SciELO - Scientific Electronic Library Online

 
vol.76 issue4Morphological aspects in the ontogeny of Salminus hilarii Valenciennes, 1850 (Ostaryophysi: Characidae)Vernonanthura polyanthes leaves aqueous extract enhances doxorubicin genotoxicity in somatic cells of Drosophila melanogaster and presents no antifungal activity against Candida spp. author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Brazilian Journal of Biology

Print version ISSN 1519-6984On-line version ISSN 1678-4375

Braz. J. Biol. vol.76 no.4 São Carlos Oct./Dec. 2016  Epub May 17, 2016

https://doi.org/10.1590/1519-6984.04415 

Articles

Floristic and structural status of forests in permanent preservation areas of Moju river basin, Amazon region

Comparação florística e estrutural de florestas em áreas de preservação permanente do rio Moju, região Amazônica

J. C. Oliveiraa 

I. C. G. Vieiraa  * 

A. S. Almeidaa 

C. A. Silva Juniora 

aCoordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Bairro Terra Firme, CEP 66077-530, Belém, PA, Brazil


Abstract

The goal of this study is to analyze the floristic patterns and the structure of disturbed and undisturbed upland forests, in Permanent Preservation Areas (PPAs) along the Moju river, in the Brazilian state of Pará. Trees with a diameter equal to or larger than 10cm at 1.30m from the ground (DBH) ≥10cm were analyzed for the upper stratum. For the middle stratum, individuals with DBH between 4.99 and 9.99cm were sampled. Forty-five families and 221 species were found in disturbed forests, and 43 families and 208 species in undisturbed forests. Floristic similarity was high between strata and between forest types, with values above 50%. Similarity was highest between middle strata. The most species-abundant families in undisturbed forests were Fabaceae, Sapotaceae, Chrysobalanaceae and Myrtaceae; the species with the highest density there were Eschweilera grandiflora, Licania sclerophylla and Zygia cauliflora. In disturbed forests, the dominant families were Fabaceae, Sapotaceae, Lecythidaceae and Melastomataceae. The Shannon-Wiener diversity index was 3.21 for undisturbed forests and 2.85 for disturbed forests. Non-metric multidimensional scaling (MDS) analysis did not group the forests by their floristic composition in both upper and middle strata. Overall, the PPA forests along the Moju river, even if disturbed, did not show major floristic changes but substantially change their structural characteristics.

Keywords:  remnant forests; Amazon; forest degradation

Resumo

Este estudo teve como objetivo analisar os padrões florísticos e a estrutura de florestas ripárias perturbadas e não perturbadas inseridas em Áreas de Preservação Permanente ao longo do rio Moju, Pará. A análise do estrato superior foi realizada em árvores com diâmetro a 1,30 m do solo (DAP) ≥10 cm. No estrato médio, amostrou-se os indivíduos com DAP entre 4,99 e 9,99 cm DAP. Nas florestas perturbadas foram encontradas 45 famílias e 221 espécies e nas florestas não perturbadas, 43 famílias e 208 espécies. A similaridade florística foi elevada entre os estratos e entre os tipos de florestas, alcançando valores maiores de que 50%. A maior semelhança foi encontrada entre os estratos médios. As famílias mais abundantes em espécies nas florestas não perturbadas foram Fabaceae, Sapotaceae, Chrysobalanaceae e Myrtaceae. As espécies com maiores densidades foram Eschweilera grandiflora, Licania sclerophylla e Zygia cauliflora. Nas florestas perturbadas, as famílias dominantes foram Fabaceae, Sapotaceae, Lecythidaceae e Melastomataceae. A diversidade (Shannon) nas florestas não perturbadas foi de 3,21, e nas florestas perturbadas, alcançaram 2,85. A ordenação feita pelo escalonamento multidimensional MDS, não agrupou as florestas por sua composição florística, tanto no estrato superior como no médio. Em geral, as florestas perturbadas das APPs do rio Moju, mesmo se perturbadas, não evidenciam grandes mudanças florísticas, mas apresentam alterações nas suas características estruturais.

Palavras-chave:  florestas remanescentes; Amazônia; degradação florestal

1 Introduction

Riparian forests in Amazonia are plant formations with a floristic composition and vegetation structure quite similar to those of upland forest areas, and are therefore considered as such. They are located along the edges of water courses and perform an important environmental role, mainly in the prevention of soil erosion and stilting of rivers, maintaining water quality and contributing to the preservation of biodiversity. Brazilian law considers them Areas of Permanent Preservation (PPAs, or APPs in Portuguese) (Brasil, 2002).

The concept of Permanent Preservation Areas in the Forest Law of 1965 emerged to ensure the integrity of the vegetation for maintaining the physical and biological equilibrium in Brazilian biomes. These are areas exclusively for preservation and cannot be utilized for agricultural or farming activities, forest extraction or recreational uses (Sparovek et al., 2011). Despite being protected by law, these forests are widely threatened in Brazil by deforestation and anthropogenic activities. In Moju municipality, Pará state, 29.3% of the PPAs were disturbed by land uses and the application of the new Brazilian Forest Code will result in the loss of ≈60% of forest vegetation from the PPAs in this county (Almeida and Vieira, 2014). The conservation role of PPAs presumably increases in highly deforested regions, such as the Belém Area of Endemism, that has reached at least 75% of the original extent and further extensive forest loss (Almeida and Vieira, 2010; Amaral et al., 2012).

It is therefore of foremost importance to develop studies describing the plant communities of those protected areas in order to provide a picture of the remaining biodiversity and its distribution in the landscape. Lack of studies on floristic composition, structure and conservation status of PPAs, allied to social and environmental problems in Amazonia have hindered the adoption of practices towards the restoration and conservation of those areas of permanent preservation. Within this context, this study aims at analyzing and comparing floristic diversity and structure of forests with different status of conservation in Permanent Preservation Areas in the municipality of Moju, state of Pará, and discuss their importance for the conservation and restoration of those areas.

2 Material and Methods

2.1 Study area

The study was conducted in the municipality of Moju, eastern Pará, Brazil, in Permanent Preservation Areas of rural properties in the Moju river basin (01° 26' 31.7”-02° 24' 31.3”S and 048° 26' 54.2”-048° 59' 21.8”W). Local climate is of the type Ami, according to Köppen’s classification (Nascimento and Homma, 1984). Average annual temperatures are high, varying between 25ºC and 27ºC. Annual rainfall is between 2000mm and 3000mm, irregularly distributed, being more concentrated (about 80%) from January to July; however, a short period of drought usually occurs between September and November. Relative air humidity is around 85% (Costa et al., 1998). Predominant soil types are Yellow Latosols of different textures, with Red-Yellow Podzols, Poorly Humic Gleysols and Plinthosols occurring as well (Santos et al., 1985; Costa et al., 1998). The original vegetation of this region of northeastern Pará, where the municipality of Moju is located, included extensive areas of ombrophilous dense forest (Rodrigues et al., 1997). The creation of the PA-150 highway led to intensive human occupation of the region with concomitant timber extraction and agricultural development such that by 2010 only 60% of its original vegetation cover remained, with much of this highly degraded (Almeida and Vieira, 2014). PPAs cover about 5% of the municipality of Moju, and are being subjected to strong pressures due to the expansion of agricultural activities and the cultivation of African oil palm (dendezeiro); some 28% of those PPAs are already in an illegal condition (Almeida and Vieira, 2014).

