Acessibilidade / Reportar erro

Reactions of diiron mu-aminocarbyne complexes containing nitrile ligands

Abstracts

The acetonitrile ligand in the mu-aminocarbyne complexes [Fe2{mu-CN(Me)R}(mu-CO)(CO)(NCMe)(Cp)2][SO 3CF3] (R = Me, 2a, CH2Ph, 2b, Xyl, 2c) (Xyl = 2,6-Me2C6H3) is readily displaced by halides and cyanide anions affording the corresponding neutral species [Fe2{mu-CN(Me)R}(mu-CO)(CO)(X)(Cp)2 ] (X = Br, I, CN). Complexes 2 undergo deprotonation and rearrangement of the coordinated MeCN upon treatment with organolithium reagents. Trimethylacetonitrile, that does not contain acidic alpha hydrogens has been used in place of MeCN to form the complexes [Fe2{mu-CN(Me)R}(mu-CO)(CO)(NCCMe3 )(Cp)2][SO3CF3] (7a-c). Attempts to replace the nitrile ligand in 3 with carbon nucleophiles (by reaction with RLi) failed, resulting in decomposition products. However the reaction of 7c with LiCºCTol (Tol = C6H4Me), followed by treatment with HSO3CF3, yielded the imino complex [Fe2{mu-CN(Me)Xyl}(mu-CO)(CO) {N(H)C(CºCC6H4Me-4)CMe3}(Cp) 2][SO3CF3 ] (8), obtained via acetilyde addition at the coordinated NCCMe3.

acetonitrile; nitrile activation; carbyne complexes; dinuclear complexes; C-C bond formation


O ligante acetonitrila nos complexos mi-aminocarbinos [Fe2{mi-CN(Me)R}(mi-CO)(CO)(NCMe) (Cp)2][SO3CF3] (R = Me, 2a, CH2Ph, 2b, Xyl, 2c) (Xyl = 2,6-Me2C6H3) é facilmente deslocado por haletos e cianetos, resultando na formação das espécies neutras [Fe2{mi-CN(Me)R}(mi-CO)(CO)(X)(Cp)2 ] (X = Br, I, CN). Os complexos 2 sofrem desprotonação e rearranjo da MeCN coordenada quando tratados com reagentes organolítio. A trimetilacetonitrila, a qual não contém hidrogênios alfa ácidos foi usada no lugar da MeCN para formar os complexos [Fe2{mi-CN(Me)R}(mi-CO)(CO)(NCCMe3 )(Cp)2][SO3CF3] (7a-c). As tentativas de substituição do ligante nitrila no composto 3 por nucleófilos R- (através da reação com RLi) foram frustradas e levaram à formação de produtos de decomposição. Entretanto, a reação do composto 7c com LiCºCTol (Tol = C6H4Me), seguida pelo tratamento com HSO3CF3, resultou na formação do complexo imino [Fe2{mi-CN(Me)Xyl}(mi-CO)(CO){N(H)C(Cº CC6H4Me-4)CMe3}(Cp)2][SO 3CF3] (8), o qual foi obtido via adição de acetileto à NCCMe3 coordenada.


ARTICLE

Reactions of diiron m-aminocarbyne complexes containing nitrile ligands

Luigi Busetto* * e-mail: busetto@ms.fci.unibo.it ; Fabio Marchetti; Stefano Zacchini; Valerio Zanotti

Dipartimento di Chimica Fisica ed Inorganica, Universita' di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy

ABSTRACT

The acetonitrile ligand in the m-aminocarbyne complexes [Fe2{m-CN(Me)R}(m-CO)(CO)(NCMe)(Cp)2][SO 3CF3] (R = Me, 2a, CH2Ph, 2b, Xyl, 2c) (Xyl = 2,6-Me2C6H3) is readily displaced by halides and cyanide anions affording the corresponding neutral species [Fe2{m-CN(Me)R}(m-CO)(CO)(X)(Cp)2 ] (X = Br, I, CN). Complexes 2 undergo deprotonation and rearrangement of the coordinated MeCN upon treatment with organolithium reagents. Trimethylacetonitrile, that does not contain acidic a hydrogens has been used in place of MeCN to form the complexes [Fe2{m-CN(Me)R}(m-CO)(CO)(NCCMe3 )(Cp)2][SO3CF3] (7a-c). Attempts to replace the nitrile ligand in 3 with carbon nucleophiles (by reaction with RLi) failed, resulting in decomposition products. However the reaction of 7c with LiCºCTol (Tol = C6H4Me), followed by treatment with HSO3CF3, yielded the imino complex [Fe2{m-CN(Me)Xyl}(m-CO)(CO) {N(H)C(CºCC6H4Me-4)CMe3}(Cp) 2][SO3CF3 ] (8), obtained via acetilyde addition at the coordinated NCCMe3.

