SciELO - Scientific Electronic Library Online

 
vol.16 issue2Population dynamics of Prochilodus nigricans (Characiformes: Prochilodontidae) in the Putumayo RiverExternal morphology, postcranial and appendicular osteology of three southwestern Atlantic flatfishes ( Paralichthys , Paralichthyidae), and comparisons with other congeneric species author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Neotropical Ichthyology

Print version ISSN 1679-6225On-line version ISSN 1982-0224

Neotrop. ichthyol. vol.16 no.2 Maringá  2018  Epub July 16, 2018

http://dx.doi.org/10.1590/1982-0224-20170150 

Original article

Fish diversity in the cascade of reservoirs along the Paranapanema River, southeast Brazil

Fernando Mayer Pelicice1 
http://orcid.org/0000-0002-9700-1194

Valter M. Azevedo-Santos2 

André Luiz Henríques Esguícero3 

Angelo Antonio Agostinho4 

Marlene Sofia Arcifa3 

1Núcleo de Estudos Ambientais, Universidade Federal do Tocantins, 77500-000 Porto Nacional, TO, Brazil. fmpelicice@gmail.com, https://orcid.org/0000-0002-9700-1194 (corresponding author)

2Departamento de Zoologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, 18618-970 Botucatu, SP, Brazil. valter.ecologia@gmail.com

3Departamento de Biologia, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil. (ALHE) andre.esguicero@gmail.com, (MSA) marcifa@usp.br

4Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil. agostinhoaa@gmail.com


ABSTRACT

The Paranapanema River is a major tributary of the upper Paraná river basin. Eleven hydropower dams regulate its main course, but no study has investigated fish diversity in these impoundments at the basin-scale. The present study investigated spatial patterns of richness, composition, and abundance of native (non-migratory and migratory) and non-native fishes in the cascade of reservoirs along the Paranapanema River. The study is based on data collected from 34 independent studies conducted in nine reservoirs (47 samples). The compilation recorded 161 species, being 111 native (14 migratory) and 50 non-native. Total richness ranged between 56 and 112 species/reservoir, with a mean of 72 (49.9 non-migratory, 8.1 migratory and 14 non-native). The number of non-migratory species showed no spatial trend along the cascade system, but migratory and non-native richness increased toward downstream reaches. We also observed spatial variation in species composition along the cascade system, but some non-native fishes were widely distributed. Migratory fishes showed low relative abundance (usually < 10%), while non-native species were common and more abundant, especially in reservoirs downstream. Our results revealed a high diversity of fishes in the cascade of impoundments, but indicated that migratory fishes are rare, while non-native species are common or dominant.

Keywords: Dam; Fish fauna; Longitudinal; Migratory fish; Non-native

RESUMO

O rio Paranapanema é um dos principais afluentes da bacia do alto rio Paraná. Onze hidrelétricas regulam o seu canal principal, contudo, não existe estudo, em escala de bacia, que tenha investigado a diversidade de peixes nos represamentos. O presente estudo investigou padrões espaciais de riqueza, composição e abundância de peixes nativos (não-migradores e migradores) e não-nativos na cascata de reservatórios do rio Paranapanema. O estudo se baseou em dados coletados por 34 estudos independentes conduzidos em nove reservatórios (47 amostras). Registramos 161 espécies, sendo 111 nativas (14 migradoras) e 50 não-nativas. A riqueza total variou entre 56 e 112 espécies/reservatório, com média de 72 (49,9 nativas, 8,1 migradoras e 14 não-nativas). O número de espécies não-migradoras não apresentou padrão de variação ao longo do sistema em cascata, mas a riqueza de migradores e peixes não-nativos aumentou em direção aos trechos de jusante. A composição de espécies variou ao longo do gradiente longitudinal, porém algumas espécies não-nativas apresentaram ampla distribuição. Espécies migradoras apresentaram baixa abundância relativa (usualmente < 10%), enquanto que as não-nativas foram comuns e abundantes, especialmente em reservatórios de jusante. Os resultados revelaram alta diversidade de peixes na cascata de reservatórios, mas indicaram que peixes migradores são raros, enquanto que espécies não-nativas são comuns ou dominantes.

