
Rev. IBRACON Estrut. Mater., vol. 13, no. 5, e13511, 2020 

ORIGINAL ARTICLE 

Corresponding author: Marina Fernandes Alvarenga Oliveira. E-mail: marinaalvarenga.engcivil@gmail.com 
Financial support: The authors would like to thank FAPEMIG (Public Call 01/2015-APQ00099-15) for the financial support. 
Conflict of interest: Nothing to declare. 

 This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Rev. IBRACON Estrut. Mater., vol. 13, no. 5, e13511, 2020|  https://doi.org/10.1590/S1983-41952020000500011 1/20 

Received 04 July 2019 
Accepted 26 Febuary 2020 

Parametric analysis of analytical solutions of the rollover of 
precast beams on bearing pads 
Análise paramétrica da instabilidade por tombamento de vigas pré-moldadas 
sobre almofadas de apoio 

Marina Fernandes Alvarenga Oliveiraa  
Pablo Augusto Krahlb  
Maria Cristina Vidigal de Limaa  
 

aUniversidade Federal de Uberlândia – UFU, Faculdade de Engenharia Civil, Uberlândia, MG, Brasil 
bUniversidade de Campinas – UNICAMP, Faculdade de Engenharia, Arquitetura e Urbanismo, Campinas, SP, Brasil 
 

Abstract: Due to low stiffness to lateral bending, long prestressed precast concrete beams are subject to lateral 
instability. For this reason, the safety analysis of these beams during the transitory stages of transport, lifting 
and assembly is fundamental. This work presents a nonlinear analytical model for the parametrical analysis 
of beams on bearing pads in their definitive location, without the effective connections being made. Such a 
solution determines a critical load of instability and considers the geometry of the cross-section, physical 
characteristics of the materials as well as geometric imperfections. A parametrical simulation is performed for 
the initial eccentricity, the initial rotation of the beam, concrete resistance, bearing pads dimensions, and the 
cross-section of the beam. The results show that the parameters of most considerable influence on beam 
stability are rotation stiffness of the bearing and the geometric characteristics of the cross-section of the beam, 
which can result in a reduction of about 50% of the critical rollover load. In addition, the cracking load may, 
in some cases, be close to the critical toppling load. 

Keywords: stability, precast beams, analytical study, parametric study, Monte Carlo simulation. 

Resumo: Devido à baixa rigidez à flexão lateral, vigas pré-moldadas protendidas de concreto longas e esbeltas 
estão sujeitas aos riscos de instabilidade lateral. Nestes termos, é fundamental analisar a segurança dessas 
vigas durante as fases transitórias de transporte, içamento e montagem. Este trabalho apresenta um modelo 
analítico não linear para análise paramétrica de vigas já posicionadas em seu local definitivo sobre almofadas 
de apoio, quando as ligações ainda não foram efetivadas. A força crítica de instabilidade lateral foi calculada 
considerando a geometria da seção transversal, as características físicas dos materiais, bem como imperfeições 
geométricas. Uma simulação paramétrica foi feita para a influência da excentricidade lateral inicial da viga, a 
rotação inicial do apoio, a resistência à compressão do concreto, as dimensões do aparelho de apoio e a seção 
transversal da viga. Os resultados mostram que os parâmetros de maior influência na estabilidade da viga foi 
a rigidez a rotação do apoio e as características geométricas da seção transversal da viga, podendo resultar em 
redução da ordem de 50% da força crítica de tombamento. Além disso, a força de início da fissuração, em 
alguns casos, pode estar bem próxima a força crítica de tombamento. 

Palavras-chave: estabilidade, vigas pré-moldadas, estudo analítico, estudo paramétrico, simulação de Monte 
Carlo. 
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1 INTRODUCTION 
Precast and prestressed concrete beams are elements widely used in the most diverse types of construction systems. 

Such elements are found with increasing spans, slender cross-sections, and improved mechanical efficiency, due to the 
advance of technology associated with concretes that are more resistant, along with more precise and efficient 
manufacturing processes. 

During the assembly process of a precast structure, it is common that its elements are maintained in temporary 
situations until the end of production. In the case of beams for bridges and viaducts, this occurs during the transportation, 
hoisting, and even after being placed in their permanent position, when there is still no slab or other structural bracing 
element necessary for guaranteeing the complete stability of such structures. In these stages, the beam is usually bi-
supported, without restriction across all movements, and as such subject to actions that can interfere in its stability, 
which means there exists a high probability of rollover with rigid body rotation, accompanied by deformation and 
critical stresses. 

Rollover of precast beams is a case of collapse due to lateral instability, where support devices produce little 
restriction to the rotation of the beam to its longitudinal axis. In this type of failure, there typically occurs a combination 
between lateral flexion, rigid body rotation (around the longitudinal axis) and twisting. The twisted portion usually is 
much less than the rigid body portion [1] and [2], which can thus be dismissed. There are those factors that directly 
influence the lateral stability of precast beams, such as the length of the beam, the geometry of the cross-section, in 
addition to lateral forces, as in the case of wind. 