Keywords: acetonitrile, nitrile activation, carbyne complexes, dinuclear complexes, C-C bond formation

RESUMO

O ligante acetonitrila nos complexos m-aminocarbinos [Fe2{m-CN(Me)R}(m-CO)(CO)(NCMe) (Cp)2][SO3CF3] (R = Me, 2a, CH2Ph, 2b, Xyl, 2c) (Xyl = 2,6-Me2C6H3) é facilmente deslocado por haletos e cianetos, resultando na formação das espécies neutras [Fe2{m-CN(Me)R}(m-CO)(CO)(X)(Cp)2 ] (X = Br, I, CN). Os complexos 2 sofrem desprotonação e rearranjo da MeCN coordenada quando tratados com reagentes organolítio. A trimetilacetonitrila, a qual não contém hidrogênios a ácidos foi usada no lugar da MeCN para formar os complexos [Fe2{m-CN(Me)R}(m-CO)(CO)(NCCMe3 )(Cp)2][SO3CF3] (7a-c). As tentativas de substituição do ligante nitrila no composto 3 por nucleófilos R- (através da reação com RLi) foram frustradas e levaram à formação de produtos de decomposição. Entretanto, a reação do composto 7c com LiCºCTol (Tol = C6H4Me), seguida pelo tratamento com HSO3CF3, resultou na formação do complexo imino [Fe2{m-CN(Me)Xyl}(m-CO)(CO){N(H)C(Cº CC6H4Me-4)CMe3}(Cp)2][SO 3CF3] (8), o qual foi obtido via adição de acetileto à NCCMe3 coordenada.

Introduction

The formation of C-C bonds in dinuclear transition metal complexes, by coupling reactions of coordinated hydrocarbon ligands, attracts considerable attention because these reactions can act as models for the surface species involved in heterogeneously catalyzed processes.1 Among the complexes studied, those containing m-methylidene and m-methylidyne ligands are of particular interest since they are supposed to play an important role in the Fischer -Tropsch processes.2

In recent years we have found that the formation of C-C bond in bridging aminocarbyne complexes [Fe2{m-CN(Me)R}(m-CO)(CO)2(Cp)2][SO 3CF3] (R = Me, 1a; CH2Ph; 1b; Xyl, 1c) (Xyl = 2,6-Me2C6H3) can be achieved by addition of carbon nucleophiles (R'-) which occurs selectively at different ligands: organocuprates and acetylides attack the carbonyl carbon to form the acyl complexes [Fe2{m-CN(Me)R}(m-CO)(CO)(COR')(Cp)2], whereas organolithium or Grignard reagents give preferentially addition to the C5H5 ring yielding the dienyl complexes [Fe2{m-CN(Me)R}(m-CO)(CO)2(Cp)(C5H 5R')].3

Surprisingly, none of the above nucleophilic additions involve the m-C of the aminocarbyne ligand, which appears rather unreactive, particularly if compared with the powerful electrophilic character of the m-methylidyne carbon in the related complex [Fe2(m-CH)(m-CO)(CO)2 (Cp)2]+.4 Only cyanide (from NBu4CN) has been found to react at the carbyne carbon to yield the aminocarbene complex [Fe2{m-C(CN)N(Me)R}(m-CO)(CO)2 (Cp)2].5 A possible explanation for such inertness resides in the strong p-interaction between nitrogen and the carbyne carbon, which suggests a large contribution of the m-iminium structure (m-C=NRR').6

The bridging methylidene ligand in [Ru2(m-CH2)(m-CO)(CO)2 (Cp)2] is also rather unreactive. However the corresponding acetonitrile complex [Ru2(m-CH2)(m-CO)(CO)(NCR)(Cp)2] has been found to undergo C-C coupling reactions with unsaturated hydrocarbons and diazoalkanes,7 demonstrating that the presence of a labile ligand is crucial for allowing coordination of hydrocarbyl fragments, and promoting their intramolecular coupling with the m-CH2.

In the light of these considerations, we decided to investigate the reactivity of diiron aminocarbyne complexes containing a nitrile ligand, towards nucleophiles, including carbon nucleophiles, with the aim of testing the possibility of C-C bond formation.

Results and Discussion

A terminal carbonyl ligand in [Fe2{m-CN(Me)R}(m-CO)(CO)2(Cp)2][SO 3CF3] 1a-c is readily displaced by MeCN upon treatment with Me3NO in refluxing acetonitrile, affording [Fe2{m-CN(Me)R}(m-CO)(CO)(NCMe) (Cp)2][SO3CF3] (R = Me, 2a; CH2Ph; 2b; Xyl, 2c).8 Nitrile-containing complexes have been often considered equivalent to the co-ordinatively unsaturated species because of the substitution lability that nitrile ligands usually exhibit.9 As expected, the complexes 2a-c undergo displacement of MeCN by a variety of ligands which include phosphines, isocyanides, halides and cyanides. Most of these substitution reactions have been previously described.8,10 In the experimental part are given details of the preparation and spectroscopic properties of the novel halide complexes [Fe2{m-CN(Me)Xyl}(m-CO)(CO)(X) (Cp)2] (X= Br, 3a; I, 3b), Scheme 1.