Palavras-chave: Barragem; Ictiofauna; Longitudinal; Não-nativo; Peixes migradores

Introduction

Hydropower dams affect the functioning of main rivers in South America (Agostinho et al., 2016), resulting in a number of negative impacts on biodiversity, especially fishes (Pringle et al., 2000; Agostinho et al., 2007a). Dams block migratory routes, preventing the completion of life cycles (Godinho, Kynard, 2008; Pelicice, Agostinho, 2008); they also cause profound changes in river hydrology and physical/chemical processes that are key to the functioning of fluvial ecosystems (Poff et al., 1997). As a result, the structure of fish assemblages in impounded areas experience strong shifts. The diversity of migratory and rheophilic fishes decline (Petrere Jr., 1996; Hoeinghaus et al., 2009; Petesse, Petrere Jr., 2012; Santos et al., 2017), while opportunistic (lentic-adapted) and non-native species, benefited by the impoundment, spread and dominate assemblages (Pelicice, Agostinho, 2009; Espínola et al., 2010; Britton, Orsi, 2012; Vitule et al., 2012).

The upper Paraná river basin is a special case. This basin is severely regulated by hundreds of large and small dams, which cover almost half of the impounded area in Brazil (Agostinho et al., 2007a). In addition, the main course of all major tributaries (i.e., Paranaíba, Grande, Tietê, Paranapanema) is regulated by cascades of large dams (Agostinho et al., 2016). For example, eleven hydropower dams regulate the main course of the Paranapanema River, creating a cascade of impoundments along the entire river system. Studies that investigated fish diversity in these reservoirs (e.g., Barrella, Petrere Jr., 2003; Hoffmann et al., 2005; Duke Energy, 2008; Orsi, Britton, 2014; Santos et al., 2017; Garcia et al., 2018) indicated that assemblages are composed primarily of small-sized sedentary species, in addition to several non-native fishes. These studies, however, focused on specific impoundments; no study has investigated the whole cascade system, in order to provide a more complete picture about taxonomic diversity and abundance patterns. It is poorly known, for example, whether assemblage structure is homogenized among reservoirs (e.g., Petesse, Petrere Jr., 2012) or contingent to each impoundment. This information is important to guide management and conservation plans, since the Paranapanema basin is severely disturbed by different human activities (e.g., dams, agriculture, urbanization, aquaculture), demanding specific actions to preserve fish diversity and fishing stocks.

In this sense, this study gathered the available information to provide a comprehensive overview of fish diversity in the cascade of reservoirs along the Paranapanema River. Our main objective was to reveal the structure of fish assemblages in these impoundments, investigating spatial patterns of species richness, composition and abundance of native (non-migratory and migratory) and non-native fishes. In particular, we predict that non-migratory and non-native fishes dominate impoundments in terms of species richness and abundance, as evidenced by previous studies (e.g., Barrella, Petrere Jr., 2003; Petesse, Petrere Jr., 2012; Agostinho et al., 2016). We also expected a trend of increasing species richness, together with changes in composition, along the cascade - a common pattern in large river systems (e.g., Oberdorff et al., 1993; Araújo et al., 2009). Finally, we predict that migratory species are rare (abundance and richness) in impoundments, especially in segments where dams are close to each other (middle/upper reaches) and critical habitats are limited or lacking.

Material and Methods

Study area. The Paranapanema River is a main tributary of the upper Paraná river basin. Its sources are located in São Paulo State, and the river runs west ca. 900 km, mostly along the border between São Paulo and Paraná States, to join the Paraná River downstream. Dozens of hydropower dams were built in the basin during the 20th century. Eleven large dams regulate the main channel (Fig. 1), affecting the upper, middle and lower reaches of the basin. The first large impoundment date back to 1932, but most dams were constructed after 1970 (Tab. 1). There are marked variations in the size of reservoirs; the largest are located in upper and lower reaches (Tab. 1). Fish passages (ladders) were installed in five dams, namely Canoas I, Canoas II, Ourinhos, Paranapanema and Piraju (Arcifa, Esguícero, 2012; Britto, Carvalho, 2013).

