Acessibilidade / Reportar erro

ROOTING OF Araucaria angustifolia: TYPES OF CUTTINGS AND STOCK PLANTS SEX

ENRAIZAMENTO DE Araucaria angustifolia: TIPOS DE ESTACAS E SEXO DAS PLANTAS MATRIZES

ABSTRACT

Araucaria angustifolia is native to Brazil and has always raised economic interest for the qualities of its timber and as a supplier of pine nuts for human consumption. The scarce germination viability of the stored seeds and the possibility to produce rooted cuttings all year round make cuttings propagation a good alternative for the production of plants, giving also the possibility to obtain genetically superior clones. On this basis, we assessed the influence of stock plants sex and type of cuttings (apical and intermediate) on the percentage of survival, rooting and vigor of the cuttings, together with the efficiency of this technique in the production of rooted cuttings of this species. So, cuttings from orthotropic shoots, collected in a clonal garden composed by feminine and masculine plants, had their survival percentages assessed at 60, 90, 120 and 150 days after installation of the experiment (DAI). Rooting in full sunlight area after 180 days, together with vigor characteristics of roots and aerial portion at 120 and 180 DAI were also evaluated. At 180 DAI, apical female cuttings presented the greatest rooting percentage (53.7%), number of roots (1.2) and average length of roots at the bottom of the rooting tray (4.4 cm). On the other hand, the applied cuttings procedures showed to be adequate to increase the rooting percentages of the species, which, supported by the fact that this technique is important for the formation of rooted cuttings to be used in the mini-cuttings technique, indicates that it can be considered efficient.

Keywords:
Brazilian pine; Cloning; Cuttings production

RESUMO

Araucaria angustifolia (araucária) é nativa do Brasil e sempre despertou interesse econômico por suas qualidades madeireiras e como fornecedora de pinhões para alimentação humana. A baixa viabilidade na germinação de suas sementes quando armazenadas e a possibilidade de produzir mudas durante o ano inteiro fazem com que a estaquia se apresente como alternativa para produção de mudas, gerando ainda a possibilidade de obtenção de clones geneticamente superiores. Com base nisso, avaliou-se a influência do sexo das matrizes e o tipo de estaca (apical e intermediária) na sobrevivência, enraizamento e vigor de suas estacas, bem como a eficiência desta técnica na produção de mudas da espécie. Para tanto, estacas de brotos ortotrópicos coletadas em jardim clonal de plantas masculinas e femininas foram avaliadas quanto à sobrevivência aos 60, 90, 120 e 150 dias após a estaquia (DAI) e o enraizamento a pleno sol aos 180 dias, bem como características de vigor radicial e aéreo aos 120 e 180 DAI. Aos 180 DAI, estacas femininas apicais apresentaram maior enraizamento (53,7%), número de raízes (1,2) e comprimento médio de raízes no fundo do tubete (4,4 cm). Por outro lado, os procedimentos de estaquia utilizados mostraram-se adequados para incrementar os percentuais de enraizamento da espécie, o que, aliado ao fato da técnica ser importante na formação de mudas para a técnica de miniestaquia, indica que a mesma pode ser considerada eficiente.

Palavras-chave:
Araucaria; Clonagem; Produção de mudas

1. INTRODUCTION

Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae), commonly known as araucaria or Brazilian pine, is naturally present in the south of Brazil, mainly in the oriental and central part of the Brazilian highlands (CARVALHO, 2003CARVALHO, P.E.R. Espécies arbóreas brasileiras. Brasília: Embrapa Informação Tecnológica; Colombo: Embrapa Florestas. 2003. 1039 p.). Its wood presents very attractive characteristics, being its use widely recommended for civil construction, paper and cellulose production (MATTOS et al., 2006MATTOS, P.P.; DE BORTOLI, C.; MARCHESAN, R.; ROSOT, N. C. Caracterização física, química e anatômica da madeira de Araucaria angustifolia (Bert.) O. Kuntze. Colombo: Embrapa, 2006. 4p. (Comunicado técnico, 160).). These characteristics and the high value added to its wood (DELUCIS et al., 2013DELUCIS, R.A.; GATTO, D.A.; STANGERLIN, D.M.; BELTRAME, R.; TREVISAN, R. Qualificação da madeira de três espécies de coníferas oriundas de reflorestamentos jovens. Scientia Forestalis, v.41, n.100, p.477-484, 2013.) were responsible for the high exploitation of the species in the end of the XIX century. At the same time, the lack of natural resources management in those years, added to the long and delicate reproduction cycle of the species, contributed to the survival of less than 2% of the original forest formations (KOCH; CORRÊA, 2002KOCH, Z.; CORRÊA, M.C. Araucária: a floresta do Brasil meridional. Olhar Brasileiro. Curitiba, 2002. 167p.).