Several accidents caused by lateral instability of precast beams justifies the study on which this paper is based. In 
June of 2000, the Souvenir Boulevard Bridge, under construction in the city of Laval in Canada, suffered the partial 
collapse of various precast beams with a span of approximately 33.5 m. The cause of the accident was the inadequate 
conditions of the supports that produced a state of unstable equilibrium on the beams [3]. In 2007, nine out of the eleven 
precast beams collapsed that were part of the Red Mountain Freeway in Arizona, United States (Figure 1). Lateral 
instability caused one beam to collapse, triggering the fall of the eight remaining beams through a domino effect. The 
rollover of this beam was caused by a critical combination of many factors, such as geometric imperfections of the 
beam, bad positioning on the support, the presence of wind, and a lack of lateral bracing [4]. The study by Bairán and 
Cladera [5] analyzed the partial collapse of a structure covering a sports gymnasium, which was caused by the rollover 
of precast beams. According to these authors, the accident was due, possibly, to the inadequate positioning of the 
support device, as the position in which it was placed did not present sufficient stiffness to the lateral rotation, so that 
it guarantees the stability of the beam. 

 
Figure 1. Beam collapse in Arizona (EUA). Source: Oesterle et al. [4] 

Some analytical studies were performed to present solutions that verify the safety of precast beams on support 
devices. The study by Mast [1] proposed an equation, through the static equilibrium of moments for determining the 
safety factor of the beam in a transitory stage, while considering stiffness, rotation and superelevation of the support, 
the physical properties of the beam and the initial lateral eccentricity. The equation proposed by Mast [1] is considered 
in a normative sense by the PCI (Precast/Prestressed Concrete Institute), to evaluate the critical rollover load of a beam. 
Other authors also developed equations to determine the critical self-weight of the beam when supported by support 
devices, for example in Burgoyne and Stratford [6], Plaut and Moen [7], Lee et al. [8] and Lee [9], in addition to 
Krahl et al. [10]. Burgoyne and Stratford [6] did not consider the superelevation of the support, neither the initial 
eccentricity in their equation. Through their research, Plaut and Moen [7] developed an equation that considered a 
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curved beam under the action of its self-weight and wind. In Lee et al. [8], the proposal was put forward of an equation 
that also considered the influence of wind, but without initial eccentricity. Lee et al. [8] proposed an equation for a 
straight beam, under the influence of self-weight, but considered the effect of beam twisting. Krahl et al. [10], through 
the Rayleigh-Ritz method, proposed an equation for defining the critical load concentrated in the middle of the span, 
causing lateral instability of the beam, besides the definition of the critical load distributed uniformly, i.e., critical self-
weight. 

Hurff and Kahn [11] performed experimental analyzes on a beam of a 30.5 m length and cross-section of the BT-
54 type, on an elastomeric bearing pad that was reinforced with four steel plates. To perform the test, a concentrated 
vertical load with a gravitational force simulator was employed, which does not offer resistance to lateral deformations 
or twisting. The authors concluded that the rigid body rotation to was more significant than rotation due to elastic 
deformations, and that the initial imperfections of the beam and rotation on the support are substantial when dealing 
with lateral stability. 

This paper has as its objective to study the problem of lateral stability of beams during assembly of the structure 
onto elastomeric supports, usually in a bi-support arrangement, through an analytical approach. The elastomeric pad 
support device was chosen as the object of analysis, as it is widely used support in the construction of bridges and 
viaducts using precast beams. A schematic representation of the beam indicating the initial eccentricity and support 
rotation parameters are presented in Figure 2. 

 
Figure 2. Scheme for the analyzed beam. Source: Authors. 

The objective of the study was to propose an analytical solution to determine the rollover load with the rigid body 
rotation of the beam, due to conditions of imperfections of the beam, such as eccentricity and initial rotation, while 
analyzing the critical stress for initiating cracking of the beam due to additional stress of traction generated during 
tipping, as well as check for the influence of initial lateral eccentricity, the characteristics of the concrete, the cross-
section of the beam and the rigidity of the pad in parametric analytical simulations. 

The equations presented in this study for determining the critical rollover load of precast beams were developed 
with the use of the Rayleigh-Ritz method, which is based on the principle of stationary potential energy. 

In order to evaluate the initial cracking of the beam, the calculation was presented for the maximum traction stress 
of the beam during the rollover, i.e., under the nonlinear geometric regime. Initial cracking was considered in this study, 
as the moment when traction stress on the beam is higher than the resistance to concrete traction. 

Finally, a parametric analysis was developed based on the Monte Carlo simulation to verify the behavior of 
analytical solutions for the critical loads obtained. As a basis for the analysis, data were used from the beam tested by 
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Hurff and Kahn [11]. The analysis parameters were: initial lateral eccentricity, initial rotation on the support, the 
compressive strength of the concrete, dimension of the support device and the cross-section of the beam. 