The spectroscopic properties of 3a are similar to those of the chloride complex [Fe2{m-CN(Me)Xyl}(m-CO)(CO) (Cl)(Cp)2] previously reported.8 Both chloride and bromide complexes show the presence, in CDCl3 solution, of only the cis isomer as usually found in di-iron m-aminocarbyne complexes 3,11 (cis and trans are referred to the mutual position of the Cp rings with respect to the Fe-Fe bond). By contrast, the iodide complex 3b consists of both cis and trans isomers, possibly due to bulkiness of the iodide ligand.

The reactions of 2a-c with cyanide illustrate well the change in the reactivity pattern induced by the presence of the acetonitrile ligand. In fact, whereas the addition of cyanide occurs at the carbyne carbon of 1a-c to form the alkylidene compounds [Fe2{m-C(CN)N(Me)R}(m-CO)(CO)2 (Cp)2] (4a-c),5 the corresponding acetonitrile complexes [Fe2{m-CN(Me)R}(m-CO)(CO)(NCMe)(Cp)2] [SO3CF3] (2a-c) react with CN- leading to the formation of [Fe2{m-CN(Me)R}(m-CO)(CO)(CN)(Cp)2 ] (5a-c) (Scheme 2).8

The MeCN ligand in 2a-c seems therefore able to direct selectively the nuclephilic attack at the metal atom. In order to determine whether this would apply to carbon nucleophiles such as organolithium or organocopper reagents, the reactions of 2a-c with LiR were studied. The results reported in Scheme 3 show that organolithium reagents (including less basic lithium acetylides) behave towards 2a-c like strong bases rather than nucleophiles, leading to the deprotonation of the coordinated MeCN instead of giving its displacement, and yielding the cyano methyl complexes [Fe2{m-CN(Me)R}(m-CO)(CO)(CH2 CN) (Cp)2] (6a-c).12 Proton abstraction from coordinated acetonitrile is not surprising, and its enhanced acidity has been exploited to catalyse MeCN condensation with carbonyl compounds.13 However the rearrangement to cyanomethyl ligand is rather unusual and has been previously observed only in the case of [RhOs(CH2CN) (CO)3(dppm)2].14

Since the acetonitrile ligand in compounds 2a-c can not be displaced by organolithium reagents, we have examined the synthesis and reactivity of diiron complexes containing trimetylacetonitrile in place of MeCN. The absence of acidic a-C-H in NCCMe3 should allow the treatment with carbon nucleophiles, providing access to dinuclear complexes with hydrocarbyl ligands of the type [Fe2{m-CN(Me)R}(m-CO)(CO)(R')(Cp)2 ], (R' = alkyl, aryl, vinyl or alkynyl).

The synthesis and the spectroscopic properties of the trimethylacetonitrile complexes [Fe2{m-CN(Me)R}(m-CO)(CO)(NCCMe3 )(Cp)2][SO3CF3] (R = Me, 7a; CH2Ph; 7b; Xyl, 7c) parallel those of 2a-c. They have been obtained upon treatment of 1a-c with a slight excess of Me3CCN in THF solution in the presence of Me3NO.

The IR spectra of 7a-c, in CH2Cl2 solution, exhibit one terminal and one bridging carbonyl absorption (e.g. at 1982 and 1815 cm-1 for 7a). The 1H and 13C NMR spectra show two signals of the same intensity for the non-equivalent Cp groups (for 7a at d 5.01, 4.85 and 89.0 87.5, respectively). Likewise each of the N-bonded methyl groups in 7a gives rise to a singlet resonance. The NMR spectra of 7b, which contain the asymmetrically substituted m-C=N(Me)(CH2Ph) show the presence of two isomers in solution. These isomeric forms, which are usually found in complexes of the type [Fe2{m-CN(Me)R}(m-CO)(CO) (L)(Cp)2] and indicated as a and b isomers,3, 10, 11, 15 are due to the different orientations of R and Me with respect to the non equivalent Fe atoms (Figure 1). Compound 7c consists of only one of the two possible a and b isomers. This is presumably due to the steric demand of the Xyl group, compared to Me, which inhibits the formation of more hindered isomer. It should be reminded that interconvertion of the a and b isomers via rotation around the m-C-N bond is not possible due to the double bond character of this interaction.


The 13C NMR spectra of 7a-c, exhibit the characteristic low field signal of the bridging carbyne carbon (e.g. at d 339.0 for 7c).