Location of PPA areas for this study was carried using satellite images followed by fieldwork. Area selection was conducted in the field, according to the following criteria: presence or absence of fire events and logging operations and availability of places authorised by community leaders in the municipality.

The selected areas were covered by upland ombrophilous dense forest (Pires, 1973), with a large number of 25-50m tall trees (Serrão et al., 2003) in unflooded terrain of the riparian zone of Moju river. Two types of forest were identified according to conservation status: disturbed forest and undisturbed forest.

Disturbed forests within PPAs, in illegal condition vis-à-vis the Brazilian Forest Law, were defined as a result of a process of degradation caused by a selective extraction of timber and regular occurrence of fire (Nepstad et al., 1999). Conversely, undisturbed forests within PPAs were defined by the presence of well-established forest strata and absence of visible disturbance, as the occurrence of stumps and fire scars.

2.2 Data collection and analysis

Data was collected in 2011 in plots belonging to small farmers in six rural communities in the municipality of Moju: Vila Olho D’água, Vila Soledade, Vila São Jorge, Vila São Tomé, Vila São Pedro, Vila Braulande (Figure 1). In each rural community, one area of undisturbed forest and one of disturbed forest were selected along the riparian strip of the Moju river.

Figure 1 Location of study area, Moju, state of Pará, Amazon region. 

Two plots of 250m x 10m (5000m2), located at least 40m away from each other and positioned lengthwise along the river course, were established for each type of forest (disturbed and undisturbed). In total 12 plots per forest type were sampled, totaling 3ha. The upper stratum, with trees of DBH ≥ 10cm, was thoroughly surveyed. For the middle stratum, trees with DBH ≥ 5.0cm and ≤ 9.99cm were inventoried in five subplots of 25m x 10m (1250m2), randomly distributed within each plot. Palm trees forming a stool were considered as a single individual, of which the DBH of a single stipe was measured. Plant species were identified under field conditions by experienced parabotanists (Nelson Rosa and Carlos Alberto Silva) from the Museu Paraense Emílio Goeldi (MPEG). Voucher samples of specimens which defied confident field identification were collected and taken for comparison with reference material at the MG herbarium. Our taxonomy follow Haston et al. (2009).

To generate aerial biomass estimates (as Mg.ha-1) we used allometric equations for classes with 5cm ≤ DBH <20cm and DBH ≥20 cm. Each tree was measured with an ordinary measuring tape in order to obtain CBH values (circumference at 1.30m from the ground), later converted into DBH. Total tree height was estimated in the field using a 5m stick. Allometric equations following Higuchi et al. (1998) were generated by means of a consistent model with the lesser amplitude of standard deviation: P= 0,0336*(D^(2,171))*(H^(1,038)) for 5cm ≤ DBH < 20cm; P= 0,0009*(D^(1,585))*(H^(2,651)) for DBH ≥ 20cm, where: P = weight of fresh mass (kg); D = diameter at 1.30m from the ground (DBH); H = total height. Student t-tests were used to compare diversity and biomass for undisturbed and disturbed forests, at a 5% significance level. Distributions of DBH for each type of forest were tested for similarity with a Kolmogorov–Smirnov two-sample test (Sokal and Rohlf, 1995).

Floristic diversity for the upper and middle forest strata was calculated by Shannon-Wiener Diversity Index (H’) and evenness (J') was calculated using Pielou Index (Magurran, 2004).The Sørensen diversity index was used to compare similarity between the strata (Mueller-Dumbois and Ellenber, 1974).The software Mata Nativa (Cientec, 2002) was used for analysis.

A multidimensional scaling analysis (MDS) was performed with the Systat 12.0 program to detect possible dissimilarities between the two forest types, from matrices of abundance of tree species in the upper and middle strata. The Bray-Curtis distance method was adopted for the quantitative data matrix (abundance). A similarity analysis (ANOSIM) was used, using the Bray Curtis distance with 999 permutations, to test the significance of the groups generated in the ordination. The ANOSIM was run in the program PRIMER v 6 (Clarke and Gorley, 2006).

3 Results

Considering all sampled plots and the upper and middle strata of the two types of forests, a total of 4227 individuals belonging to 47 families and 270 species were identified. Undisturbed forests accounted for 2060 individuals of 43 families and 208 species, and disturbed forests for 2167 individuals of 45 families and 221 species.

Families with the largest contribution to floristic richness in undisturbed forests were: Fabaceae, with 51 species (24.52%); Sapotaceae, with 16 species (7.69%); Chrysobalanaceae and Myrtaceae, with 12 species each (5.77%). Families with the highest density were Fabaceae (718), Chrysobalanaceae (272) and Lecythidaceae (251), together making up for 60.24% (1241 individuals) of the total found in this forest type.

In disturbed forests, the most representative families in number of species were Fabaceae, with 50 species (22.62%); Sapotaceae, with 14 species (6.33%); Lecythidaceae and Melastomataceae, with 11 species each (4.98%). The most abundant families there were also Fabaceae (633), Lecythidaceae (344) and Chrysobalanaceae (283), together representing 58.14% (1260 individuals) of the total found in disturbed forests.

In the upper stratum of undisturbed forests the family Fabaceae stood out in terms of species richness, as well as Lecythidaceae and Chrysobalanaceae, which also fared well in the upper stratum of disturbed forests. Fabaceae showed high values of species richness in any forest type. In the middle stratum, the families Fabaceae, Annonaceae and Melastomataceae made up 31.41% of its number of species. As for the environment where they occur, Fabaceae stood out in more preserved forests and again proved to be indifferent to disturbance.

The most abundant species in undisturbed forests (Table 1; Appendix 1) were Eschweilera grandiflora (Aubl.) Sandwith (151 individuals) and Licania sclerophylla (Hook. f.) Fritsch (90 individuals), while in disturbed forests they were also well represented (193 and 70 individuals respectively), as were also Licania heteromorpha Benth. (131 individuals) and Euterpe oleraceae Mart. (87 individuals). Respectively, 17 and 19 species (8.17% and 8.6% of sampled totals) accounted for 50% of all tree individuals with DBH >5cm sampled in undisturbed and disturbed forests.

Table 1 List of the 30 most abundant species, with density values (ind/ha) recorded in plots in the upper and middle strata in undisturbed and disturbed forests in Permanet Preservation Areas -PPAs within the municipality of Moju, Pará. 