As most of the conifers, araucaria is sexually propagated. However, the low longevity of its seeds (MOREIRA-SOUZA; CARDOSO, 2003MOREIRA-SOUZA, M.E.; CARDOSO, E.J.B.N. Dependência micorrízica de Araucaria angustifolia (Bert.) O. Ktze. sob doses de fósforo. Revista Brasileira de Ciência do Solo, v.26, p.905-912, 2002.), together with the disadvantages associated to this propagation method, like the impossibility to define sex and the great genetic variability of the seedlings (HARTMANN et al., 2011HARTMANN, H.T.; KESTER, D.E.; DAVIES, F.T.; GENEVE, R.L. Plant propagation: principles and practices. 8th ed. São Paulo: Prentice-Hall, 2011. 915p.; DIAS et al., 2012DIAS, P.C.; OLIVEIRA, L.D.; XAVIER, A.; WENDLING, I. Estaquia e miniestaquia de espécies florestais lenhosas do Brasil. Pesquisa Florestal Brasileira, v.32, n.72, p.453-462, 2012.), are contributing to the necessity to improve vegetative propagation techniques (PIRES et al., 2013PIRES, P.P.; WENDLING, I.; BRONDANI, G. Ácido indol butírico e ortotropismo na miniestaquia de Araucaria angustifólia. Revista Árvore, v.37, p.393-399, 2013.; WENDLING et al., 2016WENDLING, I.; STUEPP, C.A.; ZUFFELLATO-RIBAS, K.C. Araucaria angustifolia grafting techniques, environments and origin of propagation material. Revista Bosque, v.37, n.2, p.285-293, 2016.). Among them, cuttings and mini-cuttings techniques have presented satisfactory and relatively rapid results in the production of genetically superior clones, aiming to the production of wood from a series of forest genera, like Eucalyptus and Pinus sp. (SAYA et al., 2008SAYA, R.A.; MANKESSI, F.; TOTO, M.; MARIEN, J.N.; MONTEUUIS, O. Advances in mass clonal propagation of Eucalyptus urophylla x E. grandis in Congo. Bois Et Forets Des Tropique, v.297, p.15-25, 2008.; HUNT et al., 2011HUNT, M.A.; TRUEMAN, S.J.; RASMUSSEN, A. Indole-3-butyric acid accelerates adventitious root formation and impedes shoot growth of Pinuselliottii var. elliottii x P. caribaea var. hondurensis cuttings. New Forest, v.41, p.349-360, 2011.; MAJADA et al., 2011MAJADA, J.; MARTÍNEZ-ALONSO, C.; FEITO, I.; KIDELMAN, A.; ARANDA, I.; ALÍA, R. Mini-cuttings: an effective technique for the propagation of Pinus pinaster. New Forest, v.41, p.399-412, 2011.). The same techniques are also applied to species like Dalbergia melanoxylon, Liquidambar styraciflua, Ilex paraguariensis, Khaya senegalensis, Corymbia torelliana x C. citriodora (WENDLING et al., 2007WENDLING, I.; DUTRA, L.F.; GROSSI, F. Produção e sobrevivência de miniestacas e minicepas de erva-mate cultivadas em sistema semi-hidropônico. Pesquisa Agropecuária Brasileira, v.42, p.289-292, 2007., 2010WENDLING, I.; BRONDANI, G.E.; DUTRA, L.F.; HANSEL, F.A. Mini-cuttings technique: a new ex vitro method for clonal propagation of sweetgum. New Forest , v.39, p.343-353, 2010.; BITENCOURT et al., 2009BITENCOURT, J.; ZUFFELLATO-RIBAS, K.Z.; WENDLING, I.; KOELER, H. Enraizamento de estacas de erva-mate (Ilex paraguariensis A. St.-Hill.) provenientes de brotações rejuvenescidas. Revista Brasileira de Plantas Medicinais, v.11, p.277-281, 2009.; AMRI et al., 2010AMRI, E.; LYARUU, H.V.M.; NYOMORA, A.S.; KANYEKA, Z.L. Vegetative propagation of African Blackwood (Dalbergia melanoxylon Guill. e Perr.): effects of age of donor plant, IBA treatment and cutting position on rooting ability of stem cuttings. New Forest, v.39, p.183-194, 2010.; KY-DEMBELE et al., 2011KY-DEMBELE, C.; TIGABU, M.; BAYALA, J.; SAVADOGO, P.; BOUSSIM, I. J.; ODÉN, P.C. Clonal propagation of Khaya senegalensis: the effects of stem length, leaf area, auxins, smoke solution, and stock plant age. International Journal of Forestry Research, v.2011, p.1-10, 2011.; MCMAHON et al., 2014MCMAHON, T.V.; HUNG, C.D.; TRUEMAN, S.J. Clonal maturation of Corymbia torelliana × C. citriodora is delayed by minimal growth storage. Australian Forestry, v.77, n.1, p. 9-14, 2014.) among others.

However, the use of those techniques becomes efficient when the ideal characteristics of the material to be propagated are defined (STUEPP et al., 2014STUEPP, C.A.; ZUFFELLATO-RIBAS, K.C.; WENDLING, I.; KOEHLER, H.S.; BONA, C. Vegetative propagation of mature dragon trees through epicormic shoots. Revista Bosque, v.35, n.3, p.333-341, 2014.), resulting in high rooting and best final use indexes of the propagated plants. Results presented until now for araucaria do not satisfy the expectations of success from the application of this technique for commercial purposes, since rooting is below 25% (IRITANI; SOARES, 1983IRITANI, C.; SOARES, R.V. Indução do enraizamento de estacas de Araucaria angustifolia através da aplicação de reguladores de crescimento. Silvicultura, v.8, n.28, p.313-317, 1983.), and 30% (WENDLING; BRONDANI, 2014WENDLING, I.; TRUEMAN, S; XAVIER, A. Maturation and related aspects in clonal forestry-part II: reinvigoration, rejuvenation and juvenility maintenance. New Forests, v.1, p.1-14, 2014.). The few attempts to establish propagation protocols for the species have presented a series of limitations, mainly concerning efficient methods for rescue and rejuvenation of the adult material (WENDLING et al., 2009WENDLING, I.; DUTRA, L.F.; HOFFMANN, H.A.; BETTIO, G.; HANSEL, F. Indução de brotações epicórmicas ortotrópicas para a propagação vegetativa de árvores adultas de Araucaria angustifolia. Agronomía Costarricense, v.33, p.309-319, 2009.), and the plagiotropic growth habit of the lateral shoots (ZANETTE et al., 2011ZANETTE, F.; OLIVEIRA, L.D.S.; BIASI, L.A. Grafting of Araucaria angustifolia (BERTOL.) kuntze through the four seasons of the year. Revista brasileira de fruticultura, v.33, p.1364-1370, 2011.), indicating a recalcitrant behavior of araucaria to vegetative propagation, even with young and very young individuals (originated from seeds) (IRITANI, 1997IRITANI, C. Aspectos múltiplos da cultura in vitro da Araucaria angustifolia (BERT) O. Ktze. Revista Floresta, v.27, n.1/2, p.141-142, 1997.; PIRES et al., 2013PIRES, P.P.; WENDLING, I.; BRONDANI, G. Ácido indol butírico e ortotropismo na miniestaquia de Araucaria angustifólia. Revista Árvore, v.37, p.393-399, 2013.).

Thus, we assess the influence of stock plants sex and type of propagules (apical and intermediate cuttings), on survival, rooting and vigor of roots and aerial parts of cuttings obtained from orthotropic shoots of Araucaria angustifolia, as well as, the efficiency of this technique in the rooted cuttings production of the species.

2. MATERIAL AND METHODS

The experiment was conducted from August/2007 to February/2008 in the Laboratory of Forest Species Propagation, belonging to Embrapa Florestas, Colombo-PR, Brazil (25º20' S and 49º14' W, 950 m). According to the Köppen classification, the climate in the region is temperate, type Cfb, with temperature of the coldest month between -3 and 18 ºC, always humid with evenly distributed rainfall throughout the year and temperature of the hottest month lower than 22 ºC.