The reactions of [Fe2{m-CN(Me)Xyl}(m-CO)(CO) (NCCMe3)(Cp)2][SO3 CF3] 7c with several organo lithium RLi, (R = Me, Bu, CºCPh), reagents have been investigated. The expected displacement of the nitrile ligand by the carbon nucleophile does not take place and the reaction mixtures contain unidentified decomposition products. On the other hand organo-lithium reagents are also strong reducing agent and since it is known 16 that the aminocarbyne complexes 1b can be reduced to the unstable radical [Fe2{m-CN(Me)CH2Ph}(m-CO)(CO)2(Cp) 2]•, it is likely that the above reactions of 7c proceed through a radical mechanism. A remarkable exception to this general trend is represented by the reaction with LiCCtol: treatment of 7c with tolylacetylide, followed by addition of HSO3CF3 results in the formation of the imino complex [Fe2{m-CN(Me)Xyl}(m-CO)(CO){N(H)C(Cº CC6H4Me-4)CMe3} (Cp)2] [CF3SO3] (8), Scheme 4.

Compound 8 has been characterized by elemental analyses and IR and NMR spectroscopy.

The IR spectrum, in CH2Cl2 solution, exhibits one terminal and one bridging carbonyl at 1977 and 1817 cm-1, respectively. Evidence of the imine coordination is given by the IR spectrum, n(N-H) at 3314 (in KBr pellets) and by 1H NMR resonance at d 6.12 due to the N-H proton. Major features, in the 13C NMR spectrum of 8 include the expected low-field resonance of the m-aminocarbyne carbon (at d 340.1), which indicates that the carbyne ligand has been unaffected by the reaction, and the signal attributable to the imine carbon at d 186.7.

The formation of complex 8 is the result of a nucleophilic attack at the coordinated NCCMe3, which presumably forms the azavinylidene intermediate [Fe2{m-CN(Me)Xyl}(m-CO)(CO){N=C(CºCC6H 4Me-4)CMe3} (Cp2)] (9). In spite of the fact that several azavinylidene complexes are known,17 the intermediate 9 appears too unstable in our hands to be characterized even by spectroscopy. However nitrogen protonation transforms the azavinyldene into the more stable imino complex 8.

Nucleophilic addition at coordinated nitriles is not a rare occurrence, in spite of the fact that they usually behave as labile ligands.18 However additions generally involve water, alcohols, amines and only at very low extent, carbon nucleophiles with formation of imine ligands.19

Finally it should be underlined that the formation of 9 from the nitrile precursor 7c, as well as the synthesis of the cyanomethyl 6a-c, indicate that nitrile ligands are strongly activated by coordination to the diiron m-aminocarbyne frame, and that, far from behaving exclusively as labile ligands, they show a remarkable reactivity.

Experimental

General

All reactions were carried out routinely under nitrogen using standard Schlenk techniques. Solvents were distilled immediately before use under nitrogen from appropriate drying agents. Glassware was oven-dried before use. Infrared spectra were recorded on a Perkin-Elmer 983-G spectrophotometer, 1H and 13C NMR spectra on a Varian Gemini 300. Unless otherwise stated, NMR signals due to trace amounts of second isomeric form are italicized. All the reagents were commercial products (Aldrich) of the highest purity available and used as received. [Fe2(CO)4(Cp)2] was from Strem and used as received. Compounds [Fe2{m-CN(Me)R}(m-CO)(CO)2(Cp)2] [SO3CF3] (R = Me 2a R=CH2Ph 2b, Me2C6H32c) 3, 11 were prepared as described in the literature.

Syntheses of [Fe2{m-CN(Me)Xyl}(m-CO)(CO)(Br)(Cp)2] (3a) and [Fe2{m-CN(Me)Xyl}(m-CO)(CO)(I)(Cp)2] (3b)

Potassium bromide (445 mg, 3.71 mmol) was added to a solution of [Fe2{m-CN(Me)(Xyl)}(m-CO)(CO)(NCMe) (Cp)2][SO3CF3] (2c) (170 mg, 0.26 mmol) in THF (15 mL) and the mixture was heated at refluxing temperature for 30 min. Removal of the solvent gave a brown residue that was chromatographed on alumina using THF and diethyl ether (1:1) as eluent. Crystallization from CH2Cl2 and Et2O afforded 3a (120 mg, 85%). Analysis. Found: C, 50.41; H, 4.25%. C22H22BrFe2NO2 requires: C, 50.42; H, 4.23%. IR (CH2Cl2) nmax/cm-1: 1979vs and 1797s (CO). NMR: dH (CDCl3): 7.39-7.20 (3 H, m C6H4), 4.90 (3 H, s, NMe), 4.75 (5 H, s, Cp), 4.30 (5 H, s, Cp), 2.75 and 2.22 (6 H, s, Me2C6H3). dC (CDCl3): 342.8 (m-C), 267.5 (m-CO), 214.0 (CO), 149.3 (ipso- Me2C6H3), 135.1-128.9 (Me2C6H3), 87.1 (Cp); 53.8 (N-Me), 19.3 and 18.3 (Me2C6H3).