Species Undisturbed Forest Disturbed Forest
Upper
strata
Middle
strata
Upper
strata
Middle
strata
Eschweilera grandiflora (Aubl.) Sandwith 40.66 19.33 48.66 31.33
Licania heteromorpha Benth. 13.00 7.33 29.33 28.66
Euterpe oleracea Mart. 7.66 34.66 15.66 26.66
Licania sclerophylla (Hook. f.) Fritsch 17.33 25.33 12.66 21.33
Inga brachyrhachis Harms 8.66 28.66 9.00 24.00
Zygia cauliflora (Willd.) Killip 8.66 39.33 3.66 22.00
Cynometra marginata Benth. 15.66 11.33 12.00 9.33
Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. 15.66 0.66 15.33 4.00
Taralea oppositifolia Aubl. 16.33 2.66 11.33 2.00
Caraipa grandifolia Mart. 6.33 28.66 5.00 7.33
Eschweilera coriacea (DC.) S.A. Mori 10.66 6.66 13.66 2.00
Vatairea guianensis Aubl. 12.00 - 12.66 2.66
Eugenia flavescens DC. - 14.66 6.66 20.00
Swartzia acuminata Willd. exVogel 13.66 2.66 6.66 4.66
Anacardium giganteum W. Hancock ex Engl. 14.00 8.66 4.66 0.66
Swartzia racemosa Benth. 7.33 8.66 5.66 11.33
Licania apetala (E. Mey.) Fritsch 9.33 6.00 8.00 3.33
Gustavia augusta L. 3.33 4.00 11.33 8.66
Licania macrophylla Benth. 12.00 4.66 4.66 2.66
Eschweilera apiculata (Miers) A.C. Sm 7.66 - 10.33 3.33
Tachigalia myrmecophila (Ducke) Ducke 6.66 4.66 5.00 10.66
Macrolobium pendulum Willd. ex Vogel 8.00 2.00 7.33 4.00
Dialium guianense (Aubl.) Sandwith 5.33 5.33 7.00 4.66
Attalea maripa (Aubl.) Mart. 6.33 - 20.66 -
Eugenia omissa Mc Vaugh 2.33 8.66 2.00 12.66
Crudia oblonga Benth. 5.33 1.33 7.00 3.33
Inga splendens Willd. 5.66 3.33 6.00 2.66
Unonopsis guatterioides R.E. Fr. 3.66 9.33 2.33 7.33
Inga capitata Desv. 4.33 4.00 6.00 3.33
Mora paraensis (Ducke) Ducke 10.66 1.33 2.33 -

Species exclusive to undisturbed forests added up to 49 (30 of them rare, that is, with a single individual). Conversely, 62 species were exclusive to disturbed forests, with a higher density of Cochlospermum orinocense (Kunth) Steud.

The upper and middle strata of undisturbed forests had higher values for richness and floristic diversity index than those of disturbed forests. However, considering both strata, undisturbed forests exhibited 2060 individuals, 43 families and 208 species, in contrast to, respectively, 2167, 45 and 221 in undisturbed forests (Table 2). Comparing forest types, there is higher species richness and significance (t = 2.891 p < 0.05) of the diversity index in well-preserved forests than in the upper stratum of disturbed forests; the same relationship was found in the middle stratum (t = 3.577 p < 0.05). Pielou index is higher in undisturbed forests.

Table 2 Floristic information on tree species in undisturbed and disturbed forests within PPAs in the municipality of Moju, Pará.  

Stratum/Floristics
Ind.
H' J' Nf Ng Ns
Undisturbed forest 2060 43 208
Upper stratum (DBH ≥ 10cm) 3.36 0.91 40 101 167
Middle stratum (9.99cm ≥ DBH ≥ 5.0cm) 3.06 0.92 37 95 134
Disturbedforest 2167 45 221
Upperstratum (DBH ≥ 10cm) 3.05 0.85 39 100 164
Middle stratum (9.99cm≥ DBH ≥ 5.0cm) 2.64 0.84 40 110 156

Nº Ind. = number of individuals, H’ = Shannon-Wiener Diversity Index, J' = Pielou Equability Index, Nf = number of families, Ng = number of genera, Ns = number of species.

The similarity indices between the upper strata of undisturbed forests and disturbed forests, and between the middle strata of each type, were the highest found (Table 3); no index was lower than 50%, suggesting a certain floristic resemblance between forest types.

Table 3 Sørensen Similarity Indices for undisturbed and disturbed riparian forests within PPAs in the municipality of Moju, Pará, considering two strata.  

Undisturbed forest Disturbed forest
Stratum/Floristic similarity US MS US MS
Undisturbed forest - US - 0.51 0.63 0.56
Undisturbed forest - MS - 0.54 0.66
Disturbed forest - US - 0.58
Disturbed forest - MS -

US, upper stratum; MS, middle stratum.

Considering both undisturbed and disturbed forests, the mean density of individuals in the upper stratum was 468 ind/ha, and the mean basal area, 25.98m2/ha. In the middle stratum, the mean density was 470 ind/ha and the mean basal area, 1.90m2/ha (Table 4).

Table 4 Mean density (number of individuals/ha), aerial biomass (Mg.ha-1) and basal area (m2/ha) for undisturbed and disturbed forests within PPAs in the municipality of Moju, Pará. (n= 12, 2500 m2 for each upper stratum plot; n= 12, 1250 m2 for each middle stratum plot). 

Stratum/Structure Density Biomass Basal Area
Undisturbed forest
Upper stratum 461.00 341.90 ± 83.30 31.02 ± 9.06
Middle stratum 451.33 11.65 ± 2.26 1.89 ± 0.28
Total 912.33 353.35 ± 83.02 32.91 ± 9.08
Disturbed forest
Upper stratum 475.00 230.50 ± 23.89 20.95 ± 3.78
Middle stratum 494.67 12.48 ± 4.45 1.92 ± 0.47
Total 969.67 242.98 ± 26.19 22.86 ± 3.65

Distribution of the number of individuals per diameter class tended to follow a negative exponential function (inverted J), with many small-diameter individuals and few large-diameter ones (Figure 2).Swartzia acuminata Willd.ex Vogel and Taralea oppositifolia Aubl.were the species with the highest number of individuals with diameters above 70cm in undisturbed forests; in disturbed forests, the species with the most numerous large-diameter individuals were Eschweilera coriacea (DC.) S.A. Mori and Bertholletia excelsa Bonpl. We observed that in the DBH ≤ 10cm class, the number of individuals per hectare was higher in disturbed (494.67) than in undisturbed forests (451.33); also, the 10cm ≤ DBH ≤ 20cm class exhibited the widest difference between the two forest types, with 225 individuals per hectare recorded in undisturbed forests and 298.67 individuals/ha in disturbed forests (Figure 2).Those pattern of diameter distribution in both upper and middle strata did not present differences between forest types as showed by Kolmogorov-smirnov test (Ks max = 0.250, p= 0.906).

