SciELO - Scientific Electronic Library Online

 
vol.52 número3Controle do crescimento vegetativo de pereiras 'Shinseiki' por prohexadiona de cálcio e poda de raizAditivos incorporados à ureia para reduzir perdas de nitrogênio após aplicação ao solo índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Pesquisa Agropecuária Brasileira

versão impressa ISSN 0100-204Xversão On-line ISSN 1678-3921

Resumo

SILVA, Gabi Nunes et al. Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee. Pesq. agropec. bras. [online]. 2017, vol.52, n.3, pp.186-193. ISSN 1678-3921.  http://dx.doi.org/10.1590/s0100-204x2017000300009.

The objective of this work was to evaluate the use of artificial neural networks in comparison with Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural networks were able to identify four important markers belonging to linkage groups that have been recently mapped, while the Bayesian generalized model identified only two markers belonging to these groups. Lower prediction error rates (1.60%) were observed for predicting leaf rust resistance in Arabica coffee when artificial neural networks were used instead of Bayesian generalized linear regression (2.4%). The results showed that artificial neural networks are a promising approach for predicting leaf rust resistance in Arabica coffee.

Palavras-chave : Coffea arabica; Hemileia vastatrix; artificial intelligence; molecular markers; prediction.

        · resumo em Português     · texto em Inglês     · Inglês ( pdf )