The stumps of stock plants used in this study came from rooted cuttings produced from shoots of 26 years old trees, established in a provenances and progeny trial, in Colombo-PR. The stock plants, installed in a field clonal garden (0.5m x 0.5m spacing) were chopped off to obtain basal orthotropic shoots, as detailed in Wendling and Brondani (2014)WENDLING, I.; TRUEMAN, S; XAVIER, A. Maturation and related aspects in clonal forestry-part II: reinvigoration, rejuvenation and juvenility maintenance. New Forests, v.1, p.1-14, 2014..

From orthotropic shoots of each sex (male and female plants), two types of cuttings were prepared, the first from the apical region of the branches (apical cuttings) and the second from the intermediate section of the same branches, with a straight cut above the last bud (intermediate cuttings). Booth types of cuttings were prepared with length of 15-20 cm and diameter of 5-10 mm, with a bevel cut on the base and removal of the aciculae for 1/3 of the length from the basal region, in order to facilitate planting.

Cuttings were decontaminated with sodium hypochlorite solution (1% active chlorine) for 5 minutes (bactericide action), then cleaned with running water and treated with Benomyl® (1g L-1) for 5 minutes (fungicide action). Later, treatment of the bases took place with indole-3-butyric acid (IBA), at the concentration of 3000 mg L-1 in hydro-alcoholic solution (1:1, v/v) for ten seconds. Cuttings were planted approximately at three centimeters deep in polypropylene trays with capacity of 280 cm3, filled with potting mix composed of a mixture of medium vermiculite and carbonized rice hull (1:1, v/v). Trays were placed in a greenhouse with mist irrigation (temperature of 25 ºC ± 5 ºC and relative humidity above 80%) during 120 days. After permanence in the greenhouse, cuttings went through further acclimatization process in a shade house (50% of shade) during 30 days and then in a full sunlight area for 30 more days to achieve acclimatization with the external environment.

Throughout the experiment, the following variables were assessed: survival percentage of cuttings in greenhouse after 60 and 90 days; survival at the exit of the greenhouse after 120 days (SEGH); survival at the exit of the shade house after 150 days (SESH); rooting in full sunlight after 180 days (RFS). Furthermore, the number and the total length of roots appearing under the trays (cuttings with roots emerging from the hole in the base of the trays) were assessed after 120 days, together with the number of new shoots emitted by the cuttings after 180 days.

The experiment was conducted with a completely randomized design with 2x2 factorial structure, composed by male and female stock plants and two types of cuttings (apical and intermediate), and from two to four replications per treatment (depending on the availability of samples) and 14 cuttings per experimental unit. The statistical analysis was performed with the Bartlett's test (p<0.05) to assess homogeneity of the variances. Post-hoc Tukey's Honestly Significant Difference (HSD) tests were performed only when significant differences (P<0.05) were detected by ANOVA. A Pearson's correlation analysis (p<0.01) was also performed for the SEGH, SESH and RFS variables.

3. RESULTS

All treatments presented similar results at 60 days after installation (DAI), with survival percentage above 75%. At 90 days (in the greenhouse) and 120 days at the exit of the greenhouse (SEGH), male intermediate cuttings showed significant reduction in survival rates compared to all others, with values around 50%. Finally, at 150 days, when taken out from acclimatization in shade house (SESH), female apical cuttings showed greatest survival percentage, followed by apical male, intermediate female and lastly by intermediate male (Figure 1).

Figure 1
Percentage of survival of Araucaria angustifolia cuttings in greenhouse (60 and 90 days), at the exit of greenhouse (SEGH) and at the exit of shade house (SESH). Where AM=apical male; IM=intermediate male; AF=apical female; IF=intermediate female. Means (±SE) with different letters are significantly different (ANOVA and Tukey’s HSD test, P<0.05)
Figura 1
Porcentagem de sobrevivência de estacas de Araucaria angustifolia em casa de vegetação (60 e 90 dias), na saída da casa de vegetação (SEGH) e saída da casa de sombra (SESH). Onde: AM=macho apical; IM=macho intermediária; AF=fêmea apical; IM=fêmea intermediária. Médias seguidas por mesma letra dentro de cada fase não diferem entre si pelo teste de Tukey a 5% de probabilidade.

At 120 DAI, the average number of roots in the tray bottom (NRTB) was similar for all treatments, except for the intermediate male cuttings, which did not present visible roots. The average roots length at the trays bottom (RLTB) was similar for apical male (5.7 cm) and apical female cuttings (5.0 cm), greater than the results for intermediate female (3.5 cm) and intermediate male cuttings (no roots) (Figure 2).

Figure 2
Number (left) and average length of roots (right) in the bottom of the tray of Araucaria angustifolia cuttings, measured at the exit from the greenhouse after 120 days. Where: AM=apical male: IM=intermediate male; AF=apical female; IF=intermediate female. Bars indicate the standard deviation (n=14).
Figura 2
Número (esquerda) e comprimento médio de raízes (direita) no fundo do tubete em estacas de Araucaria angustifolia avaliadas na saída da casa de vegetação aos 120 dias. Onde: AM=macho apical; IM=macho intermediária; AF=fêmea apical; IM=fêmea intermediária. As barras indicam o erro padrão da média (n=14).

At 180 DAI rooting values decreased significantly for cuttings exposed to full sunlight (RFS). Intermediate male cuttings showed low RFS (4.5%) whereas other types of cuttings did not show significant differences between each other. Male apical cuttings showed greater number of shoots per cutting (NSC), although without a significant difference with apical and intermediate female cuttings (Figure 3).

Figure 3
Rooting percentage in full sunlight area (left) and average number of shoots per cutting (right) of Araucaria angustifolia cuttings after 180 days. Where: AM=apical male; IM=intermediate male; AF=apical female; IF=intermediate female. Means (±SE) with different letters are significantly different (ANOVA and Tukey’s HSD test, P<0.05)
Figura 3
Porcentagem de enraizamento em área de pleno sol (esquerda) e número médio de brotos por estaca (direita) de Araucaria angustifolia aos 180 dias. Onde: AM=macho apical; IM=macho intermediária; AF=fêmea apical; IM=fêmea intermediária. Médias seguidas por mesma letra não diferem entre si pelo teste de Tukey a 5% de probabilidade.

It was also verified high correlation between SEGH and SESH and between SESH and RFS (Table 1).