Compound 3b was obtained from 2c and KI following the same procedure described for the synthesis of 3a. 3b: (88%). Analysis. Found: C, 46.31; H, 3.90%. C22H22Fe2INO2 requires: C, 46.27; H, 3.88%. Bands and signals due to a second isomeric form (in about 0.8 ratio) are italicized. IR (CH2Cl2) nmax/cm-1: 1974vs, 1953vs and 1797s (CO). NMR dH (CDCl3): 7.39-7.20 (3 H, m, C6H4), 4.94, 4.82 (3 H, s, NMe), 4.77, 4.75, 4.30, 4.26, (10 H, s, Cp), 2.74, 2.57, 2.48, and 2.26 (6 H, s, Me2C6H3). dC (CDCl3): 344.1, 341.5 (m-C), 267.9, 266.1 (m-CO), 215.7, 214.6 (CO), 149.8, 149.4 (ipso-C6H3Me2 ), 135.3-128.9 (C6H3Me2), 90.4, 88.1, 87.2, 86.9, (Cp), 55.5, 55.3 (N-Me); 19.3, 18.5 and 18.3 (C6H3Me2).

Synthesis of [Fe2(m-CNMe2)(m-CO)(CO)(NCCMe 3)(Cp)2] [SO3CF3] (7a), [Fe2{m-CN(Me)(CH2Ph) }(m-CO)(CO) (NCCMe3)(Cp)2][SO3 CF3] (7b), [Fe2{m-CN(Me)(Xyl)}(m-CO)(CO)(NCCMe3)(Cp) 2][SO3CF3 ] (7c)

Compound 1a (320 mg, 0.60 mmol) and trimethylacetonitrile (100 mg, 1.20 mmol) in THF (10 mL) was treated with anhydrous Me3NO (45 mg, 0.60 mmol) and the mixture was stirred for 120 min. Filtration on a Celite pad and removal of the solvent gave a brown residue that was washed with petroleum ether (bp. 40-60 °C) and crystallized from CH2Cl2 layered with n-pentane at -20 °C yielding 7a as a brown microcrystalline solid (253 mg, 72%). Analysis. Found: C, 43.31; H, 4.36%. C21H25F3Fe2 N2O5S requires: C, 43.03; H, 4.30%. IR (CH2Cl2) nmax/cm-1: 1982vs and 1815s (CO). NMR dH (CDCl3): 5.01 (5 H, s, Cp), 4.85 (5 H, s, Cp), 4.62 (3 H, s, NMe), 4.31 (3 H, s, NMe), and 1.03 (9 H, CMe3). dC (CDCl3): 329.9 (m-C), 267.3 (m-CO), 211.9 (CO), 139.2 (NCCMe3), 89.0, 87.5 (Cp), 54.2, 53.3 (NMe2), 31.3, and 28.2 (NCCMe3).

Compounds 7b and 7c were obtained from 2b and 2c, respectively, following the same procedure above described. 7b: (77%) Analysis. Found: C, 48.91; H, 4.47%. C27H29F3Fe2 N2O5S requires: C, 48.96; H, 4.41%. IR (CH2Cl2) nmax/cm-1: 1981vs and 1815s (CO). NMR (a isomer): dH (CDCl3): 7.41-7.22 (8 H, m, C6H5 and Me2C6H3), 5.95, 5.78 (2 H, d, J 19 Hz, CH2Ph), 4.97 (5 H, s, Cp), 4.92 (5 H, s, Cp), 4.45 (3 H, s, NMe), and 1.03 (9 H, s, CMe3); (b isomer): dH (CDCl3): 7.41-7.22 (8 H, m, C6H5 and Me2C6H3), 6.42, 6.36 (2 H, d, J 19 Hz, CH2Ph), 5.05 (5 H, s, Cp), 4.85 (5 H, s, Cp), 4.18 (3 H, s, NMe), and 1.03 (9 H, s, CMe3); (a:b ratio = 0.9). 7c: (89%). Analysis. Found: C, 50.01; H, 4.69%. C28H31F3Fe2 N2O5S requires: C, 49.72; H, 4.62%. IR (CH2Cl2) nmax/cm-1: 1987vs and 1821s (CO). NMR dH (CDCl3): 7.42-7.04 (8 H, m, C6H5 and Me2C6H3), 4.98 (5 H, s, Cp), 4.47 (5 H, s, Cp), 4.78 (3 H, s, NMe), 2.68, 2.14 (6 H, s, Me2C6H3), and 1.11 (9 H, CMe3). dC (CDCl3): 339.0 (m-C), 265.2 (m-CO), 212.5 (CO), 148.8 (NCCMe3), 141.1-129.7 (Me2C6H3), 88.8, 88.4 (Cp), 56.1 (NMe), 31.5, 28.3 (NCCMe3), 19.5 and 18.2 (Me2C6H3).

