric Brownian motion to determine the 
most likely production scenario.

2. Materials and methods

2.1 Marginal profit
The marginal profit can be defined 

as the difference between the marginal 
revenue and the marginal cost. To op-
timize the profitability, the production 
must be adjusted to the point where 
the marginal profit is zero, which cor-
responds to the optimal production 
point. After this point, the increase in 
production will not contribute to an 
increase in the profit, since the produc-
tion costs will also increase due to the 
diseconomy of scale.

The economy of scale is a strategy 
of large ore tonnage production at a 
low unit cost. Large equipment pres-

ents a high acquisition cost with a low 
operational cost. Low operating costs 
and high production capacities are the 
basis of economies of scale. Burgarelli 
et al. (Burgarelli et al., 2018) analysed 
the impact of the price on extremely 
sensitive iron ore deposit and cut off 
grade policy behavior showed that a 
change in ore price altered the destina-
tion can reach 45% of the scheduled 
blocks due the deposit behavior. This 
change can affect the haul distance and 
the mine cost.

A concept that can be applied to 
analyze the relationship between the ore 

production and sale price is the elastic-
ity, which is defined as the ratio of the 
percentage change in a dependent vari-
able to the variation in an independent 
variable. The price elasticity influences 
the production rate and company policy. 
For the case study, the elasticity shows 
the production reaction (Q) if price 
(P) increases or decreases (Tcha and 
Wright, 1999; Hildenbrand, 2014). 
Equation 1 summarizes the concept 
of elasticity by presenting the ratio be-
tween the percentage variation in the 
price and the percentage variation in 
the quantity produced.

e = (1)
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Figure 1 shows a production in-
crease when the elasticity(e) is greater 
than 1, and the price reduction provides 
an increase in the demand and conse-

quently an increase in the profit. This 
analysis can also be conducted when the 
elasticity is less than 1, demonstrating 
that an increase in production is insuf-

ficient to overcome the price decline. 
Marginal profit is related to a financial 
benefit increase with a production level 
change (Camus, 2002).

Utility is used in decision theory to 
represent the positive result obtained by 
following a particular course of action. It 
is important to understand the correlation 
between profit and production developed 
by Rendu (Rendu, 2014), which deter-
mines the function to calculate profit based 

on the Lane formulation (Lane, 1988). 
Both authors are based on  the theory of 
the firm (Coase, 1937) that defines profit 
as the difference between the revenue and 
cost. The revenue is a function of the total 
metal contained in the ore, and the costs 
are determined according to total material 

moved. To determine the costs, the process 
must be divided into two stages: first, the 
mine operation rates are fixed; next, the 
process operation rates are fixed. For an 
iron ore operation, the utility function 
considering the fixed mine operation rates 
can be expressed as (Equation 2):
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where: V= Ore value (US$);
Tc+= Tonnage above the cut-off (ton);
Qc+= Quantity of ore processed in 

one year (ton);

a= Feed grade (%);
c= Concentrated grade (%);
U(Tc+)= Utility of the plant activity 

at Tc+ capacity (US$/ ton);

r (Tc+)= Processing plant recovery at 
Tc+ capacity (%);

P0(Tc+)= Cost per ton of ore pro-
cessed at Tc+ capacity (US$).

The optimum plant capacity is 
reached when the maximum value equals 

the value of the first derivative of utility, 
which is equal to zero (Equation 3).

(2)

(6)

(5)

(3)

(4)

Figure 1
Profit elasticity.
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Applying the concept of Equation 2 to Equation 1, the following relation is obtained.
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Considering a minor change in 
the cut-off grade, the amount of mate-
rial processed will be changed. Equa-
tion 5 presents the metal contained 

in ore, and Equation 6 shows the 
increase in the contained metal due 
the tonnage growth, where Xc+ cor-
responds to the average grade above 

the cut-off grade. The total amount 
of metal will contribute to the utility 
according to Equation 7.

