Acessibilidade / Reportar erro

Technological innovations in animal production related to environmental sustainability

Inovações tecnológicas na produção animal relacionadas à sustentabilidade ambiental

Abstracts

According to FAO, meat production will double by 2050 to meet the demand of growing and more affluent population. The soaring demand presents an environmental challenge for intensive animal production. Greenhouse gas emissions (GHG), particularly methane (CH4) increases as animal numbers increase, however, mitigation strategies such as dietary manipulation (e.g., lipid supplementation), ionophores, defaunation and biotechnologies can be used to reduce emissions per animal. Emissions from manure storage can also be reduced using biological and thermochemical conversion technologies with added benefit of producing bio-energy while treating livestock wastes. At the animal level, reduction of overfeeding protein and balancing the amounts of protein degraded in rumen and those allowed to bypass the rumen will reduce N excretion. Synchronizing energy and protein supply to animals also offers better utilization of nutrients with concomitant decrease in urine N, which contains high levels of urea that can be converted into ammonia when mixed with feces. Phosphorus in manure represents a significant renewable resource and there are several technologies that remove and recover P from manure including chemical precipitation, biological P removal and crystallization. The development of technologies for GHG and nutrient reduction offers the opportunity for environmental sustainability.

entenic fermentation; methane; ruminants


De acordo com a FAO, a produção de carne deve duplicar até 2050, devido à grande demanda e enriquecimento da população. Essa crescente necessidade apresenta um desafio ambiental para a produção intensiva de animais. A emissão de gás do efeito estufa, particularmente metano (CH4), se eleva com o aumento do número de animais, entretanto, estratégias de mitigação, tais como a manipulação da dieta, por exemplo, suplementação lipídica, ionóforos, defaunação e biotecnologias podem ajudar a reduzir a remessa por animal. Emissões por armazenamento de esterco também podem ser reduzidas se utilizarem tecnologias biológicas e termoquímicas com o benefício adicional de se produzir bio-energia durante o tratamento de resíduos animais. No que diz respeito ao animal, a redução da superalimentação proteica e a manutenção do equilíbrio entre proteína degradada no rúmen e proteína bypass podem reduzir a excreção de nitrogênio. Balanceamento de energia e suplementação proteica dos animais também podem oferecer melhor utilização dos nutrientes e, concomitantemente, diminuir o nitrogênio na urina, que contém altos níveis de ureia que, por sua vez, pode ser convertida em amônia quando misturada às fezes. Fósforo nos resíduos (estrume) representa um importante recurso renovável, e várias tecnologias existem para remover e recuperar esse mineral sem excluir precipitação química, remoção biológica e cristalização. O desenvolvimento de tecnologias relacionadas ao efeito estufa oferece oportunidade para a sustentabilidade ambiental.