Synthesis of [Fe2 {m-CN(Me)(Xyl)}(m-CO)(CO){NHC (CºCC6H4Me-4)CMe3}(Cp) 2][SO3CF3 ] (8)

A solution of LiCºCC6H4Me-4, (freshly prepared from n-butyllithium and 4-ethynyltoluene 0.50 mmol) in THF (10 mL), was added to a stirred solution of 7c (320 mg, 0.47 mmol), in THF (7 mL), at -30 °C. The mixture was stirred for 15 min and the color changed to brownish-green. Then HSO3CF3 (0.045 mL, 0.51 mmol) was added dropwise and the mixture turned immediately dark yellow. The mixture was warmed to room temperature filtered on a celite pad. Solvent removal and chromatography on an alumina column, with a mixture of THF and CH3CN (1:1/v:v) as eluent gave a brown band that was collected. Crystallization of 4a from CH2Cl2 layered with diethyl ether gave dark brown crystals (191 mg, 51%).

Anal. Calcd for C37H39F3Fe2 N2O5S: C, 56.07; H, 4.96. Found: C, 56.21; H, 5.01. IR (KBr pellets) nmax/cm-1: 3314 (N-H); (CH2Cl2): 2200 m (CºC), 1977 vs and 1817 s (CO). NMR dH (CDCl3): 7.78-7.31 (7 H, m, Me2C6H3 and MeC6H4), 6.12 (1 H, s, N-H), 5.06, 4.44 (10 H, s, Cp), 4.94 (3 H, s, NMe), 2.71, 2.19 (6 H, s, Me2C6H3), 2.48 (3 H, s, MeC6H4), 0.96 (s, 9 H, CMe3). dC (CDCl3): 339.9 (m-C), 263.9 (m-CO), 212.6 (CO), 186.7 (NºC), 148.4, 141.8 (ipso-Me2C6H3 and ipso-MeC6H3); 133.2-128.9 (Me2C6H3 and MeC6H3), 117.4, 107.1 (C ºC), 88.2, 88.0 (Cp), 53.8 (NMe), 44.2, 26.6 (CMe3), 21.8 (MeC6H4), 18.6, 17.6 (Me2C6H3).

Acknowledgements

We thank the Ministero dell'Universita' e della Ricerca Scientifica e Tecnologica (M.I.U.R.) (project: `New strategies for the control of reactions: interactions of molecular fragments with metallic sites in unconventional species') and the University of Bologna (`Funds for Selected Research Topics') for financial support.

References

1. Muetterties, E. L.; Stein, J.; Chem. Rev. 1979, 19, 479; Rofer De Poorter, C. K. ; Chem. Rev. 1981, 81, 447; Maitlis, P.M.; Long, H.C.; Quyoum, R.; Turner, M. L.; Wang, Z. Q.; J. Chem. Soc. Chem. Commun. 1996, 1.

2. Turner, M. L.; Nyoman, M.; Mann, B. E.; Quyoum, R.; Long, H.C.; Maitlis, P. M.; J. Am. Chem. Soc. 2002, 124, 10456.

3. Albano, V. G.; Busetto, L.; Camiletti, C.; Castellari, C.; Monari, M.; Zanotti, V.; J. Chem. Soc., Dalton Trans. 1997, 4671; Albano, V. G.; Bordoni, S.; Busetto, L.; Camiletti, C.; Monari, M.; Palazzi, A, Prestopino, F.; Zanotti, V.; J. Chem. Soc., Dalton Trans. 1997, 4665.

4. Casey, C.P.; Fagan, P. J.; Day V. W.; J. Am. Chem. Soc. 1982, 104, 7360; Casey, C.P.; Meszaros,M.W.; Fagan, P. J.; Bly, R.K.; Marder, S.R.; Austin, E.A.; J. Am. Chem. Soc. 1982, 108, 4043; Casey, C.P.; Vosejpka, P.C.; Organometallics 1988, 7, 934.

5. Zanotti, V.; Bordoni, S.; Busetto, L.; Carlucci, L.; Palazzi, A.; Serra, R.; Albano, V.G.; Monari, M.; Prestopino, F.; Laschi, F.; Zanello. P.; Organometallics 1995, 14, 5232.

6. Cox, G.; Dowling, C.; Manning, A. R.; McArdle, P.; Cunningham, D.; J. Organomet. Chem. 1992, 438, 143; Albano, V.G.; Busetto, 1.; Castellari, C.; Monari, M.; Palazzi, A.; Zanotti, V.; J. Chem. Soc., Dalton Trans. 1993, 3661

7. Doherty, N. M.; Howard, J. A. K.; Knox, S. A. R.; Terril, N. J.; Yates, M. I.; J. Chem. Soc., Chem. Commun. 1989, 638; Fildes, J. M.; Knox, S. A. R.; Orpen, G.; Turner, M. L.; Yates, M. I.; J. Chem. Soc., Chem. Commun. 1989, 1680; Akita, M.; Hua, R.; Knox, S. A. R.; Moro-oka, Y.; Nakanishi, S.; Yates, M. I.; J. Organomet. Chem. 1998, 569, 71; Akita, M.; Hua, R.; Knox, S. A. R.; Moro-oka, Y.; Nakanishi, S.; Yates, M. I.; Chem. Commun. 1997, 51.

