SciELO - Scientific Electronic Library Online

 
vol.53 número9Métodos alternativos de evapotranspiração de referência para os principais tipos climáticos do ParanáSeleção precoce em Cabralea canjerana para a propagação por miniestaquia índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Pesquisa Agropecuária Brasileira

versão impressa ISSN 0100-204Xversão On-line ISSN 1678-3921

Resumo

SANTOS, Patricia Mendes dos et al. Use of regularized quantile regression to predict the genetic merit of pigs for asymmetric carcass traits. Pesq. agropec. bras. [online]. 2018, vol.53, n.9, pp.1011-1017. ISSN 1678-3921.  https://doi.org/10.1590/s0100-204x2018000900004.

The objective of this work was to evaluate the use of regularized quantile regression (RQR) to predict the genetic merit of pigs for asymmetric carcass traits, compared with the Bayesian lasso (Blasso) method. The genetic data of the traits carcass yield, bacon thickness, and backfat thickness from a F2 population composed of 345 individuals, generated by crossing animals from the Piau breed with those of a commercial breed, were used. RQR was evaluated considering different quantiles (τ = 0.05 to 0.95). The RQR model used to estimate the genetic merit showed accuracies higher than or equal to those obtained by Blasso, for all studies traits. There was an increase of 6.7 and 20.0% in accuracy when the quantiles 0.15 and 0.45 were considered in the evaluation of carcass yield and bacon thickness, respectively. The obtained results are indicative that the regularized quantile regression presents higher accuracy than the Bayesian lasso method for the prediction of the genetic merit of pigs for asymmetric carcass variables.

Palavras-chave : Sus scrofa; Blasso; shrinkage.

        · resumo em Português     · texto em Inglês     · Inglês ( pdf )