2 EQUATION FOR LATERAL INSTABILITY DUE TO ROLLOVER 

The problem with the study of balance in nonlinear analysis of precast beams supported on support devices was 
developed in this paper employing the Rayleigh-Ritz method. This method is based on the principle of stationary 
potential energy and applies to linear as well as nonlinear structures, which are statistically determined. Therefore, it is 
possible to obtain the closed-form nonlinear analytic solution to structural problems. For such, one should determine 
an appropriate function that represents the geometric configuration of the structure concerning instability, through a 
linear combination of degrees of freedom αi. This function was used in the total energy equation Π, which consists of 
the sum of the internal energy U and the work carried out by external forces operating in the system V. 

The development of the equations presented in Oliveira [12] and Krahl et al. [13] started with the definition of a 
trigonometric function due to the degree of freedom (α1), for the lateral displacement of the beam when in a condition 
of instability. 

The general trigonometric function presented in Equation represents lateral rotation due to bending, where L is the 
length of the beam and αn is a generalized variable that represents the maximum value of u1, which is the lateral 
displacement of the beam. In the case of n = 1, which represents the first buckling mode of rollover instability, the 
constant α1 is the maximum lateral displacement value in mid-span, and the curve is a single sine wave. Other buckling 
modes can be chosen for values higher than n. In addition, Equation 1 satisfies the essential boundary conditions of the 
beam. 

( ) sin
m

1 n
n 0

n  xu x   
L
πα

=

 =  
 

∑  (1) 

The total internal energy of the system is presented Equation 2, including the energy from the rotation of support 
devices. Highlighted here is that lateral instability of precast beams occurs mainly due to a combination of lateral 
bending displacements and rigid body rotation. 

( ²) ²
L
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0
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Where EIy, GJ, EIω are the stiffness to lateral bending, St. Venant torsion and warping, respectively. The last two forms 
of stiffness were functionally canceled due to twisting, φ1 being assumed as constant (rigid body rotation). The 
parameter kθ represents the rotational stiffness of the support devices and u1 the lateral displacement of the beam. 
Approximate solutions for the stiffness of the support, which is nonlinear, were necessary for solving the problem. 
Rotations were considered constant over the interval with a value of φ1. 

In order to obtain the stability equation, the beam was considered as possessing an initial eccentricity (ei) and initial 
rotation (φ0), and that is was supported at its extremities by elastomeric pads, subject to its self-weight. Under the 
condition of instability, the beam presents lateral and vertical displacement due to bending, besides rigid body rotation. 

The function that describes the initial eccentricity along the beam axis (u0) is calculated according to Equation 3, 
where ei is the initial mid-span eccentricity. 

( ) sin0 i
 xu x e   
L
π =  

 
 (3) 

The tipping action was given by the product of the vertical displacements by the respective loads applied to the 
structural element. Figure 3 presents the displaced beam configuration due to action resulting from own weight, acting 
on the center of mass during rollover of the beam with initial imperfections. 
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Figure 3. Trajectory of the resulting self-weight during rollover. Source: Adapted from Krahl et al. [13] 

In Figure 3, one notes that the total vertical displacement of the mass center during rollover (δR,F) is a combination 
of three parts, the sum of δR with δ1, and subtracted the value of Δ0. As δR corresponds to the vertical movement of the 
mass center due to rotation of the rigid body of the beam, δ1 is the distance between the centroid on the supports and 
the mass center in the final position, and Δ0 represents the distance between the centroid on the supports and the mass 
center of the beam in the initial position. The generalized displacement u0 represents the initial lateral displacement of 
the beam. The calculation of these displacements and the action performed by the result of self-weight is presented in 
Equations 4 to 7 in the following. 
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Where yb is the distance between the centroid of the beam and the axis of rotation located on the support device. 
Through the minimization of the energy functional (Π = U + V), it is possible to determine the solution for the 

degree of freedom α1 using Equation 8 and the critical load using Equation 9, thus obtaining the equation for final 
equilibrium (Equation 10). 

1
1

0α
α
∂

→ Π =
∂

 (8) 

1
q 0

ϕ
∂

→ Π =
∂

 (9) 



M. F. A. Oliveira, P. A. Krahl, and M. C. V. Lima 

Rev. IBRACON Estrut. Mater., vol. 13, no. 5, e13511, 2020 6/20 

( ) ( )tan
sin cos tan

4
0 1 2i1 1

b 0 1 16
y

8qL 2eqL 2y 1 2k
2 2  E I θ

ϕ ϕϕ ϕ ϕ ϕ ϕ
ππ

  +       + + + + =              
 (10) 

Equation 10 represents the nonlinear relationship between the force distributed along with the beam q and the beam 
rotation φ1 dependent on the initial rotation φ0 and initial eccentricity ei. When the initial rotation is considered equal 
to zero, the problem is reduced to the case of initial beam imperfection in the form of lateral displacement. If both initial 
rotation and displacement are equal to zero, the problem is reduced to the case of lateral instability of the perfect beam 
with flexible supports. In the latter case, it was possible to determine the critical force for lateral instability, under the 
hypothesis of rigid body rotation. 