Fig. 1 The cascade of dams (red squares) along the Paranapanema River. Dams: 1 = Jurumirim; 2 = Piraju; 3 = Paranapanema; 4 = Chavantes; 5 = Ourinhos; 6 = Salto Grande; 7 = Canoas II; 8 = Canoas I; 9 = Capivara; 10 = Taquaruçu; 11 = Rosana. States: MS = Mato Grosso do Sul; PR = Paraná; SP = São Paulo. 

Tab. 1 Hydroelectric dams along the Paranapanema River. Information about dams: date of construction, power installed (MW), dam height (m), distance from the mouth (km), presence of fishway. Information about reservoirs: area (km2), volume (x 106 m3), residence time (average days), maximum depth (m) and length (km). Source: Agostinho et al. (2007a); Duke Energy (2008); Pelicice et al. (2015a); websites of hydropower companies. “-” = unavailable information. Basin subdivision in upper, middle and lower reaches followed the Sistema Integrado de Gerenciamento de Recursos Hídricos do Estado de São Paulo (Governo do Estado de São Paulo, 2018). 

Reservoir Sequence Reach Dam Reservoir
Date Power Height Distance Fishway Area Volume Residence Depth Length
Jurumirim 1 Upper 1962 98 35 527 546 7900 334 40 90
Piraju 2 Upper 2002 80 38 496 ladder 12.8 105 - - 22
Paranapanema 3 Upper 1932 31 16 487 ladder 1.5 - - - 9
Chavantes 4 Upper 1970 414 89 439 400 8795 353 78 40
Ourinhos 5 Middle 2005 33 - 422 ladder 5 20.8 1 9 6
Salto Grande 6 Middle 1958 74 25 388 12 44.2 1.4 9.2 15
Canoas II 7 Middle 1998 72 25 354 ladder 22.5 140 4.4 16.5 30
Canoas I 8 Middle 1998 81 29 320 ladder 30.8 207 6 26 30
Capivara 9 Middle 1975 619 59 212 576 10540 126.8 52.5 110
Taquaruçu 10 Lower 1992 526 61 134 105.5 672.5 7.9 26.5 60
Rosana 11 Lower 1986 353 30 25 220 1920 18.6 26 90

Data collection. We gathered data on fish diversity (species richness, composition and abundance) from studies conducted in the basin (Tab. 2). We selected only studies conducted in the impounded area (i.e., lentic and semi-lentic habitats) and adjacent environments directly affected by the impoundment (i.e., upstream stretches, tributaries, lateral lakes, and fish passage facilities). We excluded studies or data collected in environments not affect by the impoundment (i.e., free-flowing streams and rivers), in addition to sites downstream from the dam. We searched for studies in different databases (Web of Science, Scopus, SciELO and Google), private libraries, and performed cross-reference searches. We performed exhaustive searches, and used different keywords in databases (e.g., fish, ichthyofauna, diversity, Paranapanema, Paraná). The survey collected published references (scientific journals and book chapters, 78%) and unpublished material (theses, reports and databases, 22%) (Tab. 2).

Tab. 2 Samples collected from 34 studies that investigated fish diversity in the cascade of reservoirs along the Paranapanema River. For each sample we provide the sampling period, reservoir age, target environment (FL = fish ladder; LG = lateral lagoon; RS = reservoir; RV = river; TB = tributary), sampling gears (CN = cast net; FS = artisanal fishery; GN = gill nets; PL = plankton net; OB = observation; SN = seine; SV = sieve; TP = trap), abundance data (x = available), and data source. 