8. Albano, V.G.; Busetto, L.; Monari, M.; Zanotti. V.; J. Organomet. Chem. 2000, 606, 163.

9. Storhoff, B. N.; Lewis Jr., H. C.; Coord. Chem. Rev. 1977, 23, 1; Endres, H. In Comprehensive Coordination Chemistry; Wilkinson, G.; Gillard, R. D.; McCleverty J. A., eds., Pergamon: Oxford, 1987, 261, vol. 2.

10. Boss, K.; Cox, M.G.; Dowling, C.; Manning, A.R.; J. Organomet. Chem. 2000, 612, 18.

11. Cox, G.; Dowling, C.; Manning, A. R.; McArdle, P.; Cunningham, D.; J. Organomet. Chem. 1992, 438, 143.

12. Albano, V.G.; Busetto, L.; Marchetti, F.; Monari, M.; Zanotti. V.; J. Organomet. Chem. 2002, 649, 64.

13. Murahashi, S.I.; Naota, T.; Taki, H.; Mizuno, M.; Takaya, H.; Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.; Hirano, M.; Fukuoka, A.; J. Am. Chem. Soc. 1995, 117, 12436; Trost, B. M.; Toste, F. D.; Pinkerton, A. B.; Chem. Rev. 2001, 101, 2067.

14. Sterenberg, B. T.; Hilts, R. W.; Moro, G.; McDonald, R.; Cowie, M.; J. Am. Chem. Soc. 1995, 117, 245.

15. Boss, K.; Dowling, C.; Manning, A. R.; J. Organomet. Chem. 1996, 509, 197.

16. Busetto, L.; Zanotti, V.; Albano, V. G. ; Monari, M.; Castellari, C.; Gazz. Chim. Ital. 1993, 123, 703.

17. Castarlenas, R.; Esteruelas, M.A.; Oñate, E.; Organometallics 2001, 20, 3229 and references therein.

18. Michelin, R. A.; Mozzon, M.; Bertani, R.; Coord. Chem. Rev. 1996, 147, 299; Garnovskii, D. A.; Kukushkin, V. Y.; Haukka, M.; Wagner, G.;. Pombeiro, A. J. L.; J. Chem. Soc., Dalton Trans. 2001 560 and references therein; Bertani, R.; Catanese, D.; Michelin, R. A.; Mozzon, M.; Bandoli, G.; Dolmella, A.; Inorg. Chem. Commun. 2000, 3, 16; Chin, C. S.; Chong, D.; Lee, B.; Jeong, H.; Wong, G.; Do, Y.; Park, Y. J.; Organometallics 2000, 19, 638.

19. Kukuskin, V.Y.; Pombeiro, A.J.L.; Chem. Rev. 2002, 102, 1771; Feng, S. G.; Templeton, J. L.; Organometallics 1992, 11, 1295; Cucciolito, M.E.; De Felice, V.; Giordano, F.; Orabona, I.; Ruffo, F.; Eur. J. Inorg. Chem. 2001, 3095; Yeh, W. Y.; Ting, C. S.; Peng, S. M.; Lee, G. H.; Organometallics 1995, 14, 1417.