Noteworthy is that there exist trials that configure the transitory phase for which the formulation was developed. 
However, to validate the formula, Krahl et al. [13] linearized Equation 10 and compared it to solutions from Mast [1] 
and Burgoyne and Stratford [6]. The proposed equation presented results very close to those obtained by equations in 
the literature. In addition, Oliveira [12] compared the nonlinear solution to a simplified analytic strategy, which 
consisted of using a linear solution combined with the equation by Southwell [14]. The latter takes into account the 
linear tipping load and the initial imperfection to obtain the nonlinear response. The results were identified until the 
peak. However, the equation by Southwell [14] did not predict the unstable behavior of the post-peak, which is 
characteristic of the problem with high sensitivity to initial imperfection. 

2.1 Determining initial cracking 
According to Mast [1], the cracking of concrete can be admitted as a limit state on the lateral stability of beams. 

Even though it is understood that prestressing does not influence in the tipping of the beam, the stresses developed due 
to prestressing should be considered to check for possible cracking. Therefore, the tensile stress critical for cracking 
σt,crit was determined in the mid-span section for each rotation angle φ1, as shown in Figure 4. 

 
Figure 4. Decomposition for checking the cracking moment. Source: Adapted from Oliveira [12] 

The flexibility of the supports during tipping allows one to ignore the effects of twisting. Equation 11 presents the 
general expression for determining the stress on the cross-section at the mid-span. The compressive stresses were 
admitted as negative and the bending moments are designated according to the right-hand rule, where F is the 
prestressing force, A the section area, e the prestress eccentricity, M’x, and M’y are the components of the moment 
caused by the distributed vertical force, x’ and y’ are the coordinates of the point of interest on the rotation axis, I’x and 
I’y are the inertia moments that also correspond to the rotated axis, and Mx is the moment due to the own weight of the 
beam. 
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( )cosx x 1M M ϕ=′  
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The nonlinear equation (Equation 10) allows one to determine the resulting moment Mx and its components M’x 
and M’y acting on the mid-span for each value of φ1 and corresponding force q. Following this, the stresses can be 
calculated according to Equation 11, and the critical cracking load qcr can be obtained when σ reaches the reaches 
concrete tensile strength ft. Such strength can be estimated according to ABNT NBR 6118:2014 [15] as fct = 0.3fck2/3, 
where fck is the characteristic compressive strength of concrete. 

3 DEVELOPMENT OF THE ALGORITHM AND PARAMETRIC ANALYSIS OF THE ANALYTIC 
SOLUTIONS 

3.1 Development of the algorithm 
The parametric study was developed to verify the mechanical component, considering the variation over specific 

properties of the beam. The method is based on a large number of random samples for evaluating the variation of 
parameters associated with the model in the mechanical response of the structure. This procedure was developed 
employing computer programming using the language Python. 

To obtain the random sample, for each of the parameters analyzed, 100 thousand simulations are performed. In each 
simulation, a random value is attributed to the following variables, initial lateral eccentricity, modulus of elasticity of 
concrete and stiffness to the rotation of the support. These parameters were not variable only when they are the 
parameter of analysis under focus. 

The random values were obtained in the following way, the initial lateral eccentricity and the modulus of elasticity 
were adopted randomly, according to the normal distribution, for which the average was the value of the default input. 
The variation coefficient was 0.61 for the initial eccentricity [16] and 0.15 for the modulus of elasticity [17]. In order 
to take into account the effect from the loss of contact and the possible curve at the bottom flange of the beam in contact 
with the bearing pad, the variation in stiffness to the rotation of the support device was considered randomly from 25% 
to 100% of the total stiffness established as the default input value. The default data values of the problem were 
attributed based on the beam in the trial by Hurff and Kahn [11]. 

The stiffness to the rotation of the support device was calculated by Equation 12. The axial stiffness of the support 
device (Equation 13) was calculated according to that proposed by Yazdani et al. [18]. 

 ²  v ak Lk
12θ =  (12) 
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With kv the stiffness to compression of the pad, La, Wa and Ha the dimensions of the pad, Epad the modulus of elasticity 
of the pad, Gpad the shear modulus of the pad, ni and ne the number of internal and external layers of the pad respectively, 
hi and he the height of the internal and outer layers of the pad respectively. 

The precision of the rigid body rotation angle from the analyses was 0.001 rad. The modulus of elasticity, and fct are 
determined from concrete compressive strength fck, according to the formulations from ABNT NBR 6118:2014 [15]. 
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The cross-section stress curve depends on two parameters, the acting force and the rotation angle. The values for 
the acting force are obtained by Equation 10. With the definition of the stress curve at hand, the value for stress closest 
to fct, was determined, in this way, the load and the angle corresponding to this point are the critical values for the 
initial cracking of the beam. The structure of the algorithm developed and programmed herein is presented in Figure 5. 

3.2 Parametric analysis results 

The parametric analysis is performed to verify the behavior of the beam for the variation of parameters indicated in 
Table 1. The properties of the beam used as the basis for the parametric analysis are presented in Table 2. The initial 
rotation of the beam of 0.5º was considered and an initial eccentricity of L/1000. 