Samples Reservoir Period Age Environment Gear Abundance Source
1 Jurumirim 1994-1995 32-33 RS GN X Barrella, Petrere Jr. (2003)
2 Jurumirim 1995-1996 33-34 LG, RS GN, SV X Carvalho et al. (1998)
3 Jurumirim 1996-1997 34-35 LG, RS, TB GN Carvalho, Silva (1999)
4 Jurumirim 1998-1999 36-37 LG SN, SV X Carvalho et al. (2005)
5 Jurumirim 2005-2006 43-44 LG, RS, TB FS Novaes, Carvalho (2009)
6 Jurumirim 2005-2006 43-44 LG, RS, TB FS Novaes, Carvalho (2013)
7 Jurumirim 1991 29 RS, TB GN Carvalho et al. (1991) apud Kurchevski, Carvalho (2014)
8 Jurumirim 2003 41 LG, RS, RV GN, SN, SV Carvalho et al. (2003) apud Kurchevski, Carvalho (2014)
9 Jurumirim 2007 45 RS GN Zanatta (2007) apud Kurchevski, Carvalho (2014)
10 Jurumirim 2012 50 LG, RS, RV GN, SN, SV X Kurchevski (2012) apud Kurchevski, Carvalho (2014)
11 Chavantes 2001 30 RS GN X Unpublished data
12 Chavantes 2005-2006 35-36 RS GN, SN, SV X Magnoni (2009)
13 Chavantes 2010-2011 40-41 RS GN X Caetano et al. (2011)
14 Ourinhos 2006-2009 1-4 LG, RS, TB CN, GN, SN, SV X CBA (2009)
15 Salto Grande 2001 43 RS GN X Unpublished data
16 Salto Grande 1992-1993 34-35 RS, RV GN Dias, Garavello (1998)
17 Salto Grande 1993-1995 35-37 RS, RV GN Dias (2003)
18 Salto Grande 2005-2006 47-48 LG, RS GN, SN, SV X Brandão et al. (2009)
19 Salto Grande 2005-2006 47-48 LG GN Vianna (2008)
20 Canoas II 2001 3 RS GN X Unpublished data
21 Canoas II 2000-2001 2-3 RS, LG, FL SN Britto, Sirol (2007)
22 Canoas II 2000-2006 2-8 RS, LG, FL SN, SV X Britto (2009)
23 Canoas II 2001-2002 2-3 RS, LG, FL SN X Britto, Carvalho (2013)
24 Canoas I 2001 3 RS GN X Unpublished data
25 Canoas I 2000-2001 2-3 RS, LG, FL SN Britto, Sirol (2007)
26 Canoas I 2000-2006 2-8 RS, LG, FL SN, SV X Britto (2009)
27 Canoas I 2001-2002 2-3 RS, LG, FL SN X Britto, Carvalho (2013)
28 Capivara 2001 26 RS GN X Unpublished data
29 Capivara 1992-1993 17-18 TB GN X Bennemann et al. (2000)
30 Capivara 2001-2002 26-27 TB, RS GN X Bennemann et al. (2013)
31 Capivara 1993-1995 17-19 RS GN Dias (2003)
32 Capivara 1994-1995 18-19 RS GN X Barrella, Petrere Jr. (2003)
33 Capivara 2001-2002 26-27 RS CN, GN, SN, SV X Hoffmann et al. (2005)
34 Capivara 2001-2002 26-27 TB CN, GN X Shibatta et al. (2007)
35 Capivara 2003-2004 28-29 TB GN Vianna, Nogueira (2008)
36 Capivara 1990-1994 15-19 RS GN Orsi, Britton (2014)
37 Capivara 2001-2010 26-35 RS GN Orsi, Britton (2014)
38 Taquaruçu 2001 9 RS GN X Unpublished data
39 Taquaruçu 1993-2000 1-8 RS GN X Britto, Carvalho (2006)
40 Rosana 2001 15 RS GN X Unpublished data
41 Rosana 1994-1995 8-9 RS GN X Barrella, Petrere Jr. (2003)
42 Rosana 1997-1998 11-12 TB GN X Abilhôa, Bastos (2005)
43 Rosana 2000-2001 14-15 RS SN, OB X Casatti et al. (2003)
44 Rosana 2002 16 RS, RV, TB SN, PL X Kipper et al. (2011)
45 Rosana 2003 17 RS, TB TP X Pelicice et al. (2005)
46 Rosana 2004-2005 18-19 LG SN X Ferrareze, Nogueira (2011)
47 Rosana 2005-2007 19-21 RS SN, TP X Pelicice, Agostinho (2009); Pelicice et al. (2015b)