Figure 2 Number of individuals/ha distributed in different DBH classes in disturbed and undisturbed forests within PPAs in the municipality of Moju, Pará. 

Aerial biomass was 353.35 Mg.ha-1 for undisturbed forests and 242.98 Mg.ha-1 for disturbed forests. Vila Braulande had the highest biomass values for both strata (392.20 Mg.ha-1), a major contribution for the high value found in undisturbed forests; this locality also had the highest mean biomass value (257.60 Mg.ha-1). Differences between forest types were statistically significant (t = 4.263 p <0.05) (Figure 3; Table 3). The mean basal area of the upper stratum of disturbed forests was smaller (20.95 m2/ha) than the value found for undisturbed forests (31.02 m2/ha).

Figure 3 Student’s t-test for mean biomass in undisturbed and disturbed forests within PPAs in the municipality of Moju, Pará. 

The first and second axes of the NMDS in disturbed and undisturbed forest plots (stress value = 0.15 and 0.21 for upper and middle strata) did not group the forests by their floristic composition (Figure 4). This result was confirmed by ANOSIM analysis (R =0.026, p= 0,27, 999 permutations) which suggest that the disturbance observed in the forest plots is not interfering in species composition of tree communities studied for trees with dbh ≥ 10 cm and for individuals between 5 and 10 cm DBH.

Figure 4 MDS analysis performed for tree species composition in the upper (a) and middle (b) strata for 24 plots of undisturbed and disturbed forests within PPAs, where: C = undisturbed forests; D = disturbed forests; 1 and 2 = Vila Olho D’água; 3 and 4 = Vila Soledade; 5 and 6 = Vila São Jorge; 7 and 8 = Vila São Tomé; 9 and 10 = Vila São Pedro; 11 and 12 = Vila Braulande. 

However we observed the formation of two groups in the middle stratum of both disturbed and undisturbed plots (Figure 4b). The first group was formed by the localities of Vila Olho D’água, Vila São Tomé and Vila Braulande; the second by Vila Soledade, Vila São Jorge and Vila São Pedro. The distribution of species richness, abundance and basal area for each forest type of these rural villages were showed in Figure 5.

Figure 5 Box-plot showing the distribution of richness, density and basal area of disturbed and undisturbed forests in PPAs of six rural communities studied in Moju, Pará. 

4 Discussion

The results in the present study revealed that the species richness and abundance of Permanent Preservation Areas forests of Moju river were comparable to other terra firme forests of eastern Amazonia (Salomão et al., 1988; Amaral et al., 2012). The most of the individual stems belong to a relatively small number of species and many of these species are hyperdominants (Ter Steege et al., 2013). Also the floristic richness observed in the upper and middle strata in the PPAs surveyed (208 species in undisturbed forests, 221 in disturbed ones) was considered high in comparison with other PPAs areas studied in the same region (Pinheiro et al., 2007), where 158 were sampled.

This study found higher species richness in disturbed than undisturbed forests (Table 3). Of the 270 species sampled in the two forest types of Moju, only 96 (36%) were common to both, 62 exclusive to disturbed forests in PPAs and 49 found only in undisturbed forests. The cause of such high richness should be attributed to the higher environmental heterogeneity resulting from disturbances in the uniform structure of the forest. In the case of the forests of Moju, it should be noted that, from the 270 species sampled, only 19 accounted for about 50% of the total number of individuals found: those are hyperdominant species, as defined by Ter Steege et al. (2013). In the forests near Moju, Rodrigues et al. (1997) found about 51% of individuals belonging to only nine species, a situation frequent in throughout the Amazonian forest region.

The family Fabaceae predominate in terms of species richness in both undisturbed and disturbed forests. It is highly frequent in the Neotropics (Ribeiro et al., 1999), and its richness in vegetation formations in Amazonia is mentioned by many authors who verified its wide geographic distribution and high ecological plasticity (Pires, 1973). In areas dominated by upland forests in Amazonia, the families Sapotaceae, Moraceae and Burseraceae are also referred to as the most species-rich in other floristic inventories in the region (Pires, 1973; Prance et al., 1976; Dantas et al., 1980; Amaral et al., 2012). Other families found in the present study were Chrysobalanaceae and Lecythidaceae, which in Amazonia exhibit the highest densities of individuals and species, along with the Fabaceae (Oliveira and Amaral, 2004).

Overall, the disturbed forests surveyed had lower basal area values (20.95m2) than those recorded for upland forests in Amazonia, which are of about 30-40 m2 (Salomão et al., 1988; Pitman et al., 2001). The aboveground biomass was higher in undisturbed forests than in disturbed ones, which had undergone selective logging common practice in the Moju river basin. Vila Braulande had the highest biomass value (392.20 Mg.ha-1), evidencing its high degree of protection in comparison to other undisturbed forests, and especially to those classified as disturbed. That community collects only non-wood forest resources, such as oils and resins, which could have had an effect on this level of protection. In general, the response of the forests to disturbance is different in each rural communities (Figure 5). The mosaic of preserved and degraded forests present in an anthropogenic landscape such as these of Moju is the result of both the rural land use dynamics and the Forest Code, by requiring that 80-50% of the properties must be maintained as legal reserves (reserva legal) does not provide guidance as to its conservation status and format.

This study suggests that the impacts caused by humans on the Moju river communities did not lead to great floristic changes. Also, there were no significant differences between the analysed strata with respect to floristics (richness, Shannon-Wiener diversity, density). However, man-made impacts were perceptible in the tree community structure. As for the floristic composition, multivariate analysis evidenced there are no clear differences between forests respectively considered undisturbed and disturbed, which could be due to the different stages of preservation in PPAs or to their low level of exploitation by local communities – which have not seriously impacted the forest under their domain.

5 Conclusions

Floristic data on richness, abundance and tree species composition did not show any association with the conservation status of the PPAs, indicating that even the disturbed PPAs support viable populations of many tree species, therefore they should be maintained within rural properties. Moreover, the disturbance of forests within the PPAs seems to have been slight, not having significantly jeopardized the community of tree plants with respect to floristics. This favors the use of the most abundant species in the recovery of disturbed PPAs. The impact in the structure of the tree assembly was perceptible in such a way that disturbed forests exhibited a smaller basal area and biomass.

Appendix 1

List of families/species (and their abundance values) recorded in plots in the upper (N= 12, 2500m2; 3 ha sampled) and middle strata (N= 60, 250m2; 1.5 ha sampled) in undisturbed and disturbed forests in Permanent Preservation Areas -PPAs within the municipality of Moju, Pará, Brazil.