The support device was considered according to the study by Hurff and Kahn[11] with dimensions of 61 × 36 × 7.3 cm3 
composed of 4 steel sheets, three internal elastomeric layers of 15 mm each and two external elastomeric layers of 
7.5 mm each, as outlined in Figure 6. 

For the stiffness to rotation calculation, the modulus of elasticity to the shear of the support apparatus was used at 
670 kPa, which resulted in a rotational stiffness of 33.4 MNm/rad. 

Table 1. Data for the parametric analysis 

ANALYSIS PARAMETER VALUES ANALYZED 
Initial eccentricity L/1000; L/500; L/250; L/125 
Initial Rotation 0.5º; 1.5º; 3.0º 
Concrete strength 50 MPa; 75 MPa; 100 MPa 
Support pad dimension 61 × 36 × 7.3 cm3; 61 × 36 × 9.8 cm3; 61 × 36 × 12.3 cm3 
Beam cross section (*) BT-54; BT-63; BT-72 
* For each of the three cross-sections of the beam, three cases are analyzed, modifying the dimension of the top flange, with 100% 
of the standard value; 50% of the standard value; and with length equal to the thickness of the web. 

Source: Authors. 

Table 2. Properties of the base beam parametric analysis 

Moment of inertia in relation to the X-axis(Ix) 0.1116 m4 
Moment of inertia in relation to the Y-axis (Iy) 0.0155 m4 
Beam height (h) 1.372 m 
Height of center of gravity (yb) 0.703 m 
Width of the top flange (MS) 1.067 m 
Area of cross-section (A) 0.425642 m2 
Beam length (L) 30.5 m 
Modulus of elasticity of concrete (E) 30820 MPa 

Source: Oliveira [12] 

Brazilian standards indicate the shear modulus of elasticity or the minimum transverse deformation modulus of 
0.80 MPa [19] and 0.85 MPa [20], as such the value of 0.67 MPa was adopted following the studies [10]–[13]. Figure 7 
presents the nonlinear curve obtained by Equation 10 for the force values due to the rigid body rotation of the beam. 
For these data, in absolute values without any variation, the values of 339.87 kN∙m for maximum strength and of 
0.16041 rad were obtained for the rotation angle that corresponds to this strength. 

The strength at initial cracking is of 339.85 kN∙m, with an angle of 0.16642 rad. For this particular case, the loads 
for cracking and rollover were very close, justifying in this way the direct use of Equation 10 in the verification of 
lateral instability through rollover, while considering the concrete with a linear behavior. This hypothesis has been 
found in numerical simulations presented in the literature [2], [9], [10], [21]. Also, the emphasis is given to the fact that 
the formulation can identify the maximum strength value, as it presents unstable post-peak behavior. 
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Figure 5. Structure of the parametric analysis algorithm. Source: Authors. 



M. F. A. Oliveira, P. A. Krahl, and M. C. V. Lima 

Rev. IBRACON Estrut. Mater., vol. 13, no. 5, e13511, 2020 10/20 

 
Figure 6. Schematic representation of the bearing pad. Units in [mm]. Source: Authors. 

 
Figure 7. Load applied by the stiffness to the rotation angle of the beam. Source: Oliveira [12] 

Figure 8a represents the value of maximum strength and the respective rollover angle for each of the 100 thousand 
simulations obtained through Equation 10, considering the randomness of the variables mentioned above, in. 
Noteworthy here is that the random values for initial lateral eccentricity and the modulus of elasticity were adopted 
while considering a normal distribution with a coefficient of variation of 0.61 for initial eccentricity and 0.15 for the 
modulus of elasticity of the concrete. In terms of support stiffness, the random values vary from 25% to 100% of the 
total rigidity established as the default value. The same was performed while considering the force for the initial 
cracking of the beam in Figure 8b. 

The histogram of Figure 8c refers to the results presented in Figure 8a, where these values were arranged to represent 
the number of simulations that give the value of maximum strength during a defined interval. Therefore, the x-axis 
represents the maximum strength intervals considered and the y-axis the number of simulations that result in the 
maximum strength in this interval. 
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Figure 8. Results of base data for beam with initial eccentricity and initial rotation angle. Source: Oliveira [12] 

The result from the direct application of the equation is a maximum strength of 339.87 kN/m (Figure 7). For the 
analysis with statistical variations of the parameters, considering the 100 thousand simulations, one notes that for the 
strength value obtained in the interval of 325-350 kN/m, which represents a portion around the mark of 9 thousand 
simulations. However, the majority of the simulations, around 15 thousand simulations, had a result of maximum 
strength between 275 and 300 kN/m. For these base values, regarding the 100 thousand simulations, the most significant 
values for maximum strength vary from 175 to 350 kN/m, which corresponds to 90% of the total simulations. 