In total, we gathered 34 independent studies that investigated fish diversity in nine reservoirs, between 1991 and 2012 (Tab. 2). Some studies investigated more than one reservoir, so our sample size totaled 47 samples. Sampling effort was distributed heterogeneously: Jurumirim, Salto Grande, Capivara, and Rosana received more effort, while Ourinhos and Taquaruçu were less investigated. We found no study conducted in Piraju and Paranapanema reservoirs. Fish sampling employed different gears, but gill nets and seines prevailed (Tab. 2). Most samples (77%) were collected at least 10 years after the construction of the impoundment. It means that fish assemblages have responded to reservoir conditions and community structure have shifted to another regime and stability (Agostinho et al., 2007a). Our study, therefore, focus on reservoir fish assemblages.

We obtained species lists from each sample, which were organized to build a “sample x species” matrix. Each sample was considered an independent unit (Tab. 2), and we only considered taxa identified to the species level; those reported as “sp.” or “spp.” were discarded. Species names and taxonomic classification were carefully checked and, when necessary, updated and corrected following Froese, Pauly (2016), Eschmeyer et al. (2017), Eschmeyer, Fong (2017) and recent literature; updates are shown on Tab. S1. We then assigned species as native (non-migratory or long distance migratory) and non-native. We used pertinent literature to assign species as long distance migratory, i.e., those that migrate more than 100 km (sensuAgostinho et al., 2003). Equally, we followed scientific literature to assign species as non-native, i.e., species introduced to the Paranapanema river basin (sensuReis et al., 2003; Graça, Pavanelli, 2007; Julio Jr. et al., 2009; Britton, Orsi, 2012; Garavello et al., 2012; Orsi, Britton, 2014; Ortega et al., 2015; Froese, Pauly, 2016; Garcia et al., 2018). Abundance data was recorded whenever available (Tab. 2), and used to calculate species relative abundances (%).

Data analysis. Analyses focused on three groups: (i) native non-migratory species (NT); (ii) native long-distance migratory species (LDM); and (iii) non-native species (NNS). All analyses considered these three groups separately.

To investigate total taxonomic richness in the impoundments, we calculated species accumulation curves based on sampling effort (n = 47). Sample order in the original matrix (sample x species) was randomized 500 times, building expected curves for native (NT + LDM) and non-native species (NNS). We also calculated three non-parametric estimators to estimate total richness: Chao-1, ICE (Incidence-based Coverage Estimator), and Jackknife. These analyses were conducted in the software EstiMateS 5.0 (Colwell, 2006).

To investigate spatial variation in species richness and composition, we pooled the 47 samples within each reservoir to build a “reservoir x species” matrix. We then calculated total richness per reservoir for each group (NT, LDM and NNS). To investigate spatial variations in species composition, we used Non-Metric Multidimensional Scaling (NMDS) based on Jaccard distance (presence/absence). We conducted three NMDS, one for each group. These analyses were carried out in the software Past 1.75b (Hammer et al., 2001).

We also investigated trends in abundance. Twenty-two studies (Tab. 2) provided abundance data for all species in the assemblage (number, density or capture per effort); we used these data to calculate the relative abundance (%) of each species, generating an abundance-based “sample x species” matrix (32 samples). We used this matrix to investigate spatial variation in the relative abundance of LDM and NNS in assemblages, by plotting samples against reservoirs (scatterplot). We also calculated the range of relative abundance (minimum-maximum) for each species along the cascade system.

Results

We recorded 161 fish species in the cascade of reservoirs along the Paranapanema River, being 111 native and 50 non-native to the basin (Tab. 3). Most species belonged to the order Characiformes, followed by Siluriformes and Cichliformes.

Tab. 3 Fish species recorded in the cascade of reservoirs along the Paranapanema River. LDM = long distance migratory; NNS = non-native. Taxonomic classification followed Eschmeyer, Fong (2017). 