fermentação entérica; metano; ruminantes


  • ANTAL, M.J.; GRØNLI, M. The Art, science, and technology of charcoal production. Industrial and Engineering Chemistry Research, v.42, n.8, p.1619-1640, 2003.
  • ARMENTANO, L.; PEREIRA, M. Measuring the effectiveness of fiber by animal response trials. Journal of Dairy Science, v.80, n.7, p.1416-1425, 1997.
  • BALCH, W.E.; FOX, G.E.; MAGRUM, L.J. Methanogens: reevaluation of a unique biological group. Microbiological Reviews, v.43, n.2, p.260-296, 1979.
  • BEAUCHEMIN, K.A.; KREUZER, A.D.M.; O'MARA, B.F.; MCALLISTER, T.A. Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture, v.48, n.2, p.21-27, 2008.
  • BEAUCHEMIN, K.A.; MCGINN, S.M.; MARTINEZ, T.F.; MCALLISTER, T.A. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. Journal of Animal Science, v.85, n.8, p.1990-1996, 2007.
  • BIRD, S.H.; HEGARTY, R.S.; WOODGATE, R. Modes of transmission of rumen protozoa between mature sheep. Animal Production Science, v.50, n.6, p.414-417, 2010.
  • BØRSTING, C.F.; KRISTENSEN, T.; MISCIATTELLI, L.; HVELPLUND, T.; WEISBJERG, M.R. Reducing nitrogen surplus from dairy farms. Effects of feeding and management. Livestock Production Science, v.83, n.2, p.165-178, 2003.
  • BRODERICK, G.A. Effects of Varying Dietary Protein and Energy Levels on the Production of Lactating Dairy Cows. Journal of Dairy Science, v.86, n.4, p.1370-1381, 2003.
  • BUSQUET, M.; CALSAMIGLIA, S.; FERRET, A.; CARRO, M.D.; KAMEL, C. Effect of garlic oil and four of its compounds on rumen microbial fermentation. Journal of Dairy Science, v.88, n.12, p.4393-4404, 2005.
  • CANTRELL, K. B.; DUCEY, T; RO, K.S.; HUNT, P.G. Livestock waste-to-bioenergy generation opportunities. Bioresource Technology, v.99, n.17, p.7941-7953, 2008.
  • CANTRELL, K.; RO, K.; MAHAJAN, D.; ANJOM, M.; HUNT, P.G. Role of thermochemical conversion of livestock waste-to-energy treatments: obstacles and opportunities. Industrial and Engineering Chemistry Research, v.46, n.26, p.8918-8927, 2007.
  • CASTILLO, A.R.; KEBREAB, E.; BEEVER, D.E.; BARBI, J.H.; SUTTON, J.D.; KIRBY, H.C.; FRANCE, J. The effect of energy supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. Journal of Animal Science, v.79, n.1, p.240-246, 2001a.
  • CASTILLO, A.R.; KEBREAB, E.; BEEVER, D.E.; BARBI, J.H.; SUTTON, J.D.; KIRBY, H.C.; FRANCE, J. The effect of protein supplementation on nitrogen utilization in grass silage diets by lactating dairy cows. Journal of Animal Science, v.79, n.1, p.247-253, 2001b.
  • CLIMATE CHANGE CENTRAL. The Alberta Offset System Available at: <http://carbonoffsetsolutions.climatechangecentral.com/policy-regulation/alberta-offset-system>. Accessed on: March 22, 2011.
  • COLMENERO, J.J.O.; BRODERICK, G.A. Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows. Journal of Dairy Science, v.89, n.5, p.1704-1712, 2006.
  • COOPRIDER, K.L.; MITLOEHNER, F.M.; FAMULA, T.R.; KEBREAB, E; VAN EENENNAAM, A.L. Feedlot efficiency implications on greenhouse gas emissions and sustainability. Journal of Animal Science, v.89, n.8, p.2643-56, 2011.
  • CZERKAWSKI, J.W. The effect on digestion in the rumen of a gradual increase in the content of fatty acids in the diet of sheep. British Journal of Nutrition, v.20, n.4, p.833-842, 1966.
  • DESUTTER, T.M., HAM, J.M. Lagoon-biogas emissions and carbon balance estimates of a swine production facility. Journal of Environmental Quality, v.34, n.1, p.198-206, 2005.