Table 1
Pearson's correlation between survival percentages of Araucaria angustifolia cuttings at the exit of greenhouse (SEGH), exit of shade house (SESH) and rooting in full sunlight area (RFS).
Tabela 1
Correlação de Pearson entre a sobrevivência das estacas de Araucaria angustifolia na saída da casa de vegetação (SEGH), saída da casa de sombra (SESH) e enraizamento a pleno sol (RFS).

4. DISCUSSION

Vegetative propagation has been an excellent method to support genetic improvement of forest species, allowing the reproduction of genetically superior individuals and providing greater uniformity of the plants (SUTTON, 2002SUTTON, B. Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Annals of Forest Science, v.59, p.657-661, 2002.; PIJUT et al., 2011PIJUT, P.M.; WOESTE, K.E.; MICHLER, C.H. Promotion of adventitious root formation of difficult-to-root hardwood tree species. Horticultural Reviews, v.38, p.213-251, 2011.). It was possible to observe in this work that cuttings technique with clones established in a field clonal garden may represent a big advance in the production of Araucaria angustifolia rooted cuttings.

Despite the significant mortality percentages shown by all the treatments at 180 DAI (averages of 79.7% and 50.2%, respectively, for male and female cuttings, considering that the cuttings that did not take root were dead), the rooting results presented in this study were superior to the observed for Araucaria angustifolia in other works (Figure 3). The best results until now were below 30% (TESSDORF, 1968TESSDORF, J.N.F. Enraizamento en estacas de híbridos de Araucaria com ayuda de hormonas. In: CONGRESSO FLORESTAL ARGENTINO, 1968, La Barrnacosa. Anais... La Barrnacosa, 1968. p. 290-291.; IRITANI; SOARES, 1983IRITANI, C.; SOARES, R.V. Indução do enraizamento de estacas de Araucaria angustifolia através da aplicação de reguladores de crescimento. Silvicultura, v.8, n.28, p.313-317, 1983.; IRITANI et al., 1986IRITANI, C.; SOARES, R.V.; GOMES, A.V. Aspectos morfológicos da ação de reguladores do crescimento em estacas de Araucaria angustifolia (Bert) O. Ktze. Acta Biológica Paranaense, v.15, n.1/2/3/4, p.1-20, 1986.; PIRES et al., 2013PIRES, P.P.; WENDLING, I.; BRONDANI, G. Ácido indol butírico e ortotropismo na miniestaquia de Araucaria angustifólia. Revista Árvore, v.37, p.393-399, 2013.). It is important to point out that this study used rooted cuttings initially originated from adult trees (26 years old), which the morphogenetic capability is known to be lower than in young plants originated by seeds (HACKETT; MURRAY, 1993HACKETT, W.P.; MURRAY, J.R. Maturation and rejuvenation in woody species. In: AHUJA, M.R. (Ed.). Micropropagation of woody plants. Dordrecht: Kluwer Academic Publishers, 1993. p.93-105.; HARTMANN et al., 2011HARTMANN, H.T.; KESTER, D.E.; DAVIES, F.T.; GENEVE, R.L. Plant propagation: principles and practices. 8th ed. São Paulo: Prentice-Hall, 2011. 915p.; WENDLING et al., 2014WENDLING, I.; TRUEMAN, S; XAVIER, A. Maturation and related aspects in clonal forestry-part II: reinvigoration, rejuvenation and juvenility maintenance. New Forests, v.1, p.1-14, 2014.). Thus, the results obtained can be considered satisfactory, although the percentages are not yet big enough to recommend the use of this technique for commercial purposes.

Rooting is one of the most critical key points in production of rooted cuttings by vegetative propagation (NEGISHI et al., 2014NEGISHI, N.; NAKAHAMA, K.; URATA, N.; KOJIMA, M.; SAKAKIBARA, H.; KAWAOKA, A. Hormone level analysis on adventitious root formation in Eucalyptus globulus. New Forests, v.45, p.577-587, 2014.). The rooting percentages observed in this study were low when compared to other forest species with established vegetative propagation protocols, like Eucalyptus (ALMEIDA et al., 2007ALMEIDA, F.D.; XAVIER, A.; DIAS, J.M.M.; PAIVA, H.N. Eficiência das auxinas (AIB e ANA) no enraizamento de miniestacas de clones de Eucalyptus cloeziana F. Muell. Revista Árvore, v.31, p.455-463, 2007.; NEGISHI et al., 2014NEGISHI, N.; NAKAHAMA, K.; URATA, N.; KOJIMA, M.; SAKAKIBARA, H.; KAWAOKA, A. Hormone level analysis on adventitious root formation in Eucalyptus globulus. New Forests, v.45, p.577-587, 2014.) and Ilex paraguariensis (BITENCOURT et al., 2009BITENCOURT, J.; ZUFFELLATO-RIBAS, K.Z.; WENDLING, I.; KOELER, H. Enraizamento de estacas de erva-mate (Ilex paraguariensis A. St.-Hill.) provenientes de brotações rejuvenescidas. Revista Brasileira de Plantas Medicinais, v.11, p.277-281, 2009.; WENDLING et al., 2013WENDLING, I.; BRONDANI, G.E.; BIASSIO, A.D.; DUTRA, L.F. Vegetative propagation of adult Ilex paraguariensis trees through epicormic shoots. Acta Scientiarum. Agronomy , v.35, n.1, p.117-125, 2013.). Vegetative propagation by cuttings has been studied for several decades in conifers of the genus Pinus, and the species of this genus are considered of difficult propagation because in the majority of them there is no rhizogenesis if the propagules used are not obtained from juvenile plants generated by seeds (RAGONEZI et al., 2010RAGONEZI, C.; KLIMASZEWSKA, K.; CASTRO, M.R.; LIMA, M.; DE OLIVEIRA, P.; ZAVATTIERI, M.A. Adventitious rooting of conifers: influence of physical and chemical factors. Trees, v.24, p.975-992, 2010.).

