SciELO - Scientific Electronic Library Online

 
vol.28 número108A Lei no 13.415 e as alterações na carga horária e no currículo do Ensino MédioDeficiência visual: caminhos legais e teóricos da escola inclusiva índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Ensaio: Avaliação e Políticas Públicas em Educação

versão impressa ISSN 0104-4036versão On-line ISSN 1809-4465

Resumo

FERRAO, Maria Eugénia; PRATA, Paula  e  ALVES, Maria Teresa Gonzaga. Multiple imputation in big identifiable data for educational research: An example from the Brazilian education assessment system. Ensaio: aval.pol.públ.Educ. [online]. 2020, vol.28, n.108, pp.599-621.  Epub 08-Maio-2020. ISSN 1809-4465.  https://doi.org/10.1590/s0104-40362020002802346.

Almost all quantitative studies in educational assessment, evaluation and educational research are based on incomplete data sets, which have been a problem for years without a single solution. The use of big identifiable data poses new challenges in dealing with missing values. In the first part of this paper, we present the state-of-art of the topic in the Brazilian education scientific literature, and how researchers have dealt with missing data since the turn of the century. Next, we use open access software to analyze real-world data, the 2017 Prova Brasil , for several federation units to document how the naïve assumption of missing completely at random may substantially affect statistical conclusions, researcher interpretations, and subsequent implications for policy and practice. We conclude with straightforward suggestions for any education researcher on applying R routines to conduct the hypotheses test of missing completely at random and, if the null hypothesis is rejected, then how to implement the multiple imputation, which appears to be one of the most appropriate methods for handling missing data.

Palavras-chave : Prova Brasil; Missing data; R; Multiple imputation.

        · resumo em Português | Espanhol     · texto em Inglês     · Inglês ( pdf )