  • EUGENE, M.; MASS, D.; CHIQUETTE, J.; BENCHAAR, C. Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Canadian Journal of Animal Science, v.88, n.2, p.331-334, 2008.
  • FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. FAO. Greenhouse gas emissions from the dairy sector. A life cycle assessment Available at <http://www.fao.org/docrep/012/k7930e/k7930e00.pdf>. Accessed on March 22, 2011.
  • GROFF, E.B.; WU, Z. Milk production and nitrogen excretion of dairy cows fed different amounts of protein and varying proportions of alfalfa and corn silage. Journal of Dairy Science, v.88, n.10, p.3619-3632, 2005.
  • GUAN, H.; WITTENBERG, K.M.; OMINSKI, K.H.; KRAUSE, D.O. Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science, v.84, n.7, p.1896-1906, 2006.
  • HEGARTY, R.S. Reducing rumen methane emissions through elimination of rumen protozoa. Australian Journal of Agricultural Research, v.50, n.8, p.1321-1327, 1999.
  • HOOK, S.E.; NORTHWOOD, K.S.; WRIGHT, A.D.G.; MCBRIDE, B.W. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Applied and Environmental Microbiology, v.75, n.2, p.374-380, 2009.
  • HOOK, S.E.; WRIGHT, A.D.; MCBRIDE, B.W. Methanogens: Methane Producers of the Rumen and Mitigation Strategies. Archaea, v.2010, p.1-11, 2010.
  • HUNGATE, R. E.; SMITH, W.; BAUCHOP, T.; YU, I.; RABINOWITZ, J. C. Formate as an intermediate in the bovine rumen fermentation. Journal of Bacteriology, v.102, n.2, p.389-397, 1970.
  • INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE - IPCC. Guidelines for National Greenhouse Gas Inventories Hayama, Kanagawa, Japan, 2006. Available at: <http://www.ipccnggip.iges.or.jp>. Accessed on: March 22, 2011.
  • JOHNSON, K.A.; JOHNSON, D.E. Methane emissions from cattle. Journal of Animal Science, v.73, n.8, p.2483-2492, 1995.
  • JORDAAN, E.M.; ACKERMAN, J.; CICEK, N. Phosphorus removal from anaerobically digested swine wastewater through struvite precipitation. Water Science and Technology, v.61, n.12, p.3228-3234, 2010.
  • KAUFFMAN, A.J.; ST-PIERRE, N.R. The relationship of milk urea nitrogen to urine nitrogen excretion in Holstein and Jersey cows. Journal of Dairy Science, v.84, n.10 p.2284-2294, 2001.
  • KEBREAB, E.; STRATHE, A.B.; DIJKSTRA, J.; MILLS, J.A.N.; REYNOLDS, C.K.; CROMPTON, L.A.; YAN, T; FRANCE, J. Energy and protein interactions and their effect on nitrogen excretion in dairy cows. In: CROVETTO, M. Energy and Protein Metabolism and Nutrition, n. 127, p.417-425, 2010.
  • KEBREAB, E.; CLARKE, K.; WAGNER-RIDDLE, C.; FRANCE, J. Methane and nitrous oxide emissions from Canadian animal agriculture - a review. Canadian Journal of Animal Science, v.86, n.2, p.135-158, 2006.
  • KEBREAB, E.; SHAH, M.A.; BEEVER, D.E.; HUMPHRIES, D.J.; SUTTON, J.D.; FRANCE, J.; MUELLER-HARVEY, I. Effects of contrasting forage diets on phosphorus utilisation in lactating dairy cows. Livestock Production Science, v.93, n.2, p.125-135, 2005.
  • MARTIN, C.; MORGAVI, D. P.; DOREAU. M. Methane mitigation in ruminants: from microbe to the farm scale. Animal, v.4, n.3, p.351-365, 2010.
  • MCGINN, S.M.; BEAUCHEMIN, K.A.; COATES, T.; COLOMBATTO, D. Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of Animal Science, v.82, n.11, p.3346-3356, 2004.
  • MIAO, X.; WU, Q. Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, v.97, n.6, p.841-846, 2006.