The high mortality percentages observed (Figure 1) during the transition from environments with higher to lower humidity control (greenhouse to shade house) is common in studies related to vegetative propagation of several species like Eucalyptus benthamii x Eucalyptus dunnii (BRONDANI et al., 2010BRONDANI, G.E.; GROSSI, F.; WENDLING, I.; DUTRA, L.F.; ARAUJO, M.A. Aplicação de IBA para o enraizamento de miniestacas de Eucalyptus benthamii Maiden e Cambage x Eucalyptus dunnii Maiden. Acta Scientiarum. Agronomy, v.32, p.667-674, 2010.) and Cedrela fissilis (XAVIER et al., 2003XAVIER, A.; SANTOS, G.A; OLIVEIRA, M.L. Enraizamento de miniestacas caulinares e foliares na propagação vegetativa de cedro-rosa (Cedrela fissilis Vell.). Revista Árvore, v.27, p.351-356, 2003.). The greater survival percentage of the apical cuttings (Figure 1) can be explained by the bigger concentration of endogenous auxins, once that hormone is produced by meristematic tissues (LUO et al., 2008LUO, J.; ZHANG, J.; WANG, Y. Changes in endogenous hormone levels and redox status during enhanced adventitious rooting by rare earth element neodymium of Dendrobium densiflorum shoot cuttings. The Journal of Rare Earths, v.26, p.869-874, 2008.; DAVIES, 2010DAVIES, P.J. The plant hormones: their nature, occurrence, and functions. In: DAVIES, P.J. (ed) Plant hormones. Springer: Netherlands, 2010. p. 1-15.) and transported basipetally by the parenchymal cells to the base of cuttings (BOOT et al., 2012BOOT, K.J.; LIBBENGA, K.R.; HILLE, S.C.; OFFRINGA, R.; VAN DUIJN, B. Polar auxin transport: an early invention. Journal of Experimental Botany, v.63, p.4213-4218, 2012.; COSTA et al., 2013COSTA, C.T.; DE ALMEIDA, M.R.; RUEDELL, C.M.; SCHWAMBACH, J.; MARASCHIN, F.D.S.; FETT-NETO, A.G. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Frontiers in Plant Science, v.4, p.1-19, 2013.). Together with other substances, they act in the induction of rhizogenesis (WOODWARD; BARTEL, 2005WOODWARD, A.W.; BARTEL, B. Auxin: regulation, action, and interaction. Annals of Botany, v.95, p.707-735, 2005.; SAUER et al., 2013SAUER, M.; ROBERT, S.; KLEINE-VEHN, J. Auxin: simply complicated. Journal of Experimental Botany, v.64, p.2565-2577, 2013.), suggesting the importance of cuttings position in branch (topophysis) on the quantity of rooting promoting substances, like auxins and carbohydrates. These substances carry out an essential function in the construction of necessary cellular structures for all plant physiological processes (LI et al., 2009LI, S.W.; XUE, L.; XU, S.; FENG, H.; AN, L. Mediators, genes and signalling in adventitious rooting. The Botanical Review, v.75, n.2, p.230-247, 2009.; DENAXA et al., 2012DENAXA, N.K.; VEMMOS, S.N.; ROUSSOS, P.A. The role of endogenous carbohydrates and seasonal variation in rooting ability of cuttings of an easy and a hard to root olive cultivars (Olea europaea L.). Scientia Horticulturae, v.143, p.19-28, 2012.; MAURIAT et al., 2014MAURIAT, M.; PETTERLE, A.; BELLINI, C.; MORITZ, T. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. The Plant Journal, v.78, n.3, p.372-384, 2014.).

Apical cuttings have been used with major success in rooted cuttings production for different species. Ferreira et al. (2008)FERREIRA, G.; FERRARI, T.B.; PINHO, S.Z.; SAVAZAKI, E.T. Enraizamento de estacas de atemoieira 'Gefner' tratadas com auxinas. Revista brasileira de fruticultura, v.30, p.1083-1088, 2008. verified greater rooting viability of apical cuttings for atemoya cv. 'Gefner' species, relating those results with the lower lignification of apical branches, the bigger quantity of meristematic cells and a more active metabolism compared to other types of cuttings. In the same way, Hartmann et al. (2011)HARTMANN, H.T.; KESTER, D.E.; DAVIES, F.T.; GENEVE, R.L. Plant propagation: principles and practices. 8th ed. São Paulo: Prentice-Hall, 2011. 915p. affirm the great influence of those characteristics on the greater or smaller rooting ability in different types of cuttings. Furthermore, considering the preparation and management of cuttings in a clonal propagation system, the use of apical cuttings is preferable over the intermediate (HOUSE et al., 1998HOUSE, S.; DIETERS, M.; JOHNSON, M.; HAINES, R. Inhibition of orthotropic replacement shoots with auxin treatment on decapitated hoop pine, Araucaria cunninghamii, for seed orchard management. New Forests, v.16, p.221-230, 1998.) because for the first type there is no necessity to remove the apex. This practice also reduces the possibility of multiple shoots formation, thus reducing the necessity of labor in the preparation of the propagules (WENDLING; BRONDANI, 2015WENDLING, I.; BRONDANI, G. Vegetative rescue and propagation of Araucaria angustifolia. Revista Árvore , v.39, n.1, p.93-104, 2015.).

The fact that apical female cuttings showed tendency to present greater root vigor goes together with the survival results of the cuttings in different evaluation periods. The studies conducted until now have suggested the use of apical cuttings for Araucaria angustifolia rooted cuttings production (IRITANI; SOARES, 1983IRITANI, C.; SOARES, R.V. Indução do enraizamento de estacas de Araucaria angustifolia através da aplicação de reguladores de crescimento. Silvicultura, v.8, n.28, p.313-317, 1983.; IRITANI et al., 1986IRITANI, C.; SOARES, R.V.; GOMES, A.V. Aspectos morfológicos da ação de reguladores do crescimento em estacas de Araucaria angustifolia (Bert) O. Ktze. Acta Biológica Paranaense, v.15, n.1/2/3/4, p.1-20, 1986.), mainly because the necessity to produce plants with orthotropic growth habit. For some species, there are studies indicating differences in rooting between apical and intermediate cuttings (XAVIER et al., 2003XAVIER, A.; SANTOS, G.A; OLIVEIRA, M.L. Enraizamento de miniestacas caulinares e foliares na propagação vegetativa de cedro-rosa (Cedrela fissilis Vell.). Revista Árvore, v.27, p.351-356, 2003.); however, this experiment is the first to assess the use of different types of cuttings originated by orthotropic shoots for Araucaria angustifolia.

The significant rooting reduction at 180 DAI compared to SEGH and SESH, together with not significant correlation between the first two variables, points out the necessity to maintain the cuttings into the greenhouse for a longer period, creating the conditions for them to develop greater survival capabilities in a less controlled environment. The stress created by the alteration of the hydric and illumination conditions, by reducing irrigation and exposing the rooted cuttings to intense illumination (full sunlight), have direct influence on their survival percentage (KRATZ et al., 2015KRATZ, D.; WENDLING, I.; PIRES, P.P.; STUEPP, C.A. Enraizamento de miniestacas de erva mate em substratos a base de casca de arroz e fibra de coco. Revista Floresta , v.45, n.3, 2015.).