In these simulations, randomness occurs from the combination of random values for the initial lateral eccentricity 
and the elasticity modulus, while considering a normal distribution with a coefficient of variation of 0.61 for the initial 
eccentricity and 0.15 for the modulus of elasticity of the concrete; for support stiffness, the random values vary from 
25% to 100% of the total stiffness established as a default value. 

The average rollover load value obtained from Figure 8a is of 258.49 kN/m. by comparing this result to the value 
of critical force obtained without considering the variation of the parameters, a reduction of 23.9% was observed, which 
corresponds to a reduction factor of 1.3. Besides, the fact that one is dealing with the verification of safety in structures, 
it is common knowledge that statistically, the resistances are considered as holding characteristic values. As such, a 
normal resistance distribution was considered typically as that presented in Figure 8c, and assumed as a characteristic 
value is a portion (quantile) of the distribution that represents a degree of confidence, for example, of 95%. This would 
result in a critical rollover load that is still less than the average. Therefore, the emphasis is placed upon the importance 
of considering the high degree of uncertainty associated with this transitory phase. Despite the analyzed variability, the 
beam in question remains stable, since the load due to own weight is of the order of 10 kN/m, and the rollover or 
cracking loads were above 100 kN/m, which would result in a safety coefficient above 10. 

3.2.1 Initial Lateral Eccentricity 

The first parameter analyzed refers to the influence of the initial lateral eccentricity of the beam, where the following 
values were considered L/1000, L/500, L/250 and L/125, where L is the length of the beam. For this analysis, 
eccentricity is maintained constant, equal to the value analyzed, without the attribution of random values to this 
parameter as in the other analyses. Figure 9 illustrates the results for this analysis. 
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This variable reduces the strength limit with the increase of the critical rotation angle. In the critical cracking 
strength, the angle obtained was practically the same for the four values observed for eccentricity, a general average of 
0.166 radians. The average critical strength suffers a reduction of approximately 1% and the average critical angle 
increases by almost 11% for the increase in the initial eccentricity from L/1000 to L/500. However, the increase in 
eccentricity from L/1000 to L/250, the reduction was 3% in critical strength with an increase of 27% in the angle from 
L/1000 to L/125, and the reduction was of nearly 7% in strength and an increase of 57% in the angle. Under these terms, 
it became clear that the eccentricity increases the susceptibility significantly for lift-off, which is the loss of contact 
between the beam and the support device. 

 
Figure 9. Variation of initial lateral eccentricity. Source: Oliveira [12] 

Therefore, the increase of initial eccentricity was causing a reduction in critical rollover load, followed by the rise 
in critical rotation. However, although the critical load at the beginning of cracking is less with the increase in 
eccentricity, the cracking angle presented values very close to one another, as seen in Figure 9b. 
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3.2.2 Initial rotation 
Another parameter of the initial imperfection of the beam that may influence lateral instability was the existence of 

initial rotation around its longitudinal axis. To observe the influence of this variable (Figure 10), three values of angle 
are adopted, such as 0.5° (0.008727 rad), 1.5° (0.02618 rad) and 3º (0.05236 rad). Highlighted here is that the study 
interval was adopted based on the results presented in [12] since these can produce instability on the beam. 

 
Figure 10. Variation of the initial rotation. Source: Oliveira [12] 

The increase in the initial rotation of the beam brought about a decrease of the maximum strength value, as the 
critical rotation angle increased. 

Noted in Figure 10a is that for an initial rotation angle less than (0.5º), there was a significant variation in the critical 
angle, but for the larger angle (3.0º), the results are more concentrated close to the average angle of 0.24 radians. In 
terms of the critical cracking force (Figure 10b), the critical angle was practically the same for the four values observed, 
with an overall average of 0.166 radians. 

3.2.3 Compressive strength of concrete 
For the analysis of the influence of the compressive strength of concrete, three concrete compressive strength values 

were assigned (fck), those being: 50 MPa (E = 39597.98 MPa), 75 MPa (E = 48497.42 MPa) and 100 MPa 
(E = 56000.00 MPa). The tangent modulus of elasticity was considered in a simplified form, where it was calculated 
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by E = 5600 ckf . For each value of fck, its elasticity modulus was maintained constant, without the assigning of 
random values to this parameter as performed in other analyses. Figure 11 presents the results of this analysis. 

In this analysis, the significant influence exerted by the modulus of elasticity of the concrete on the lateral stability of 
the beam became evident. The elasticity modulus can be related to the compressive strength of the concrete. The higher 
the compressive strength of the concrete, the greater will be the stability of the system, in such a way that there is a 
substantial increase in critical stress. 

 
Figure 11. Variation of the characteristic resistance to concrete compression. Source: Oliveira [12] 

Despite the increase in critical stress, the variation of the corresponding critical angles was minimal. As such, the 
conclusion was reached that the compressive strength of the concrete of the beam directly influences in the critical 
stress (Figure 11c), but the rollover angle (Figure 11a), and initial cracking (Figure 11b) was influenced very little. 