  • MOERMAN, W.; CARBALLA, M.; VANDEKERCKHOVE, A.; DERYCKE, D.; VERSTRAETE, W. Phosphate removal in agro-industry: pilot- and full-scale operational considerations of struvite crystallization. Water Research, v.43, n.7, p.1887-1892, 2009.
  • MOHAN, D.; PITTMAN, C.U.; STEELE, P.H. Pyrolysis of Wood/Biomass for Bio-oil: a critical review. Energy and Fuels, v.20, n.3, p.848-889, 2006.
  • MORSE, G. K.; BRETT, S. W.; GUY, J. A.; LESTER, J. N. Review: phosphorus removal and recovery technologies. Science of The Total Environment, v.212, n.1, p.69-81, 1998.
  • MUCK, R.E. Urease activity in bovine feces. Journal of Dairy Science, v.65, n.11, p.2157-2163, 1982.
  • NELSON, N. O.; MIKKELSEN, R. L; HESTERBERG, D. L. Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg:P ratio and determination of rate constant. Bioresource Technology, v.89, n.3, p.229-236, 2003.
  • NOCEK, J.E.; RUSSELL, J.B. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. Journal of Dairy Science, v.71, n.8, p.2070-2107, 1988.
  • NATIONAL RESEARCH COUNSIL - NRC. Nutrient Requirements of Dairy Cattle 7.ed, Washington DC: National Academic Press, 2001. 381p.
  • ODONGO, N.E.; BAGG, R.; VESSIE, G.; DICK, P.; OR-RASHID, M.M.; HOOK, S.E.; GRAY, J.T.; KEBREAB, E.; FRANCE, J.; MCBRIDE, W. Long-term effects of feeding monensin on methane production in lactating dairy cows. Journal of Dairy Science, v.90, n.4, p.1781-1788, 2007.
  • PLAIZIER, J.C.; KRAUSE, D.O.; GOZHO, G.N.; MCBRIDE, B.W. Sub-acute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. The Veterinary Journal, v.176, n.1, p.21-31, 2008.
  • PUCHALA, R.; MIN, B.R.; GOETSCH, A.L.; SAHLU, T. The effect of a condensed tannin-containing forage on methane emission by goats. Journal of Animal Science, v.83, n.1, p.182-186, 2005.
  • RUSSELL, J. B.; STROBEL, H.J. Effect of ionophores on ruminal fermentation. Applied Environmental Microbiology, v.55, n.1, p.1-6, 1989.
  • SATTER, L. D.; Z. WU. New strategies in ruminant nutrition. In: SOUTHWEST NUTRITION AND MANAGEMENT CONFERENCE, 1999, Tucson. Proceedings... Tucson: University of Arizona, 1999. p.1-24.
  • SCHNEIDER, S.H. The Green House Effect: Science and Policy. Science, v.243, n.4892, p.771-781, 1989.
  • SHARP, R.; ZIEMER, C.J.; STERN, M.D.; STAHL, D.A. Taxonspecific associations between protozoal and methanogen populations in the rumen and a model rumen system, FMES Microbiology Ecology, v.26, n.2 p.71-78, 1998.
  • SMITH, R. A.; ALEXANDER, R.B. Sources of nutrients in the nation's watersheds. In: MANAGING NUTRIENTS AND PATHOGENS FROM ANIMAL AGRICULTURE, 2000, Ithaca. Proceedings... Ithaca: Natural Resource, Agriculture, and Engineering Service, 2000. p.13-21.
  • STEEN, I. Phosphorus availability in the 21st Century: management of a non-renewable resource. Phosphorus and Potassium, v.217, n.5, p.25-31, 1998.
  • TAMMINGA, S. Nutrition management of dairy cows as a contribution to pollution control. Journal of Dairy Science, v.75, n.1, p.345-357, 1992.
  • TAVENDALE, M.H.; MEAGHER, L.P.; PACHECO, D.; WALKER, N.; ATTWOOD, G.T.; SIVAKUMARAN, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology, v.123/124, p.403-419, 2005.
  • JONGBLOED, A.W.; LENIS, N.P. Environmental concerns about animal manure. Journal of Animal Science, v.76, p.2641-2648, 1998.
  • ENVIRONMENTAL PROTECTION AGENCY - EPA. 2007 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2005. EPA Report 430-R-07-002 Available at: <http://www.epa.gov/climatechange/emissions/downloads06/07CR.pdf> Accessed on: March 22, 2011.