Family/Specie Number of individuals sampled
Undisturbed forests Disturbed forests
ANACARDIACEAE
Anacardium giganteum W. Hancock ex Engl. 55 15
Spondias mombin L. - 1
Tapirira guianensis Aubl. 15 15
ANNONACEAE
Annona densicoma Mart. 2 1
Duguetia echinophora R.E. Fr. - 4
Duguetia quitarensis Benth. 3 -
Duguetia riparia Huber 1 -
Duguetia sandwithii R.E. Fr. - 2
Duguetia spixiana Mart. 2 -
Guatteria poeppigiana Mart. - 3
Guatteria schomburgkiana Mart. - 5
Unonopsis guatterioides R.E. Fr. 25 18
Xylopia amazonica R.E. Fr. - 2
Xylopia benthamii R.E. Fr. - 2
Xylopia cayennensis Maas - 1
Xylopia nitida Dunal 3 3
APOCYNACEAE
Ambelania acida Aubl. 4 -
Aspidosperma excelsa Marcondes-Ferreira - 1
Aspidosperma nítida Woodson - 1
Himatanthus sucuuba (Spruce ex Müll. Arg.) Woodson - 2
Malouetia lata Markgr. - 1
ARALIACEAE
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 5 5
ARECACEAE
Astrocaryum gynacanthum Mart. 6 -
Astrocaryum jauari Mart. 2 2
Astrocaryum murumuru Mart. 1 1
Astrocaryum vulgare Mart. - 10
Attalea maripa (Aubl.) Mart. 19 31
Bactris maraja Mart. 1 7
Euterpe oleracea Mart. 75 87
Mauritia flexuosa L. f. 1
Oenocarpus bacaba Mart. 9 4
Syagrus cocoides Mart. 2 3
BIGNONIACEAE
Jacaranda copaia (Aubl.) D.Don 14 20
BIXACEAE
Cochlospermum orinocense (Kunth) Steud. - 11
BORAGINACEAE
Cordia exaltata Lam. 7 11
Cordia scabrida Mart. 1 -
Cordia tetrandra Aubl. 1 -
BURSERACEAE
Protium apiculatum Swart - 3
Protium heptaphyllum (Aubl.) Marchand 20 10
Protium krukoffii Swart 1 -
Protium pilosum (Cuatrec.) D.C. Daly - 2
Protium trifoliolatum Engl. 1 3
Tetragastris altissima (Aubl.) Swart 4 -
Trattinnickia burserifolia Mart. 2
Trattinnickia rhoifolia Willd. 1 1
CALOPHYLLACEAE
Calophyllum brasiliense Cambess. 1 1
Caraipa grandifolia Mart. 62 26
Caraipa richardiana Cambess. 3 6
CELASTRACEAE
Maytenus myrsinoides Reissek 6 4
CHRYSOBALANACEAE
Hirtella eriandra Benth. 26 5
Licania apetala (E. Mey.) Fritsch 37 29
Licania canescens Benoist 1 1
Licania guianensis Klotzsch 2 -
Licania heteromorpha Benth. 50 131
Licania licaniiflora (Sagot) S.F. Blake 3 3
Licania macrophylla Benth. 43 18
Licania membranacea Sagot ex Laness. 16 25
Licania oblongifolia Standl. 1 -
Licania parviflora Benth. 2 -
Licania sclerophylla (Hook. f.) Fritsch 90 70
Parinari montana Aubl. 1 1
CLUSIACEAE
Rheedia brasiliensis (Mart.) Planch. & Triana 15 2
Rheedia macrophylla (Mart.) Planch. & Triana 10 14
Tovomita brasiliensis (Mart.) Walp. 1 1
Tovomita brevistaminea Engl. 1 -
COMBRETACEAE
Buchenavia ochroprumna Eichler 3 1
Buchenavia oxycarpa (Mart.) Eichler 1
Terminalia argentea Mart. 1 -
Terminalia dichotoma G. Mey. 2 2
EBENACEAE
Diospyros artanthifolia Mart. 14 19
Diospyros guianensis (Aubl.) Gürke 2 -
ELAEOCARPACEAE
Sloanea guianensis (Aubl.) Benth. 3 -
EUPHORBIACEAE
Conceveiba guianensis Aubl. 2 1
Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. 48 52
Mabea caudata Pax & K. Hoffm. 10 6
Pogonophora schomburgkiana Miers ex Benth. 1 1
Sagotia racemosa Baill. - 2
FABACEAE
Abarema jupunba (Willd.) Britton & Killip 5 5
Acosmium nitens (Vogel) Yakovlev 6 4
Alexa grandiflora Ducke 1 -
Campsiandra laurifolia Benth. 2 27
Crudia oblonga Benth. 18 26
Cynometra marginata Benth. 64 50
Dialium guianense (Aubl.) Sandwith 24 28
Diplotropis martiusii Benth. - 1
Diplotropis purpurea (Rich.) Amshoff 1 -
Dipteryx odorata (Aubl.) Willd. 2
Eperua bijuga Mart. ex Benth. 15 10
Hydrochorea corymbosa (Rich.) Barneby & J.W. Grimes 17 9
Hymenaea oblongifolia Huber 9 13
Hymenaea parvifolia Huber 1 -
Hymenaea reticulata Ducke 2 1
Inga alba (Sw) Willd. 3 4
Inga brachyrhachis Harms 69 63
Inga capitata Desv. 19 23
Inga disticha Benth. 2 3
Inga edulis Mart. 5 6
Inga grandiflora Wall. 1 5
Inga laurina (Sw.) Willd. 8 12
Inga macrophylla Humb. & Bonpl. ex Willd. 1 3
Inga marginata Willd. 12 9
Inga paraensis Ducke 1 6
Inga splendens Willd. 22 22
Inga thibaudiana DC. 4 5
Inga umbellifera (Vahl) Steud. - 1
Macrolobium acaciifolium (Benth.) Benth. 1 5
Macrolobium angustifolium (Benth.) R.S. Cowan 8 1
Macrolobium pendulum Willd. ex Vogel 27 28
Mora paraensis (Ducke) Ducke 34 7
Ormosia coutinhoi Ducke 2 4
Parkia discolor Spruce ex Benth. 4 1
Parkia nitida Miq. 2 4
Peltogyne venosa (Vahl) Benth. 2 1
Pentaclethra macrophylla Benth. 11 2
Poecilanthe effusa (Huber) Ducke 1 -
Platymiscium filipes Benth. - 2
Pseudopiptadenia suaveolens (Miq.) J.W. Grimes 3 1
Pterocarpus officinalis Jacq. 1 2
Stryphnodendron guianense (Aubl.) Benth. 1 1
Stryphnodendron paniculatum Poepp. - 1
Stryphnodendron pulcherrimum (Willd.) Hochr. 1 3
Swartzia acuminata Willd. ex Vogel 45 27
Swartzia arborescens (Aubl.) Pittier 1 1
Swartzia laurifolia Benth. - 1
Swartzia racemosa Benth. 35 34
Tachigali goeldiana (Huber) L.F. Gomes da Silva & H.C. Lima 2 -
Tachigalia myrmecophila (Ducke) Ducke 27 31
Tachigalia paniculata Aubl. 1 -
Taralea oppositifolia Aubl. 53 37
Vatairea guianensis Aubl. 36 42
Vouacapoua americana Aubl. 22 11
Zygia ampla (Spruce ex Benth.) Pittier - 4
Zygia cataractae (Kunth) L. Rico 1 -
Zygia cauliflora (Willd.) Killip 85 44
GOUPIACEAE