Another hypothesis that could justify the reduction of survival values throughout the experiment relates to the climatic conditions at the time of collection, performed in August/2007, in the middle of winter. This may have impaired the rooting of these cuttings in the greenhouse, diminishing their capability to survive in less controlled environment at 120 DAI. This fact was already verified in experiments with the genus Eucalyptus (WENDLING; XAVIER, 2005WENDLING, I.; XAVIER, A. Influência do ácido indol butírico e da miniestaquia seriada no enraizamento e vigor de miniestacas de clones de Eucalyptus grandis. Revista Árvore, v.29, p.921-930, 2005.; ALMEIDA et al., 2007ALMEIDA, F.D.; XAVIER, A.; DIAS, J.M.M.; PAIVA, H.N. Eficiência das auxinas (AIB e ANA) no enraizamento de miniestacas de clones de Eucalyptus cloeziana F. Muell. Revista Árvore, v.31, p.455-463, 2007.). In the same way, Trueman et al. (2013)TRUEMAN, S.J.; MCMAHON, T.V.; BRISTOW, M. Production of cuttings in response to stock plant temperature in the subtropical eucalypts, Corymbia citriodora and Eucalyptus dunnii. New Forests, v.44, p.265-279, 2013. verified a significant effect of the storage temperature of stock plants on the production of shoots and rooting of Corymbia citriodora and Eucalyptus dunnii.

The use of cold-hardy species, of subtropical climate, has been a challenge for genetic improvement programs based on clones, mainly because their recalcitrant characteristic, which reflects directly on their rooting behavior (ELDRIDGE et al., 1994ELDRIDGE, K.; DAVIDSON, J.; HARDWIID, C.; VAN WYK, G. Mass vegetative propagation. In: ELDRIDGE, K.; DAVIDSON, J.; HARDWIID, C.; VAN WYK, G. (Eds.). Eucalypt domestication and breeding. Oxford: Clarendon Press, 1994. p.228-246.; ASSIS; MAFIA, 2007ASSIS, T.F.; MAFIA, R.G. Hibridação e clonagem. In: BORÉM A. (Eds.). Biotecnologia florestal. Viçosa: Suprema, 2007. p. 93-121.; BRONDANI et al., 2010BRONDANI, G.E.; GROSSI, F.; WENDLING, I.; DUTRA, L.F.; ARAUJO, M.A. Aplicação de IBA para o enraizamento de miniestacas de Eucalyptus benthamii Maiden e Cambage x Eucalyptus dunnii Maiden. Acta Scientiarum. Agronomy, v.32, p.667-674, 2010.). The greater emission of shoots at 180 DAI of the male apical cuttings proves the greater vigor of apical cuttings for Araucaria angustifolia propagation, possibly supported by the juvenility of the propagated material (Figure 3). Several authors have been underlining the importance to use juvenile material in order to propagate forest species, mainly when there is an interest to insert those species in commercial propagation systems (STENVALL et al., 2006STENVALL, N.; HAAPALA, T.; PULKKINEN, P. The role of a root cutting's diameter and location on the regeneration ability of hybrid aspen. Forest Ecology and Management, v.237, p.150-155, 2006.; WENDLING et al., 2014WENDLING, I.; TRUEMAN, S; XAVIER, A. Maturation and related aspects in clonal forestry-part II: reinvigoration, rejuvenation and juvenility maintenance. New Forests, v.1, p.1-14, 2014.).

Despite this, the results obtained until now in the propagation of Araucaria angustifolia are unsatisfactory. Nevertheless, there is a visible evolution in the different methods applied, mainly in the use of methodologies based on rejuvenation of adult material in order to obtain better rooting indexes. Good results were already presented using the mini-cuttings technique, albeit using propagules originated by seeds (PIRES et al., 2013PIRES, P.P.; WENDLING, I.; BRONDANI, G. Ácido indol butírico e ortotropismo na miniestaquia de Araucaria angustifólia. Revista Árvore, v.37, p.393-399, 2013.), the recommended method for the massive reproduction of this species (WENDLING et al., 2014WENDLING, I.; TRUEMAN, S; XAVIER, A. Maturation and related aspects in clonal forestry-part II: reinvigoration, rejuvenation and juvenility maintenance. New Forests, v.1, p.1-14, 2014.).

The methodology presented in this work is promising for the production of Araucaria angustifolia rooted cuttings. Considering that in this moment the cuttings technique is recommended only for the initial phase of the vegetative propagation (recue of selected genotypes), as a base to obtain rooted cuttings to be used for mini-cuttings technique (STUEPP et al., 2014STUEPP, C.A.; ZUFFELLATO-RIBAS, K.C.; WENDLING, I.; KOEHLER, H.S.; BONA, C. Vegetative propagation of mature dragon trees through epicormic shoots. Revista Bosque, v.35, n.3, p.333-341, 2014.), the methodology here presented can be considered efficient and suggested for this phase of the Araucaria angustifolia cloning procedure.

5. CONCLUSIONS

Araucaria angustifolia cuttings from female stock plants and from the apical portion of the branches with orthotropic growth habit presented the greatest rooting ability.

The cuttings procedures used proved to be adequate to increase the rooting percentages of the species. Considering that this technique is important to produce rooted cuttings for the mini-cuttings technique, we can assume as the presented procedures are considerable efficient.