Species LDM NNS
MYLIOBATIFORMES
Potamotrygonidae
Potamotrygon cf. motoro (Müller & Henle, 1841) X
CYPRINIFORMES
Cyprinidae
Cyprinus carpio Linnaeus, 1758 X
CHARACIFORMES
Crenuchidae
Characidium fasciatum Reinhardt, 1867
Characidium zebra Eigenmann, 1909
Erythrinidae
Hoplias intermedius (Günther, 1864) X
Hoplias lacerdae Miranda Ribeiro, 1908 X
Hoplias malabaricus (Bloch, 1794)
Parodontidae
Apareiodon affinis (Steindachner, 1879)
Apareiodon ibitiensis Amaral Campos, 1944
Apareiodon piracicabae (Eigenmann, 1907)
Parodon nasus Kner, 1859
Cynodontidae
Rhaphiodon vulpinus Spix & Agassiz, 1829 X
Serrasalmidae
Metynnis lippincottianus Cope, 1870 X
Metynnis mola Eigenmann & Kennedy, 1903
Myloplus levis (Eigenmann & McAtee, 1907)
Myloplus tiete (Eigenmann & Norris, 1900)
Piaractus mesopotamicus (Holmberg, 1887) X
Serrasalmus maculatus Kner, 1858
Serrasalmus marginatus Valenciennes, 1837 X
Anostomidae
Leporellus pictus (Kner, 1858)
Leporellus vittatus (Valenciennes, 1850)
Leporinus amblyrhynchus Garavello & Britski, 1987
Leporinus friderici (Bloch, 1794)
Leporinus lacustris Amaral Campos, 1945
Leporinus octofasciatus Steindachner, 1915
Leporinus paranensis Garavello & Britski, 1987
Leporinus striatus Kner, 1858
Megaleporinus elongatus (Valenciennes, 1850) X
Megaleporinus macrocephalus (Garavello & Britski, 1988) X
Megaleporinus obtusidens (Valenciennes, 1837) X
Schizodon altoparanae Garavello & Britski, 1990
Schizodon borellii (Boulenger, 1900) X
Schizodon intermedius Garavello & Britski, 1990
Schizodon nasutus Kner, 1858
Curimatidae
Cyphocharax modestus (Fernández-Yépez, 1948)
Cyphocharax nagelii (Steindachner, 1881)
Steindachnerina brevipinna (Eigenmann & Eigenmann, 1889) X
Steindachnerina insculpta (Fernández-Yépez, 1948)
Prochilodontidae
Prochilodus lineatus (Valenciennes, 1837) X
Lebiasinidae
Pyrrhulina australis Eigenmann & Kennedy, 1903
Triportheidae
Triportheus angulatus (Spix & Agassiz, 1829) X
Triportheus nematurus (Kner, 1858) X
Bryconidae
Brycon nattereri Günther, 1864
Brycon orbignyanus (Valenciennes, 1850) X
Salminus brasiliensis (Cuvier, 1816) X
Salminus hilarii Valenciennes, 1850 X
Acestrorhynchidae
Acestrorhynchus lacustris (Lütken, 1875)
Characidae
Aphyocharax anisitsi Eigenmann & Kennedy, 1903
Aphyocharax dentatus Eigenmann & Kennedy, 1903 X
Astyanax bockmanni Vari & Castro, 2007
Astyanax fasciatus (Cuvier, 1819)
Astyanax lacustris (Lütken, 1875)
Astyanax paranae Eigenmann, 1914
Bryconamericus iheringii (Boulenger, 1887)
‘Cheirodon’ stenodon Eigenmann, 1915
Piabarchus stramineus (Eigenmann, 1908)
Galeocharax gulo (Cope, 1870)
Hemigrammus marginatus Ellis, 1911
Hyphessobrycon anisitsi (Eigenmann, 1907)
Hyphessobrycon bifasciatus Ellis, 1911
Hyphessobrycon eques (Steindachner, 1882) X
Moenkhausia intermedia Eigenmann, 1908
Odontostilbe weitzmani Chuctaya, Bührnheim & Malabarba, 2018 X
Oligosarcus paranensis Menezes & Géry, 1983
Oligosarcus pintoi Amaral Campos, 1945
Piabina argentea Reinhardt, 1867
Roeboides descalvadensis Fowler, 1932 X
Planaltina britskii Menezes, Weitzman & Burns, 2003
Serrapinnus heterodon (Eigenmann, 1915)
Serrapinnus notomelas (Eigenmann, 1915)
GYMNOTIFORMES
Gymnotidae
Gymnotus cf. carapo Linnaeus, 1758
Gymnotus inaequilabiatus (Valenciennes, 1839) X
Gymnotus sylvius Albert & Fernandes-Matioli, 1999
Rhamphichthyidae
Rhamphichthys hahni (Meinken, 1937) X
Hypopomidae
Brachyhypopomus gauderio Giora & Malabarba, 2009 X
Sternopygidae
Eigenmannia cf. trilineata López & Castello, 1966
Eigenmannia virescens (Valenciennes, 1836)
Sternopygus macrurus (Bloch & Schneider, 1801)
Apteronotidae
Apteronotus cf. caudimaculosus de Santana, 2003 X
Apteronotus brasiliensis (Reinhardt, 1852)