Goupia glabra Aubl. 2 4
HUMIRIACEAE
Sacoglottis guianensis Benth. - 1
HYPERICACEAE
Vismia cayennensis (Jacq.) Pers. 1 3
Vismia guianensis (Aubl.) Pers. - 6
LAURACEAE
Aniba guianensis Aubl. 7 8
Licaria rigida (Kosterm.) Kosterm. - 2
Ocotea caudata (Nees) Mez 2 3
Ocotea glomerata (Nees) Mez 1 1
Ocotea longifolia Kunth - 1
Ocotea rubra Mez - 1
LECYTHIDACEAE
Allantoma lineata (Mart.& O.Berg) Miers 7 8
Bertholletia excelsa Bonpl. - 4
Couratari guianensis Aubl. 1 2
Eschweilera amazonica R. Knuth - 2
Eschweilera apiculata (Miers) A.C. Sm. 23 36
Eschweilera coriacea (DC.) S.A. Mori 42 44
Eschweilera grandiflora (Aubl.) Sandwith 151 193
Eschweilera pedicellata (Rich.) S.A. Mori 7 4
Gustavia augusta L. 16 47
Lecythis idatimon Aubl. 1 1
Lecythis lurida (Miers) S.A. Mori 1 -
Lecythis pisonis Cambess. 2 3
LINACEAE
Roucheria punctata (Ducke) Ducke 4 1
MALPIGHIACEAE
Byrsonima densa (Poir.) DC. 1 -
MALVACEAE
Apeiba burchellii Sprague 3 1
Apeiba echinata Gaertn. 4 -
Eriotheca globosa (Aubl.) A. Robyns 1 2
Eriotheca longipedicellata (Ducke) A. Robyns 1 2
Pseudobombax munguba (Mart. & Zucc.) Dugand 4 -
Sterculia pruriens (Aubl.) K.Schum. 11 3
Sterculia speciosa K. Schum. - 1
Theobroma speciosum Willd. ex Spreng. - 4
Theobroma subincanum Mart. 2 1
MELASTOMATACEAE
Bellucia grossularioides (L.) Triana 1 1
Henriettea succosa (Aubl.) DC. 1 1
Miconia affinis DC. 1 11
Miconia gratissima Benth. ex Triana - 2
Miconia pyrifolia Naudin - 2
Miconia tomentosa (Rich.) D. Don ex DC. 1 7
Mouriri acutiflora Naudin 13 1
Mouriri apiranga Spruce ex Triana 5 3
Mouriri brachyanthera Ducke 4 12
Mouriri grandiflora DC. 4 -
Mouriri nervosa Pilg. - 1
Mouriri nigra (DC.) Morley 3 3
MELIACEAE
Carapa grandiflora Sprague 1 -
Carapa guianensis Aubl. 19 19
Cedrela odorata Vell. - 2
Guarea guidonia (L.) Sleumer 2 6
Trichilia micrantha Benth. 11 24
Trichilia quadrijuga Kunth 2 6
MORACEAE
Brosimum acutifolium Huber 1 -
Brosimum guianense (Aubl.) Huber 23 17
Brosimum parinarioides Ducke 1 -
Brosimum rubescens Taub. 1 -
Clarisia ilicifolia (Spreng.) Lanj. & Rossberg 1 -
Ficus maxima Mill. - 1
Ficus pertusa L. f. - 1
Helicostylis tomentosa (Poepp. & Endl.) Rusby 1 2
Maquira calophylla (Poepp. & Endl.) C.C. Berg - 1
Maquira guianensis Aubl. 5 4
Perebea mollis (Poepp. & Endl.) Huber 1 -
Pseudolmedia murure Standl. 1 3
MYRISTICACEAE
Iryanthera laevis Markgr. - 1
Virola surinamensis (Rol. ex Rottb.) Warb. 8 10
MYRTACEAE
Eugenia anastomosans DC. 2 2
Eugenia brachypoda DC. 1 -
Eugenia cupulata Amshoff - 1
Eugenia deflexa Poir. 2 -
Eugenia egensis DC. 1 -
Eugenia feijoi O. Berg 1 1
Eugenia flavescens DC. 22 50
Eugenia lambertiana DC. 4 1
Eugenia omissa Mc Vaugh 20 25
Eugenia patrisii Vahl 2 9
Myrcia eximia DC. 2 -
Myrcia guianensis (Aubl.) DC. 1 4
Myrciaria floribunda (H. West ex Willd.) O. Berg 1 4
NYCTAGINACEAE
Guapira opposita (Vell.) Reitz - 1
OCHNACEAE
Lacunaria crenata (Tul.) A.C. Sm. 1 -
Ouratea paraensis Huber - 1
OLACACEAE
Cathedra acuminata (Benth.) Miers 12 11
Chaunochiton kappleri (Sagot ex Engl.) Ducke 2 -
Dulacia candida (Poepp.) Kuntze 2 -
Heisteria acuminata (Bonpl.) Engl. - 1
Minquartia guianensis Aubl. 5 -
OPILIACEAE
Agonandra brasiliensis Miers ex Benth. & Hook. f. - 1
POLYGONACEAE
Coccoloba latifolia Lam. 8 6
RUBIACEAE
Alibertia edulis (Rich.) A. Rich. ex DC. 2 1
Botryarrhena pendula Ducke 1 4
Genipa americana L. - 2
Isertia hypoleuca Benth. - 1
Posoqueria latifolia (Rudge) Roem & Schoolt 3 19
Posoqueria longiflora Aubl. 1 1
RUTACEAE
Galipea trifoliata Aubl. 1 8
SALICACEAE
Casearia decandra Jacq. - 1
Casearia grandiflora Cambess. - 1
Casearia pitumba Sleumer 1 1
Casearia ulmifolia Vahl ex Vent. 1 -
SAPINDACEAE
Cupania scrobiculata Rich. 1 -
Talisia veraluciana Guarim 1 1
Toulicia guianensis Aubl. 2 7
SAPOTACEAE
Chrysophyllum cuneifolium (Rudge) A. DC. 3 -
Chrysophyllum sparsiflorum Klotzsch ex Miq. - 3
Ecclinusa abbreviata Ducke 1 -
Manilkara huberi (Ducke) A. Chev. 1 3
Micropholis acutangula (Ducke) Eyma 3 2
Micropholis guyanensis (A. DC.) Pierre 6 1
Micropholis venulosa (Mart. & Eichler) Pierre 5 9
Pouteria caimito (Ruiz & Pav.) Radlk. 1 2
Pouteria decorticans T.D. Penn. 1 2
Pouteria glomerata (Miq.) Radlk. 1 -
Pouteria gongrijpii Eyma 1 10
Pouteria guianensis Aubl. 11 13
Pouteria macrophylla (Lam.) Eyma 1 1
Pouteria robusta (Mart. & Eichler) Eyma 1 3
Pouteria venosa (Mart.) Baehni 2 1
Pradosia granulosa Pires & T.D. Penn. 13 5
Sarcaulus brasiliensis (A. DC.) Eyma 2 6
SIMAROUBACEAE
Simaba cedron Planch. - 4
Simaba polyphylla (Cavalcante) W.W. Thomas - 1
Simarouba amara Aubl. 9 8
SIPARUNACEAE
Siparuna guianensis Aubl. 2 2
ULMACEAE
Ampelocera edentula Kuhlm. 12 16
URTICACEAE
Cecropia distachya Huber 1 -
Cecropia obtusa Trécul - 2
Cecropia sciadophylla Mart. - 1
Pourouma guianensis Aubl. 1 -
Pourouma mollis Trécul - 1
VIOLACEAE
Amphirrhox surinamensis Eichler 4 1
Rinorea guianensis Aubl. - 2
Rinorea passoura Kuntze 6 3
Rinorea riana Aubl. 4 5
VOCHYSIACEAE
Qualea acuminata Spruce ex Warm. - 2
Ruizterania albiflora (Warm.) Marc.-Berti - 3
Vochysia vismiifolia Spruce ex Warm. 4 14