Joining (6) and (4):
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c+
) =

dP
0
 (T

c+
)

dTc+

dr (T
c+
)

dTc+

X
c 
. r (T

c+
) . a/c .V - P

0
(T

c+
) + Q

c+
. . V - T

c+
 . (7)



REM, Int. Eng. J., Ouro Preto, 72(4), 625-634, oct. dec. | 2019628

Optimum mine production rate based on price uncertainty

(8)

(9)

(12)

(15)

(10)

(13)

(16)

(11)

(14)

(17)

To determine the recovery equation 
and processing costs, the utility must be 
considered according to the production 
rate. The methodology developed by 

Rendu (Rendu, 2014) was adjusted using 
parameters from a hypothetical iron ore 
deposit (Equation 8) to determine the 
relationship between the production rate 

and recovery, r (T
c+
) . Ideally, this func-

tion should be determined through tests 
in a pilot plant so that the values will be 
more definitive.

r (T
c+
 )= - 0.000006x2 - 0.021x + 0.9328

2.2 Processing cost
The second step relates the costs 

to the process route. In the Bureau of 
Mines cost estimating system handbook 
(Camm, 1991), there are several equations 
to estimate the processing cost of each step 
according to the quantity of ore processed 

by the plant (feed rate, Xd). A factor was ap-
plied based on the inflation rate available 
in the Institute Index Mundi; this factor 
aims to correct the values for the current 
conditions. Three operations were con-
sidered to estimate the processing costs: 

milling (Equations 9, 10 and 11), impact 
crushing (Equations 12, 13 and 14) and 
flotation (Equations 15, 16 and 17). These 
3 steps were adopted to simplify the pro-
cess because they have greater operating 
costs in the iron ore projects.

C 
lab 

= 187200 (X
d
)0.297

C 
lab 

= 17126 (X
d
)0.585

C 
lab 

= 483344 + 0.26X
d

C 
Sup 

= 0.315 (X
d
)0.840

C 
Sup 

= 0.649 (X
d
)0.843

C 
Sup 

= 0.832 (X
d
)

C 
Rep 

= 1.093 (X
d
)0.775

C 
Rep 

= 8.460 (X
d
)0.581

C 
Rep 

= 4.13 + 0.149 (X
d
)0.013

Milling cost:

Impact crushing:

Flotation:

where: Clab= Labour cost (US$/ ton); Csup= Energy supply cost (US$/ ton); and CRep= Equipment repair cost (US$/ ton).

Considering Equations 9 to 17, 
Figure 2 shows the results of the to-

tal costs for each production rate. As  
expected, the processing cost decreases 

as the production rate increases.

Figure 2
Processing cost
according to the production rate.

2.3 Mining Cost
To determine the utility function 

used in the optimization, it is important to 
consider that processing costs are constant 
and that the mining costs are variable. 

Equation 18 shows the utility function of 
extraction considering processing cost as 
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a constant variable. Equation 18 shows the total utility developed by mining all ore above the cut-off grade.
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The variability in the mining cost 
as a function of the independent variable 
tonnage will be based on queuing theory 
(Kappas; Yegulalp, 1991), since a mining 

operation composed of a truck and an 
excavator is perfectly modelled by this 
theory. Regarding mining operations, the 
attendant is represented by the loading 

equipment, and the truck represents an in-
dividual in the queue. The cost to load and 
transport the ore above the cut-off grade 
can be calculated according to Equation 19.

where: QFr= Quantity of mining progress;
Ns= Number of trucks;

Dc= Diesel cost (US$/ton);
Er= Equipment repair (US$/ton);

Pm0= Mining cost at Tc+ capacity (US$/ton).

The arrival rate (λ) of the hauling 
equipment (Equation 20) was calcu-
lated as a function of cycle times (tc) of 

the Markovian systems for excavators 
and trucks (Chwif; Medina, 2007). 
The arrival rate was used to determine 

the amount of equipment through a 
relationship derived from Little's law 
(Equation 21).

t
c
 (T

c+
)λ =

1

Among the variables that can influ-
ence the mining costs, the hauling cost can 
be cited as a high-impact variable. The 
position of each block inside the deposit has 

a different weight in relation to its hauling 
cost. The distance increment is the aver-
age distance from the centre of mass of 
the mined blocks to the plant. Equation 

22 shows that the distance increment is a 
function of the production rate and conse-
quently will be proportional to the next area 
to be extracted (Peurifoy; Ledbetter, 1985).

t
c
 (T

c+
) =

Sd(T  ) ds
V

S

0
∫ c+

where: S= Segment; Sd= Segment Size; V= Velocity.