Apteronotus ellisi (Alonso de Arámburu, 1957)
SILURIFORMES
Cetopsidae
Cetopsis gobioides Kner, 1858
Auchenipteridae
Ageneiosus militaris Valenciennes, 1836
Auchenipterus osteomystax (Miranda Ribeiro, 1918) X
Tatia intermedia (Steindachner, 1877) X
Tatia neivai (Ihering, 1930)
Trachelyopterus galeatus (Linnaeus, 1766) X
Doradidae
Ossancora eigenmanni (Boulenger, 1895) X
Pterodoras granulosus (Valenciennes, 1821) X X
Rhinodoras dorbignyi (Kner, 1855)
Trachydoras paraguayensis (Eigenmann & Ward, 1907) X
Heptapteridae
Imparfinis schubarti (Gomes, 1956)
Phenacorhamdia tenebrosa (Schubart, 1964)
Pimelodella avanhandavae Eigenmann, 1917 X
Pimelodella gracilis (Valenciennes, 1835)
Pimelodella meeki Eigenmann, 1910
Rhamdia cf. quelen (Quoy & Gaimard, 1824)
Pimelodidae
Hypophthalmus edentatus Spix & Agassiz, 1829 X
Iheringichthys labrosus (Lütken, 1874)
Megalonema platanum (Günther, 1880)
Pimelodus absconditus Azpelicueta, 1995
Pimelodus maculatus Lacepède, 1803 X
Pimelodus microstoma Steindachner, 1877
Pimelodus ornatus Kner, 1858 X
Pimelodus paranaensis Britski & Langeani, 1988
Pinirampus pirinampu (Spix & Agassiz, 1829) X
Pseudoplatystoma corruscans (Spix & Agassiz, 1829) X
Pseudoplatystoma fasciatum (Linnaeus, 1766) X X
Sorubim lima (Bloch & Schneider, 1801) X X
Steindachneridion scriptum (Miranda-Ribeiro, 1918) X
Zungaro jahu (Ihering, 1898) X
Pseudopimelodidae
Pseudopimelodus mangurus (Valenciennes, 1835)
Clariidae
Clarias gariepinus (Burchell, 1822) X
Trichomycteridae
Trichomycterus diabolus Bockmann, Casatti & de Pinna, 2004
Callichthyidae
Callichthys callichthys (Linnaeus, 1758)
Corydoras aeneus (Gill, 1858)
Corydoras ehrhardti Steindachner, 1910
Corydoras paleatus (Jenyns, 1842) X
Hoplosternum littorale (Hancock, 1828)
Loricariidae
Hypostomus albopunctatus (Regan, 1908)
Hypostomus ancistroides (Ihering, 1911)
Hypostomus auroguttatus Kner, 1854 X
Hypostomus hermanni (Ihering, 1905)
Hypostomus iheringi (Regan, 1908)
Hypostomus margaritifer (Regan, 1908)
Hypostomus multidens Jerep, Shibatta, Zawadzki, 2007
Hypostomus myersi (Gosline, 1947) X
Hypostomus nigromaculatus (Schubart, 1964)
Hypostomus paulinus (Ihering, 1905)
Hypostomus regani (Ihering, 1905)
Hypostomus roseopunctatus Reis, Weber & Malabarba, 1990 X
Hypostomus strigaticeps (Regan, 1908)
Hypostomus ternetzi (Boulenger, 1895) X
Hypostomus tietensis (Ihering, 1905)
Hypostomus topavae (Godoy, 1969)
Hypostomus variostictus (Miranda Ribeiro, 1912) X
Loricaria simillima Regan, 1904
Loricariichthys labialis (Boulenger, 1895) X
Loricariichthys platymetopon Isbrücker & Nijssen, 1979 X
Megalancistrus parananus (Peters, 1881)
Paraloricaria vetula (Valenciennes, 1835) X
Proloricaria prolixa (Isbrücker & Nijssen, 1978)
Pterygoplichthys ambrosettii (Holmberg, 1893) X
Rhinelepis aspera Spix & Agassiz 1829 X
SYNBRANCHIFORMES
Synbranchidae
Synbranchus cf. marmoratus Bloch, 1795
PLEURONECTIFORMES
Achiridae
Catathyridium jenynsii (Günther, 1862) X
CICHLIFORMES
Cichlidae
Astronotus crassipinnis Heckel, 1840 X
Cichla kelberi Kullander & Ferreira, 2006 X
Cichla piquiti Kullander & Ferreira, 2006 X
Cichlasoma paranaense Kullander, 1983
Coptodon rendalli (Boulenger, 1897) X
Crenicichla britskii Kullander, 1982
Crenicichla haroldoi Luengo & Britski, 1974
Crenicichla jaguarensis Haseman, 1911
Crenicichla cf. niederleinii (Holmberg, 1891)
Geophagus brasiliensis (Quoy & Gaimard, 1824)
Oreochromis niloticus (Linnaeus, 1758) X
Satanoperca aff. pappaterra (Heckel, 1840) X
CYPRINODONTIFORMES
Poeciliidae
Phalloceros harpagos Lucinda, 2008
Poecilia reticulata Peters, 1859 X
PERCIFORMES
Sciaenidae
Plagioscion squamosissimus (Heckel, 1840) X