Acknowledgements

This paper forms part of a thesis prepared for the Master’s graduate program in Biological Sciences at Museu Paraense Emilio Goeldi in conjunction with the Universidade Federal Rural da Amazônia. We are grateful to the Instituto Nacional de Ciência e Tecnologia, Biodiversidade e Uso da Terra na Amazônia (CNPq grant 574008/2008-0), for financial supportand to CNPq for an MScs cholarship to JCO and a productivity grant (CNPq 306368/2013-7) to ICGV.

(With 5 figures)

References

ALMEIDA, A.S. and VIEIRA, I.C.G., 2014. Conflitos no uso da terra em áreas de preservação permanente em um polo de produção de biodisel no Estado do Pará. Revista Ambiente & Água, vol. 9, pp. 476-487. [ Links ]

ALMEIDA, A.S. and VIEIRA, I.G.V., 2010. Centro de Endemismo Belém: status da vegetação remanescente e desafios para a conservação da biodiversidade e restauração ecológica. Revista de Estudos Universitários, vol. 36, no. 3, pp. 95-111. [ Links ]

AMARAL, D.D., VIEIRA, I.C.G., SALOMÃO, R.P., ALMEIDA, S.S. and JARDIM, M.A.G., 2012. The status of conservation of urban forests in eastern Amazonia. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 72, no. 2, pp. 257-265. http://dx.doi.org/10.1590/S1519-69842012000200005.PMid:22735132. [ Links ]

BRASIL. Conselho Nacional do Meio Ambiente – CONAMA, 2002. [viewed 27 March 2013]. Resolução CONAMA nº 302, de 20 de março de 2002. Dispõe sobre os parâmetros, definições e limites de Áreas de Preservação Permanente de reservatórios artificiais e o regime de uso do entorno. Diário Oficial da República Federativa do Brasil [online], Brasília, 13 maio. Available from: http://www.jurisambiente.com.br/ambiente/areadepreservacaol.shtm. [ Links ]

CLARKE, K.R. and GORLEY, R.N., 2006. PRIMER v6: user manual/tutorial. Plymouth: PRIMER-E. 192 p. [ Links ]

CONSULTORIA E DESENVOLVIMENTO DE SISTEMAS – CIENTEC, 2002. Mata nativa: sistema para análise fitossociológica e elaboração de planos de manejo de florestas nativas. São Paulo: CIENTEC. 126 p. [ Links ]

COSTA, D.H.M., FERREIRA, C. A. P., SILVA, J. N. M., LOPES, J. C. A. and CARVALHO, J. O. P., 1998. Potencial madeireiro de floresta densa no município de Moju, Estado do Pará. Belém: Embrapa-CPATU. 33 p. Documentos, no. 121. [ Links ]

DANTAS, M., RODRIGUES, I.M.A. and MULLER, N.R.M., 1980. Estudos fito-ecológicos do trópico úmido brasileiro: aspectos fitossociológicos de mata sobre latossolo amarelo em Capitão Poço. Boletim de Pesquisa e Desenvolvimento EMBRAPA, vol. 9, pp. 23-38. [ Links ]

HASTON, E., RICHARDSON, J.E., STEVENS, P.F., CHASE, M.W. and HARRIS, D.J., 2009. The Linear Angiosperm Phylogeny Group (LAPG) III: A linear sequence of the families in APG III. Botanical Journal of the Linnean Society, vol. 161, no. 2, pp. 128-131. http://dx.doi.org/10.1111/j.1095-8339.2009.01000.x. [ Links ]

HIGUCHI, N., SANTOS, J., RIBEIRO, R.J., MINETTE, L. and BIOT, Y., 1998. Biomassa da parte aérea da vegetação da floresta tropical úmida de terra-firme da Amazônia Brasileira. Acta Amazônica, vol. 28, no. 2, pp. 153-166. http://dx.doi.org/10.1590/1809-43921998282166. [ Links ]

MAGURRAN, A.E., 2004. Measuring biological diversity. Oxford: Blackwell Science. 256 p. [ Links ]

MUELLER-DUMBOIS, D. and ELLENBER, H., 1974. Aims and methods of vegetation ecology. New York: John Willey & Sons Press. 574 p. [ Links ]

NASCIMENTO, C. and HOMMA, A., 1984. Amazônia: meio ambiente e tecnologia agrícola. Belém: Embrapa-CPATU. 282 p. Documentos, no. 27. [ Links ]

NEPSTAD, D.C., VERÍSSIMO, J.A., ALENCAR, A., NOBRE, C., LIMA, E., LEFEBVRE, P., SCHLESINGER, P., POTTER, C., MOUTINHO, P., MENDOZA, E., COCHRANE, M. and BROOKS, V., 1999. Large-scale impoverishment of Amazonian forests by logging and fire. Nature, vol. 398, no. 6727, pp. 504-508. http://dx.doi.org/10.1038/19066. [ Links ]

OLIVEIRA, A.N. and AMARAL, I.L., 2004. Florística e fitossociologia de uma floresta de vertente na Amazônia Central, Amazonas, Brasil. Acta Amazonica, vol. 34, no. 1, pp. 21-34. http://dx.doi.org/10.1590/S0044-59672004000100004. [ Links ]

PINHEIRO, K.A.O., CARVALHO, J.O.P., QUANZ, B., FRANCEZ, L.M.B. and SCHWARTZ, G., 2007. Fitossociologia de uma área de preservação permanente no leste na Amazônia: indicação de espécies para recuperação de áreas alteradas. Revista Floresta, vol. 37, pp. 175-187. [ Links ]