Figure 3 shows the distance 
increments and equipment demand 
according to the increase in produc-
tion rate considering a generic iron 
ore pit. Depending on the production 
rate, the area to be extracted can have 
a different size. The distance between 

the processing plant and the centre 
of mass of these different areas to be 
mined was used to measure the incre-
ments according to each production 
rate. The measured values represent the 
sum of the segments Sd (Tc+) used to de-
termine the cycle time t

c
 (T

c+
). For lower 

production volumes, a greater number 
of trucks are necessary because small-
sized equipment is used. Small-sized 
equipment should be used in greater 
quantity so that the utility remains 
within the recommended range of 85% 
(Cooper, 1981).

Figure 3
Incremental haulage distance.



REM, Int. Eng. J., Ouro Preto, 72(4), 625-634, oct. dec. | 2019630

Optimum mine production rate based on price uncertainty

Figure 4 shows the relationship 
between the mining cost and production 
rate, and at low production rates, the 

mining cost per ton is very high. This 
fact is related to the greater quantity of 
small-sized equipment because gener-

ally, smaller companies cannot make 
larger initial investments to reduce the 
production costs.

Figure 4
Mining cost according
to the production rate.

2.4 Price Simulation
Equations 2 and 18 use the ore 

price to determine utility. The ore price 
and the utility are directly proportional: 
if the price increases, then the utility 
also increases. The price simulation 
performed in this study will influence 
the expected production rate for the 
following periods. Iron ore behavior is 
best modelled by geometric Brownian 

motion due to the ability to replicate 
the volatility and the trend observed 
in the analysis window (Rahmanpour; 
Osanloo, 2016). The volatility confers 
a large number of erratic paths with 
equivalent probability, according to 
Cortez et al. (2017). The price simu-
lation can be divided into two parts, 
namely, deviation and volatility. In the 

first part of Equation 23, volatility (µ) is 
related to the distribution of simulated 
prices. In the second part of Equation 
23, drift (σ) determines the trend of the 
price simulations: increasing or decreas-
ing. Combining the volatility and drift 
with the random variable proposed by  
Wiener (W

t
) makes it possible to simu-

late the price behaviour.

dS
t
 = μS

t
 d

t
+σS

t
 dW

t
(23)

where: St= Simulated solution and dt= Time derivative.

The iron ore prices, obtained from 
the Index Mundi Institute, were analysed 
between December 2015 and December 
2017 to determine the drift and volatility. 
Two percent was used for the drift, and 
5% was utilized for the volatility, based on 
the initial value of US$70/ton at time zero. 
A positive value of a 2% drift was used 
for a decreasing trend in the long-term 

simulated prices (Yang et al., 2015). The 
volatility of 5% expresses a trend varia-
tion near the average, and greater volatil-
ity increases the possibility of scattered 
scenarios. Rahmanpour and Osanloo 
(Rahmanpour; Osanloo, 2016) do not 
recommend a long-term extrapolation of 
the simulation; therefore, the simulated 
horizon was limited to 10 years.

The methodology adopted to simu-
late the random component of Equation 
23 is based on a Monte Carlo simulation. 
Figure 5 shows the price simulation over 
the next 10 years with the respective 
confidence levels of the estimates. The 
confidence level is a range of values that 
indicates how precisely a statistic can 
estimate a parameter.

Figure 5
Price simulation.
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3. Calculation

3.1 Single optimum solution
The profits that represent the rev-

enue of the processing and mining activi-
ties (Equations 2 and 18) are summed to 
find the optimum production rate. The 

processing and mining costs are related 
to the production rate, but it is impor-
tant to remember that the metallurgical 
recovery was correlated with the produc-

tion rate according to (Rendu, 2014). 
Equation 24 shows the formulation to 
be optimized to determine the optimum 
production rate.

U ( T
c+

 ) = Q
c+

 . r ( T
c+

 ) . a / c . V - T
c+ 

. P
0
 ( T

c+ 
) - T

c+
 . P

m0 
( T

c+ 
) (24)

(25)

This topic will demonstrate the 
optimum production rate considering the 
selling price of US$70/ton. The definition 
of the optimum point of the production 
rate can be estimated through the graph in 

Figure 6 and was confirmed through the 
first derivative of Equation 24 to be zero 
(Equation 25). For the scenario presented 
below, Figure 6 shows the profit for differ-
ent production rates, and the highest profit 

is in the region between 40 and 60 million 
tons. The solution to Equation 25 shows 
that the optimum point corresponds to a 
production of 50.36 Mt, confirming the 
result from the graph.

dU (T
c+
)

dTc+

= 0; T
c+
 = 50.36 Mt

Figure 6
Total profit - Ore price US$ 70/ton.