3.2.4 Stiffness of the support device 
The stiffness of the support device can have a significant influence over the lateral stability of the beams. To consider the variation 

and the importance of this parameter in the analyses, a variation of 25% to 100% of the initial value was considered for the pad, 
where 100% was considered the total stiffness value. Brazilian standards [19] and [20] do not establish limits or calculation methods 
for the stiffness to the rotation of the support device. In addition, the dimensions of the support device do not possess high flexibility 
to modification, since these are limited due to the maximum compression admitted by the standards and the dimensions of the bottom 
flange of the beam. The arrangement of the pad can bring about modifications to the rotation stiffness associated with it. Thus, the 
influence of this parameter on the lateral stability of the beam will be analyzed in this section. 

In the first analysis, the initial dimensions of the support device are considered as 610 × 360 × 73 mm, with four steel sheets, 
three internal layers of elastomer of 15 mm each and two external layers of elastomer of 7.5 mm each. According to that presented 
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in Figure 6, the calculated stiffness to the rotation was equal to 33366.66 kN/m∙rad. In the second analysis, an increase of 5 mm 
was considered for each layer of elastomer, thus resulting in a pad of 610 × 360 × 98 mm and stiffness of 12384.38 kN/m∙rad 
(37.1% of the initial stiffness). In the third analysis, the increase considered was 10 mm for each layer, resulting in dimensions 
of 610 × 360 × 123 mm and stiffness of 5891.79 kN/m∙rad, which corresponds to 17.7% of the initial stiffness analyzed. 

The increase in the height of the pads was attributed in a way to significantly modify the stiffness to rotation values of the 
support device, aiming at a better view of its influence. Such values do not correspond to the tolerance limits accepted by Brazilian 
standards [19] and [20] since these limits are 5 mm for the width and length of the bearing pad and between 1 mm and 3 mm for 
the height of the pad. Figure 12 shows the results of this analysis that refer to maximum load, initial load at cracking and the 
histogram of the number of simulations due to the maximum load for each situation of support device stiffness. With the increase 
of stiffness, besides the increase in critical load, there was a considerable variation on the critical rollover angle (Figure 12a), 
which is characteristic of a more unstable system. By taking the stiffness to rotation as a fixed parameter, a lower variation of 
critical load values occurred, which is noted when one compares the graph from Figure 12a with the first graphs of the previous 
analyses (Figures 8a, 9a, 10a and 11a). The tendency found was that the critical angle approximate to 0.15 radians, as the pad 
becomes stiffer. Despite the significant variation in the cracking load values, its initiation maintained the tendency of critical 
angle with values close to 0.16 radians, for the three observed cases. 

 
Figure 12. Variation of the stiffness of the bearing pad. Source: Oliveira [12] 

3.2.5 Cross-section of the beam 
The cross-section of the beam in this study was analyzed also considering the possibility of reducing the width of the top 

flange. In the first analysis, the cross-section and the span of the beam were modified, while maintaining the relationship 
between the height of the beam and the span proportional. Therefore, the sections BT-54, BT-63 and BT-72 are analyzed 
with the lengths of 30.5 m, 35 m and 40 m, respectively. The beams classified in the technical literature as BT-54, BT-63 and 
BT-72 refer to standard cross-sections from PCI (Precast/Prestressed Concrete Institute), widely used in the construction of 
bridges and viaducts from precast concrete, and the aim of analyses in Lee [9], Krahl et al. [10], Hurff and Kahn [11] and 
Oliveira [12]. In the second analysis, the influence of slenderness and the lateral moment of inertia were studied about the Y-
axis, by modifying the width of the top flange. The top flanges were considered using 100% of the original value, 50% of this 
value and under a condition where the top flange possesses a width equal to the thickness of the web. Figure 13 and Table 3 
present the properties of the beams studied. 
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Figure 13. Cross-sections of the beams with modifications to the width of the top flange. Source: Oliveira [12] 

Table 3. Properties of the beams of the series PCI-BT 

  BT-54 BT-63 BT-72 
Case (1) Case (2) Case (3) Case (1) Case (2) Case (3) Case (1) Case (2) Case (3) 

Moment of inertia Y axis Iy [m4] 0.01550 0.00649 0.00486 0.01560 0.00656 0.00493 0.01570 0.00663 0.00499 
Moment of inertia X axis Ix [m4] 0.11157 0.08687 0.05690 0.16340 0.12907 0.08817 0.22739 0.18188 0.12856 
Length of beam L [m] 30.50 30.50 30.50 35.00 35.00 35.00 40.00 40.00 40.00 
Height of center gravity yb [m] 0.703 0.609 0.492 0.817 0.715 0.591 0.931 0.822 0.693 
Height of beam H [m] 1.372 1.372 1.372 1.600 1.600 1.600 1.829 1.829 1.829 
Width of top flange MS [m] 1.067 0.5335 0.153 1.067 0.5335 0.153 1.067 0.5335 0.153 
Area of cross section A [m2] 0.42564 0.36922 0.31579 0.46062 0.4042 0.35076 0.49566 0.43924 0.3858 
Slenderness  31.08 78.33 414.15 37.55 94.61 500.25 44.87 113.05 597.78 

Source: Oliveira [12] 

 
Figure 14. Beam BT-54 with width variation of the top flange. Source: Oliveira [12] 
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Figure 15. Beam BT-63 with width variation of the top flange. Source: Oliveira [12] 

 
Figure 16. Beam BT-72 with width variation of the top flange. Source: Oliveira [12] 
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Figure 14 presents the results obtained in the simulations using beam BT-54 with the three dimensions of the top 
flange already described, while Figure 15 presents the results for beam BT-63 and Figure 16 for beam BT-72. Figure 17 
shows the comparison between the results obtained for the cross-sections of BT-54, BT-63 and BT-72 with values for 
the complete top flange. 