PIRES, J.M., 1973. Tipos de vegetação da Amazônia. Boletim do Museu Paraense Emílio Goeldi, vol. 20, pp. 179-202. [ Links ]

PITMAN, N.C.A., TERBORGH, J.W., SILMAN, M.R., NÚÑEZ, P.V., NEILL, D.A., CERÓN, C.E., PALACIOS, W.A. and AULESTIA, M., 2001. Dominance and distribution of tree species in upper amazonian terra firme forests. Ecology, vol. 82, no. 8, pp. 2101-2117. http://dx.doi.org/10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2. [ Links ]

PRANCE, G.T., RODRIGUES, W.A. and SILVA, M.F., 1976. Inventário florestal de um hectare de Mata de Terra Firme, Km 30 estrada Manaus-Itacoatiara. Acta Amazonica, vol. 6, no. 1, pp. 9-35. [ Links ]

RIBEIRO, J.E.L.S., HOPKINS, M.J.G., VICENTINI, A., SOTHERS, C.A., COSTA, M.A.S., BRITO, J.M., SOUZA, M.A.D., MARTINS, L.H.P., LOHMANN, L.G., ASSUNÇÃO, P.A.C.L., PEREIRA, E.C., SILVA, C.F., MESQUITA, M.R. and PROCÓPIO, L.C., 1999. Flora da Reserva Ducke: guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia Central. Manaus: Instituto Nacional de Pesquisas da Amazônia. 799 p. [ Links ]

RODRIGUES, I.A., PIRES, J.M., WATRIN, O.S. and CORDEIRO, M.R., 1997. Levantamento fitossociológico em áreas sob influência da rodovia PA 150 nos municípios de Acará e Tailândia, PA. Belém: Embrapa Amazônia Oriental. 43 p. Boletim de Pesquisa, no. 179. [ Links ]

SALOMÃO, R.P., SILVA, M.F.F. and ROSA, P.L.B., 1988. Inventário ecológico em Floresta Pluvial Tropical de Terra Firme, Serra Norte, Carajás, Pará. Boletim do Museu Paraense Emílio Goeldi, vol. 4, no. 1, pp. 1-46. [ Links ]

SANTOS, P.L., SILVA, J.M.L., SILVA, B.N.R., SANTOS, R.D. and REGO, G.S., 1985. Levantamento semi detalhado dos solos e avaliação da aptidão agrícola das terras para culturas de dendê e seringueira. Rio de Janeiro: EMBRAPA/SNLCS. 192 p. Projeto Moju, Pará. Relatório técnico. [ Links ]

SERRÃO, D.R., JARDIM, F.C.S. and NEMER, T.C., 2003. Sobrevivência de seis espécies florestais em uma área explorada seletivamente no município de Moju, Pará. Cerne, vol. 9, no. 2, pp. 153-163. [ Links ]

SOKAL, R. and ROHLF, F.J., 1995. Biometry: the principles and practice of statistics in biological research. 3rd ed. New York: W. H. Freeman. 887 p. [ Links ]

SPAROVEK, G.; BARRETO, A.; KLUG, I.; PAPP, L. and LINO, J., 2011. A revisão do Código Florestal brasileiro. Novos Estudos - CEBRAP, no. 89, pp.111-135. http://dx.doi.org/10.1590/S0101-33002011000100007. [ Links ]

TER STEEGE, H., PITMAN, N.C.A., SABATIER, D., BARALOTO, C., SALOMAO, R.P., GUEVARA, J.E., PHILLIPS, O.L., CASTILHO, C.V., MAGNUSSON, W.E., MOLINO, J.-F., MONTEAGUDO, A., NUNEZ VARGAS, P., MONTERO, J.C., FELDPAUSCH, T.R., CORONADO, E.N.H., KILLEEN, T.J., MOSTACEDO, B., VASQUEZ, R., ASSIS, R.L., TERBORGH, J., WITTMANN, F., ANDRADE, A., LAURANCE, W.F., LAURANCE, S.G.W., MARIMON, B.S., MARIMON, B.-H., GUIMARAES VIEIRA, I.C., AMARAL, I.L., BRIENEN, R., CASTELLANOS, H., CARDENAS LOPEZ, D., DUIVENVOORDEN, J.F., MOGOLLON, H.F., MATOS, F.D.A., DAVILA, N., GARCIA-VILLACORTA, R., STEVENSON DIAZ, P.R., COSTA, F., EMILIO, T., LEVIS, C., SCHIETTI, J., SOUZA, P., ALONSO, A., DALLMEIER, F., MONTOYA, A.J.D., FERNANDEZ PIEDADE, M.T., ARAUJO-MURAKAMI, A., ARROYO, L., GRIBEL, R., FINE, P.V.A., PERES, C.A., TOLEDO, M., AYMARD C, G.A., BAKER, T.R., CERON, C., ENGEL, J., HENKEL, T.W., MAAS, P., PETRONELLI, P., STROPP, J., ZARTMAN, C.E., DALY, D., NEILL, D., SILVEIRA, M., PAREDES, M.R., CHAVE, J., LIMA FILHO, D.A., JORGENSEN, P.M., FUENTES, A., SCHONGART, J., CORNEJO VALVERDE, F., DI FIORE, A., JIMENEZ, E.M., PENUELA MORA, M.C., PHILLIPS, J.F., RIVAS, G., VAN ANDEL, T.R., VON HILDEBRAND, P., HOFFMAN, B., ZENT, E.L., MALHI, Y., PRIETO, A., RUDAS, A., RUSCHELL, A.R., SILVA, N., VOS, V., ZENT, S., OLIVEIRA, A.A., SCHUTZ, A.C., GONZALES, T., TRINDADE NASCIMENTO, M., RAMIREZ-ANGULO, H., SIERRA, R., TIRADO, M., UMANA MEDINA, M.N., VAN DER HEIJDEN, G., VELA, C.I.A., VILANOVA TORRE, E., VRIESENDORP, C., WANG, O., YOUNG, K.R., BAIDER, C., BALSLEV, H., FERREIRA, C., MESONES, I., TORRES-LEZAMA, A., URREGO GIRALDO, L.E., ZAGT, R., ALEXIADES, M.N., HERNANDEZ, L., HUAMANTUPA-CHUQUIMACO, I., MILLIKEN, W., PALACIOS CUENCA, W., PAULETTO, D., VALDERRAMA SANDOVAL, E., VALENZUELA GAMARRA, L., DEXTER, K.G., FEELEY, K., LOPEZ-GONZALEZ, G. and SILMAN, M.R., 2013. Hyperdominance in the Amazonian tree flora. Science, vol. 342, no. 6156, pp. 1243092. http://dx.doi.org/10.1126/science.1243092. PMid:24136971. [ Links ]

Received: March 20, 2015; Accepted: August 10, 2015

Creative Commons License This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.