3.2 Simulated optimum solution
Item 2.4 (Price Simulation) shows 

the determination of several simulated 
price scenarios that apply to the developed 
formulation change in the utility value to 
move the optimum point. If the ore price 
increases, then the utility tends to increase 
(Hildenbrand, 2014). The concepts of the 
single optimum solution will be extrapo-
lated to the simulated price scenarios. 

The solution determined in Equation 
25 is based on a deterministic value, but 
the utility value is strongly influenced by 
the price of and total metal contained in 
ore (Leite; Dimitrakopoulos, 2009). The 
utility function represented by Equation 
24 was also used to optimize scenarios 
based on simulated prices. For each year 
of operation, 100 prices were simulated, 

and each of these 100 prices resulted in 
an optimum production rate based on 
the same concept of a single optimum 
solution (Equation 25). Figure 7 rep-
resents the probabilistic distribution of 
the rates in the 1000 analysed scenarios. 
The concept of confidence level adopted 
is similar to a confidence range used on 
a normal distribution.

Figure 7
Simulated optimum production rate.
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4. Results

5. Conclusion
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Before the optimum production 
rates are discussed, it is important to 
analyse the formulation behavior in a sen-
sitivity analysis scenario. Figure 8 shows 

that an increase in the production rate is 
limited at the upper part. An increase in 
price above US$80/ton does not cause a 
very significant increase in the production 

rate compared to its effect on the lower 
prices. The behaviour presented is similar 
to a logarithmic curve in which very high 
prices will be bounded by an asymptote.

Figure 8
Production sensitivity analysis.

The elasticity concept presented in 
Equation 1 can be extended to the analysis 
of Figure 8, where it is possible to conclude 
that elasticity is not constant for any 
curves, as predicted theoretically by Tul-
canaza (Tulcanaza, 2015). Importantly, 
the simulated price cannot be lower than 
the break-even price because simulated 
scenarios that do not correspond to reality 
can be generated (Neary, 2001).

A good method to validate the 
obtained results is verifying the prob-
ability of occurrence of the determin-
istic scenario of US$70 / ton. For this, 

the production rate associated with 
this price is verified in Figure 8, and in  
Figure 7, its probability of occurrence can 
be checked. For a production rate of  
50.36 Mt, the confidence level is up 
to 10% in the first year simulated and 
increases to approximately 25% in the 
last period.

The correlation between price 
and production demonstrated the need 
for focus on price simulation (Franco-
Sepulveda; Campuzano; Pineda, 2017), 
since a simulation performed with 
tenuous criteria can lead to a scenario of 

increasing or decreasing production in 
the wrong direction. The analysis of the 
drift and volatility variables should obey 
the needs of each operation and ore type 
(Rahmanpour and Osanloo, 2016; Yang 
et al., 2015).

The estimates of mining and pro-
cessing costs showed the capacity to rep-
resent the expected economy of scale for 
higher production rates. Figure 4 shows 
that for very small mining rates, the unit 
cost may vary more with an increase in 
the mining production rate when com-
pared to the process.

The proposed formulation to opti-
mize the production rate can represent the 
economies of scale predicted theoretically, 
since an increase in production decreases 
the unit cost. Due to the decrease in the 
operation efficiency, the ore recovery 
tends to decrease. The equilibrium point 
between these systems is represented by 
the marginal cost of zero, corresponding 
to the production rate capable of provid-

ing the greatest marginal utility.
The mechanism is easy to adapt to 

the proposed processing route of the case 
study, since it consists of adding the cost 
equations available in literature to the 
corresponding steps. The metallurgical 
recovery and increment distance must be 
analyzed according to the specific char-
acteristics of the operation.

The correlation between produc-

tion rate and selling price was demon-
strated, but the upper and lower limits of 
the simulated price should be observed. 
A price below the break-even point can 
make the mine unfeasible, and very high 
prices do not significantly affect the pro-
duction rate. The formulation showed 
the ability to consider the operational 
and financial parameters not included 
in Taylor’s rules.
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