6. REFERÊNCIAS

  • ALMEIDA, F.D.; XAVIER, A.; DIAS, J.M.M.; PAIVA, H.N. Eficiência das auxinas (AIB e ANA) no enraizamento de miniestacas de clones de Eucalyptus cloeziana F. Muell. Revista Árvore, v.31, p.455-463, 2007.
  • AMRI, E.; LYARUU, H.V.M.; NYOMORA, A.S.; KANYEKA, Z.L. Vegetative propagation of African Blackwood (Dalbergia melanoxylon Guill. e Perr.): effects of age of donor plant, IBA treatment and cutting position on rooting ability of stem cuttings. New Forest, v.39, p.183-194, 2010.
  • ASSIS, T.F.; MAFIA, R.G. Hibridação e clonagem. In: BORÉM A. (Eds.). Biotecnologia florestal Viçosa: Suprema, 2007. p. 93-121.
  • BITENCOURT, J.; ZUFFELLATO-RIBAS, K.Z.; WENDLING, I.; KOELER, H. Enraizamento de estacas de erva-mate (Ilex paraguariensis A. St.-Hill.) provenientes de brotações rejuvenescidas. Revista Brasileira de Plantas Medicinais, v.11, p.277-281, 2009.
  • BOOT, K.J.; LIBBENGA, K.R.; HILLE, S.C.; OFFRINGA, R.; VAN DUIJN, B. Polar auxin transport: an early invention. Journal of Experimental Botany, v.63, p.4213-4218, 2012.
  • BRONDANI, G.E.; GROSSI, F.; WENDLING, I.; DUTRA, L.F.; ARAUJO, M.A. Aplicação de IBA para o enraizamento de miniestacas de Eucalyptus benthamii Maiden e Cambage x Eucalyptus dunnii Maiden. Acta Scientiarum. Agronomy, v.32, p.667-674, 2010.
  • CARVALHO, P.E.R. Espécies arbóreas brasileiras Brasília: Embrapa Informação Tecnológica; Colombo: Embrapa Florestas. 2003. 1039 p.
  • COSTA, C.T.; DE ALMEIDA, M.R.; RUEDELL, C.M.; SCHWAMBACH, J.; MARASCHIN, F.D.S.; FETT-NETO, A.G. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Frontiers in Plant Science, v.4, p.1-19, 2013.
  • DAVIES, P.J. The plant hormones: their nature, occurrence, and functions. In: DAVIES, P.J. (ed) Plant hormones Springer: Netherlands, 2010. p. 1-15.
  • DELUCIS, R.A.; GATTO, D.A.; STANGERLIN, D.M.; BELTRAME, R.; TREVISAN, R. Qualificação da madeira de três espécies de coníferas oriundas de reflorestamentos jovens. Scientia Forestalis, v.41, n.100, p.477-484, 2013.
  • DENAXA, N.K.; VEMMOS, S.N.; ROUSSOS, P.A. The role of endogenous carbohydrates and seasonal variation in rooting ability of cuttings of an easy and a hard to root olive cultivars (Olea europaea L.). Scientia Horticulturae, v.143, p.19-28, 2012.
  • DIAS, P.C.; OLIVEIRA, L.D.; XAVIER, A.; WENDLING, I. Estaquia e miniestaquia de espécies florestais lenhosas do Brasil. Pesquisa Florestal Brasileira, v.32, n.72, p.453-462, 2012.
  • ELDRIDGE, K.; DAVIDSON, J.; HARDWIID, C.; VAN WYK, G. Mass vegetative propagation. In: ELDRIDGE, K.; DAVIDSON, J.; HARDWIID, C.; VAN WYK, G. (Eds.). Eucalypt domestication and breeding Oxford: Clarendon Press, 1994. p.228-246.
  • FERREIRA, G.; FERRARI, T.B.; PINHO, S.Z.; SAVAZAKI, E.T. Enraizamento de estacas de atemoieira 'Gefner' tratadas com auxinas. Revista brasileira de fruticultura, v.30, p.1083-1088, 2008.
  • HACKETT, W.P.; MURRAY, J.R. Maturation and rejuvenation in woody species. In: AHUJA, M.R. (Ed.). Micropropagation of woody plants Dordrecht: Kluwer Academic Publishers, 1993. p.93-105.
  • HARTMANN, H.T.; KESTER, D.E.; DAVIES, F.T.; GENEVE, R.L. Plant propagation: principles and practices 8th ed. São Paulo: Prentice-Hall, 2011. 915p.
  • HOUSE, S.; DIETERS, M.; JOHNSON, M.; HAINES, R. Inhibition of orthotropic replacement shoots with auxin treatment on decapitated hoop pine, Araucaria cunninghamii, for seed orchard management. New Forests, v.16, p.221-230, 1998.
  • HUNT, M.A.; TRUEMAN, S.J.; RASMUSSEN, A. Indole-3-butyric acid accelerates adventitious root formation and impedes shoot growth of Pinuselliottii var. elliottii x P. caribaea var. hondurensis cuttings. New Forest, v.41, p.349-360, 2011.
  • IRITANI, C. Aspectos múltiplos da cultura in vitro da Araucaria angustifolia (BERT) O. Ktze. Revista Floresta, v.27, n.1/2, p.141-142, 1997.
  • IRITANI, C.; SOARES, R.V. Indução do enraizamento de estacas de Araucaria angustifolia através da aplicação de reguladores de crescimento. Silvicultura, v.8, n.28, p.313-317, 1983.
  • IRITANI, C.; SOARES, R.V.; GOMES, A.V. Aspectos morfológicos da ação de reguladores do crescimento em estacas de Araucaria angustifolia (Bert) O. Ktze. Acta Biológica Paranaense, v.15, n.1/2/3/4, p.1-20, 1986.
  • KOCH, Z.; CORRÊA, M.C. Araucária: a floresta do Brasil meridional Olhar Brasileiro. Curitiba, 2002. 167p.
  • KRATZ, D.; WENDLING, I.; PIRES, P.P.; STUEPP, C.A. Enraizamento de miniestacas de erva mate em substratos a base de casca de arroz e fibra de coco. Revista Floresta , v.45, n.3, 2015.
  • KY-DEMBELE, C.; TIGABU, M.; BAYALA, J.; SAVADOGO, P.; BOUSSIM, I. J.; ODÉN, P.C. Clonal propagation of Khaya senegalensis: the effects of stem length, leaf area, auxins, smoke solution, and stock plant age. International Journal of Forestry Research, v.2011, p.1-10, 2011.
  • LI, S.W.; XUE, L.; XU, S.; FENG, H.; AN, L. Mediators, genes and signalling in adventitious rooting. The Botanical Review, v.75, n.2, p.230-247, 2009.
  • LUO, J.; ZHANG, J.; WANG, Y. Changes in endogenous hormone levels and redox status during enhanced adventitious rooting by rare earth element neodymium of Dendrobium densiflorum shoot cuttings. The Journal of Rare Earths, v.26, p.869-874, 2008.
