SciELO - Scientific Electronic Library Online

 
vol.15 número2Efeitos do sistema de imersão e do ácido giberélico no crescimento de microbrotos e na aclimatização de abacaxizeiroInteração genótipo x ambiente de famílias de meloeiro por meio de caracteres de qualidade dos frutos índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Crop Breeding and Applied Biotechnology

versão impressa ISSN 1518-7853versão On-line ISSN 1984-7033

Resumo

BRASILEIRO, Bruno Portela et al. Selection in sugarcane families with artificial neural networks. Crop Breed. Appl. Biotechnol. [online]. 2015, vol.15, n.2, pp.72-78. ISSN 1984-7033.  https://doi.org/10.1590/1984-70332015v15n2a14.

The objective of this study was to evaluate Artificial Neural Networks (ANN) applied in an selection process within sugarcane families. The best ANN model produced no mistake, but was able to classify all genotypes correctly, i.e., the network made the same selective choice as the breeder during the simulation individual best linear unbiased predictor (BLUPIS), demonstrating the ability of the ANN to learn from the inputs and outputs provided in the training and validation phases. Since the ANN-based selection facilitates the identification of the best plants and the development of a new selection strategy in the best families, to ensure that the best genotypes of the population are evaluated in the following stages of the breeding program, we recommend to rank families by BLUP, followed by selection of the best families and finally, select the seedlings by ANN, from information at the individual level in the best families.

Palavras-chave : Saccharum spp; artificial intelligence and breeding.

        · resumo em Português     · texto em Inglês     · Inglês ( pdf )