  • COLLEGE OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES - CAES. Keeping California's dairy industry globally competitive Davis: University of California, 2008.
  • TUNG, R.S.; KUNG JUNIOR, L. In vitro effects of a thiopeptide and monensin on ruminal fermentation of soluble carbohydrates. Journal of Dairy Science, v.76, n.4, p.1083-1090, 1993.
  • UENO, Y.; FUJII, M. Three years experience of operating and selling recovered struvite from full-scale plant. Environmental Technology, v.22, n.11, p.1373-1381, 2001.
  • USUI, N.; IKENOUCHI, M. The biological CO2 fixation and utilization project by RITE(1): Highly-effective photobioreactor system. Energy Conversion and Management, v.38, p.487-492, 1997. Suppl.1.
  • VAN SOEST, P.J. Nutritional ecology of the ruminant 2.ed. New York: Cornell University Press, 1994. 476p.
  • VAN VUGT, S.J.; WAGHORN, G.C.; CLARK, D.A.; WOODWARD, S.L. Impact of monensin on methane production and performance of cows fed forage diets. In: NEW ZEALAND SOCIETY OF ANIMAL PRODUCTION, 2005, Mosgiel. Proceedings... Mosgiel: New Zealand Society of Animal Production, 2005. p.362-366.
  • VEUM, T.L. Phosphorus and Calcium nutrition and metabolism. In: VITTI, D.M.S.S.; KEBREAB, E. Phosphorus and Calcium Utilization and Requirements in Farm Animals. Wallingford: CAB International, 2010. p.94-111.
  • WAGHORN, G.C.; CLARK, H.; TAUFA, V.; CAVANAGH, A. Monensin controlled release capsules for improved production and mitigating methane in dairy cows fed pasture. NEW ZEALAND SOCIETY OF ANIMAL PRODUCTION, 2007, Mosgiel. Proceedings... Mosgiel: New Zealand Society of Animal Production, 2007. p.266-271.
  • WANG, J.; BURKEN, J. G.; ZHANG, X.; SURAMPALLI, R. Engineered struvite precipitation: impacts of component-ion molar ratios and pH. Journal of Environmental Engineering, v.131, n.10, p.1433-1440, 2005.
  • WEISS, W.P.; WILLET, L.B.; ST-PIERRE, N.R.; BORGER, D.C., MCKELVEY, T.R.; WYATT, D.J. Varying forage type, metabolizable protein concentration, and carbohydrate source affects manure excretion, manure ammonia, and nitrogen metabolism of dairy cows. Journal of Dairy Science, v.92, n.11, p.5607-5619, 2009.
  • WHITELAW, F.G.; EADIE, J.M.; BRUCE, L.A.; SHAND, W.J. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. British Journal of Nutrition, v.52, n.2, p.261-275, 1984.
  • WHITFORD, M.F.; TEATHER, R.M.; FORSTER, R. Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiology, v.1, p.1-5, 2001.
  • WRIGHT, A.D.; AUCKLAND, C.H.; LYNN, D.H. Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Applied and Environmental Microbiology, v.73, n.13, p.4206-4210, 2007.
  • WRIGHT, A.D.; KENNEDY, P.; O'NEILL, C.J.; TOOVEY, A.F.; POPOVSKI, S.; REA, S.M.; PIMM, C.L.; KLEIN, L. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine, v.22, n.29, p.3976-3985, 2004.
  • WU, Z; PALMQUIST, D.L. Synthesis and biohydrogenation of fatty acids by ruminal microorganisms in vitro. Journal of Dairy Science, v.74, n.9, p.3035-3046, 1991.

Publication Dates

  • Publication in this collection
    28 Mar 2013
  • Date of issue
    Dec 2012

History

  • Received
    10 Nov 2011
  • Accepted
    15 May 2012
UFBA - Universidade Federal da Bahia Avenida Adhemar de Barros nº 500 - Ondina , CEP 41170-110 Salvador-BA Brasil, Tel. 55 71 32836725, Fax. 55 71 32836718 - Salvador - BA - Brazil
E-mail: rbspa@ufba.br