  • MAJADA, J.; MARTÍNEZ-ALONSO, C.; FEITO, I.; KIDELMAN, A.; ARANDA, I.; ALÍA, R. Mini-cuttings: an effective technique for the propagation of Pinus pinaster New Forest, v.41, p.399-412, 2011.
  • MATTOS, P.P.; DE BORTOLI, C.; MARCHESAN, R.; ROSOT, N. C. Caracterização física, química e anatômica da madeira de Araucaria angustifolia (Bert.) O. Kuntze Colombo: Embrapa, 2006. 4p. (Comunicado técnico, 160).
  • MAURIAT, M.; PETTERLE, A.; BELLINI, C.; MORITZ, T. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. The Plant Journal, v.78, n.3, p.372-384, 2014.
  • MCMAHON, T.V.; HUNG, C.D.; TRUEMAN, S.J. Clonal maturation of Corymbia torelliana × C. citriodora is delayed by minimal growth storage. Australian Forestry, v.77, n.1, p. 9-14, 2014.
  • MOREIRA-SOUZA, M.E.; CARDOSO, E.J.B.N. Dependência micorrízica de Araucaria angustifolia (Bert.) O. Ktze. sob doses de fósforo. Revista Brasileira de Ciência do Solo, v.26, p.905-912, 2002.
  • NEGISHI, N.; NAKAHAMA, K.; URATA, N.; KOJIMA, M.; SAKAKIBARA, H.; KAWAOKA, A. Hormone level analysis on adventitious root formation in Eucalyptus globulus New Forests, v.45, p.577-587, 2014.
  • PIJUT, P.M.; WOESTE, K.E.; MICHLER, C.H. Promotion of adventitious root formation of difficult-to-root hardwood tree species. Horticultural Reviews, v.38, p.213-251, 2011.
  • PIRES, P.P.; WENDLING, I.; BRONDANI, G. Ácido indol butírico e ortotropismo na miniestaquia de Araucaria angustifólia Revista Árvore, v.37, p.393-399, 2013.
  • RAGONEZI, C.; KLIMASZEWSKA, K.; CASTRO, M.R.; LIMA, M.; DE OLIVEIRA, P.; ZAVATTIERI, M.A. Adventitious rooting of conifers: influence of physical and chemical factors. Trees, v.24, p.975-992, 2010.
  • SAUER, M.; ROBERT, S.; KLEINE-VEHN, J. Auxin: simply complicated. Journal of Experimental Botany, v.64, p.2565-2577, 2013.
  • SAYA, R.A.; MANKESSI, F.; TOTO, M.; MARIEN, J.N.; MONTEUUIS, O. Advances in mass clonal propagation of Eucalyptus urophylla x E. grandis in Congo. Bois Et Forets Des Tropique, v.297, p.15-25, 2008.
  • STENVALL, N.; HAAPALA, T.; PULKKINEN, P. The role of a root cutting's diameter and location on the regeneration ability of hybrid aspen. Forest Ecology and Management, v.237, p.150-155, 2006.
  • STUEPP, C.A.; ZUFFELLATO-RIBAS, K.C.; WENDLING, I.; KOEHLER, H.S.; BONA, C. Vegetative propagation of mature dragon trees through epicormic shoots. Revista Bosque, v.35, n.3, p.333-341, 2014.
  • SUTTON, B. Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Annals of Forest Science, v.59, p.657-661, 2002.
  • TESSDORF, J.N.F. Enraizamento en estacas de híbridos de Araucaria com ayuda de hormonas In: CONGRESSO FLORESTAL ARGENTINO, 1968, La Barrnacosa. Anais... La Barrnacosa, 1968. p. 290-291.
  • TRUEMAN, S.J.; MCMAHON, T.V.; BRISTOW, M. Production of cuttings in response to stock plant temperature in the subtropical eucalypts, Corymbia citriodora and Eucalyptus dunnii New Forests, v.44, p.265-279, 2013.
  • WENDLING, I.; BRONDANI, G. Vegetative rescue and propagation of Araucaria angustifolia Revista Árvore , v.39, n.1, p.93-104, 2015.
  • WENDLING, I.; BRONDANI, G.E.; BIASSIO, A.D.; DUTRA, L.F. Vegetative propagation of adult Ilex paraguariensis trees through epicormic shoots. Acta Scientiarum. Agronomy , v.35, n.1, p.117-125, 2013.
  • WENDLING, I.; BRONDANI, G.E.; DUTRA, L.F.; HANSEL, F.A. Mini-cuttings technique: a new ex vitro method for clonal propagation of sweetgum. New Forest , v.39, p.343-353, 2010.
  • WENDLING, I.; DUTRA, L.F.; GROSSI, F. Produção e sobrevivência de miniestacas e minicepas de erva-mate cultivadas em sistema semi-hidropônico. Pesquisa Agropecuária Brasileira, v.42, p.289-292, 2007.
  • WENDLING, I.; DUTRA, L.F.; HOFFMANN, H.A.; BETTIO, G.; HANSEL, F. Indução de brotações epicórmicas ortotrópicas para a propagação vegetativa de árvores adultas de Araucaria angustifolia Agronomía Costarricense, v.33, p.309-319, 2009.
  • WENDLING, I.; STUEPP, C.A.; ZUFFELLATO-RIBAS, K.C. Araucaria angustifolia grafting techniques, environments and origin of propagation material. Revista Bosque, v.37, n.2, p.285-293, 2016.
  • WENDLING, I.; TRUEMAN, S; XAVIER, A. Maturation and related aspects in clonal forestry-part II: reinvigoration, rejuvenation and juvenility maintenance. New Forests, v.1, p.1-14, 2014.
  • WENDLING, I.; XAVIER, A. Influência do ácido indol butírico e da miniestaquia seriada no enraizamento e vigor de miniestacas de clones de Eucalyptus grandis Revista Árvore, v.29, p.921-930, 2005.
  • WOODWARD, A.W.; BARTEL, B. Auxin: regulation, action, and interaction. Annals of Botany, v.95, p.707-735, 2005.
  • XAVIER, A.; SANTOS, G.A; OLIVEIRA, M.L. Enraizamento de miniestacas caulinares e foliares na propagação vegetativa de cedro-rosa (Cedrela fissilis Vell.). Revista Árvore, v.27, p.351-356, 2003.
  • ZANETTE, F.; OLIVEIRA, L.D.S.; BIASI, L.A. Grafting of Araucaria angustifolia (BERTOL.) kuntze through the four seasons of the year. Revista brasileira de fruticultura, v.33, p.1364-1370, 2011.

Publication Dates

  • Publication in this collection
    Nov-Dec 2016

History

  • Received
    06 Sept 2014
  • Accepted
    11 Nov 2016
Sociedade de Investigações Florestais Universidade Federal de Viçosa, CEP: 36570-900 - Viçosa - Minas Gerais - Brazil, Tel: (55 31) 3612-3959 - Viçosa - MG - Brazil
E-mail: rarvore@sif.org.br