Received: December 4, 2002

Published on the web: July 11, 2003

  • 1. Muetterties, E. L.; Stein, J.; Chem. Rev 1979, 19, 479;
  • Rofer De Poorter, C. K ; Chem. Rev 1981, 81, 447;
  • Maitlis, P.M.; Long, H.C.; Quyoum, R.; Turner, M. L.; Wang, Z. Q.; J. Chem. Soc. Chem. Commun 1996, 1.
  • 2. Turner, M. L.; Nyoman, M.; Mann, B. E.; Quyoum, R.; Long, H.C.; Maitlis, P. M.; J. Am. Chem. Soc 2002, 124, 10456.
  • 3. Albano, V. G.; Busetto, L.; Camiletti, C.; Castellari, C.; Monari, M.; Zanotti, V.; J. Chem. Soc., Dalton Trans. 1997, 4671;
  • Albano, V. G.; Bordoni, S.; Busetto, L.; Camiletti, C.; Monari, M.; Palazzi, A, Prestopino, F.; Zanotti, V.; J. Chem. Soc., Dalton Trans. 1997, 4665.
  • 4. Casey, C.P.; Fagan, P. J.; Day V. W.; J. Am. Chem. Soc 1982, 104, 7360;
  • Casey, C.P.; Meszaros,M.W.; Fagan, P. J.; Bly, R.K.; Marder, S.R.; Austin, E.A.; J. Am. Chem. Soc 1982, 108, 4043;
  • Casey, C.P.; Vosejpka, P.C.; Organometallics 1988, 7, 934.
  • 5. Zanotti, V.; Bordoni, S.; Busetto, L.; Carlucci, L.; Palazzi, A.; Serra, R.; Albano, V.G.; Monari, M.; Prestopino, F.; Laschi, F.; Zanello. P.; Organometallics 1995, 14, 5232.
  • 6. Cox, G.; Dowling, C.; Manning, A. R.; McArdle, P.; Cunningham, D.; J. Organomet. Chem. 1992, 438, 143;
  • Albano, V.G.; Busetto, 1.; Castellari, C.; Monari, M.; Palazzi, A.; Zanotti, V.; J. Chem. Soc., Dalton Trans 1993, 3661
  • 7. Doherty, N. M.; Howard, J. A. K.; Knox, S. A. R.; Terril, N. J.; Yates, M. I.; J. Chem. Soc., Chem. Commun. 1989, 638;
  • Fildes, J. M.; Knox, S. A. R.; Orpen, G.; Turner, M. L.; Yates, M. I.; J. Chem. Soc., Chem. Commun. 1989, 1680;
  • Akita, M.; Hua, R.; Knox, S. A. R.; Moro-oka, Y.; Nakanishi, S.; Yates, M. I.; J. Organomet. Chem. 1998, 569, 71;
  • Akita, M.; Hua, R.; Knox, S. A. R.; Moro-oka, Y.; Nakanishi, S.; Yates, M. I.; Chem. Commun. 1997, 51.
  • 8. Albano, V.G.; Busetto, L.; Monari, M.; Zanotti. V.; J. Organomet. Chem. 2000, 606, 163.
  • 9. Storhoff, B. N.; Lewis Jr., H. C.; Coord. Chem. Rev 1977, 23, 1;
  • Endres, H. In Comprehensive Coordination Chemistry; Wilkinson, G.; Gillard, R. D.; McCleverty J. A., eds., Pergamon: Oxford, 1987, 261, vol. 2.
  • 10. Boss, K.; Cox, M.G.; Dowling, C.; Manning, A.R.; J. Organomet. Chem 2000, 612, 18.
  • 11. Cox, G.; Dowling, C.; Manning, A. R.; McArdle, P.; Cunningham, D.; J. Organomet. Chem 1992, 438, 143.
  • 12. Albano, V.G.; Busetto, L.; Marchetti, F.; Monari, M.; Zanotti. V.; J. Organomet. Chem. 2002, 649, 64.
  • 13. Murahashi, S.I.; Naota, T.; Taki, H.; Mizuno, M.; Takaya, H.; Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.; Hirano, M.; Fukuoka, A.; J. Am. Chem. Soc 1995, 117, 12436;
  • Trost, B. M.; Toste, F. D.; Pinkerton, A. B.; Chem. Rev. 2001, 101, 2067.
  • 14. Sterenberg, B. T.; Hilts, R. W.; Moro, G.; McDonald, R.; Cowie, M.; J. Am. Chem. Soc. 1995, 117, 245.
  • 15. Boss, K.; Dowling, C.; Manning, A. R.; J. Organomet. Chem 1996, 509, 197.
  • 16. Busetto, L.; Zanotti, V.; Albano, V. G. ; Monari, M.; Castellari, C.; Gazz. Chim. Ital. 1993, 123, 703.
  • 17. Castarlenas, R.; Esteruelas, M.A.; Oñate, E.; Organometallics 2001, 20, 3229 and references therein.
  • 18. Michelin, R. A.; Mozzon, M.; Bertani, R.; Coord. Chem. Rev 1996, 147, 299;
  • Garnovskii, D. A.; Kukushkin, V. Y.; Haukka, M.; Wagner, G.;. Pombeiro, A. J. L.; J. Chem. Soc., Dalton Trans 2001 560 and references therein;
  • Bertani, R.; Catanese, D.; Michelin, R. A.; Mozzon, M.; Bandoli, G.; Dolmella, A.; Inorg. Chem. Commun. 2000, 3, 16;
  • Chin, C. S.; Chong, D.; Lee, B.; Jeong, H.; Wong, G.; Do, Y.; Park, Y. J.; Organometallics 2000, 19, 638.
  • 19. Kukuskin, V.Y.; Pombeiro, A.J.L.; Chem. Rev 2002, 102, 1771;
  • Feng, S. G.; Templeton, J. L.; Organometallics 1992, 11, 1295;
  • Cucciolito, M.E.; De Felice, V.; Giordano, F.; Orabona, I.; Ruffo, F.; Eur. J. Inorg. Chem. 2001, 3095;
  • Yeh, W. Y.; Ting, C. S.; Peng, S. M.; Lee, G. H.; Organometallics 1995, 14, 1417.
  • *
    e-mail:
  • Publication Dates

    • Publication in this collection
      12 Feb 2004
    • Date of issue
      Dec 2003

    History

    • Received
      04 Dec 2002
    Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
    E-mail: office@jbcs.sbq.org.br