From the obtained results, the properties from the cross-section were seen to possess factors of extreme importance 
in the lateral stability of precast beams. When the influence of the top flange (MS) of the beam is analyzed (Figure 13), 
in a way that modifies its slenderness and moment of lateral inertia, besides the significant reduction in the critical load 
values, one also notes the distinct influence this has on the state of initial cracking. In this situation, besides the 
modification of critical load, there was an alteration in the critical angle of initial cracking, which is not significant in 
the other analyses. In this way, the smaller the dimension of the top flange, the greater is the angle of initial cracking 
and lower the critical rollover load. 

The same occurred when the three distinct cross-sections were analyzed (BT-54, BT-63 and BT-72), and which 
although the three beams present a similar moment of inertia about the Y-axis, the higher the beam, lower will be the 
critical load. In addition to the decrease in critical load, the taller beams present an angle for initial cracking lower than 
the beams with lower heights, although the width of the top flange is the same. 

 
Figure 17. Beams BT-54, BT-63 and BT-72 with 100% of the top flange width. Source: Oliveira [12] 

4 CONCLUSIONS 
Based on the nonlinear analytical solution presented herein, which describes the behavior of a beam with initial 

eccentricity and rotation on support devices, it was possible to determine the maximum load supported by the beam 
before rollover. A solution for defining the initial cracking of the beam during the rollover is also presented. 

Based on these solutions, a parametric analysis was developed, where the mechanical behavior of the beam was 
verified under the influence of specific parameters. 

From the results obtained from the parametric analysis, the following conclusions were reached: 
The increase in the compressive strength of concrete caused an increase in the rollover load in the order of 9% and 

17% for the values of 75 MPa and 100 MPa, respectively, when compared to the values of 50 MPa. 
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Among the investigated parameters, stiffness to the rotation of the support and the geometry of the cross-section 
were the factors of foremost influence in the critical rollover load. Therefore, for the situations under analysis, the 
critical rollover load presents a reduction of: 

42% to 62% due to the decrease of the stiffness to the rotation of the support; 
33% in length reduction of the top flange of 50% for the reference value, and in 41% length reduction of the top 

flange equal to the web width ; 
29% and 48% due to the increase in the height of the beam for sections BT-63 and BT-72, respectively, when 

compared to beam section BT-54. 
The initial eccentricity and rotation caused significant increases in the critical rollover angle, about 52% for the 

initial eccentricity values analyzed (of L/1000 to L/125) and 47% for the values of initial rotation (of 0.5º to 3.0º). For 
the remaining analyzed parameters, the critical rollover angle had a variation of less than 10%. 

When there was a decrease in the width of the top flange of the beam (50% of the original), the angle of initial 
cracking was approximately 15% higher than the angle obtained for the complete cross-section case. The increase of 
this angle was higher than 300% when the length of the top flange possessed the same thickness as the web of the beam. 

In the parametric analysis, it was also possible to verify that the initial load at cracking was very close to the critical 
rollover load of the beam. Nevertheless, the initial cracking angle was maintained close to 0.16 rad for all the analyses, 
where the cross-section of beam PCI BT-54 has a top flange equal to 1.067 m in width. However, such angle is sensitive 
to the variations of the geometric properties of the beam cross-section. As such, it was found that lateral flexural 
stiffness is the main parameter that governs the cracking of the beam. 

However, comparing beams with the same lateral inertia moment, but with differentiated heights, the greater the 
height, the lower was the angle of initial cracking. This reduction, when compared to beam BT-54, was in the order of 
18% for BT-63 and of 31% for BT-72. 

The conclusion is that for beam PCI BT-54 with a top flange equal to 1.067 m in width, under the same conditions 
of support and length, the angle of initial cracking was approximately 0.16 radians, without any direct influence in the 
analyses from the imperfections of the beam. Noteworthy here is that, in some cases, the critical rollover angle was 
more significant than the cracking angle. Also, the load for initial cracking is less than the rollover load, highlighting 
once again that cracking is also unwanted. 

In this way, it became evident the importance of safety analyses of precast beams concerning lateral stability during 
the assembly stage of the structure. The stability of beams is highly dependent on the physical and geometric properties, 
in what concerns the beam as well as for the support device, where factors of geometric imperfections influence the 
aspect of safety greatly. 
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