Considering only native species (NT + LDM = 111 species), the accumulation curve tended to stabilize (Fig. 2), but non-parametric estimators indicated that total richness is underestimated (Chao-1 = 132.4 ±13.2 SD; ICE = 125.1 ± 0.01; Jackknife-1 = 129.6 ±7.6). Among native species, we recorded 14 long-distance migratory species (Tab. 3). Considering non-native species (NNS = 50), the accumulation curve also tended to stabilize (Fig. 2), and non-parametric estimators confirmed this trend (Chao-1 = 60.1 ±7.2; ICE = 60.5 ±0.01; Jackknife-1 = 63.7 ±3.7). We recorded three non-native migratory species (Tab. 3).

Fig. 2 Species accumulation curves controlled by sampling effort (47 samples). Curves were calculated separately for native and non-native species. 

Reservoirs showed a mean species richness of 72 species (range: 56 to 112). Considering only NT, each reservoir had 49.9 species on average (range: 39 to 80), with no longitudinal trend along the cascade system (Fig. 3). Migratory species were recorded in all reservoirs, with a mean value of 8.1 species/reservoir (range: 3 to 12). However, LDM richness showed a clear longitudinal pattern, with higher values in reservoirs located below Salto Grande dam (Fig. 3). Non-native species were also recorded in all reservoirs, with a mean of 14 NNS per reservoir (range: 8 to 23). Reservoirs located in the lower reach, together with Salto Grande, contained more NNS (Fig. 3).

Fig. 3 Species richness in the cascade of reservoirs along the Paranapanema River, separated as native non-migratory (a), native long-distance migratory (b) and non-native species (c). The sampling period is shown above each bar. Reservoir codes: JU = Jurumirim; CH = Chavantes; OU = Ourinhos; SG = Salto Grande; CA-II = Canoas II; CA-I = Canoas I; CP = Capivara; TA = Taquaruçu; RO = Rosana. 

Non-Metric Multidimensional Scaling (NMDS; stress = 0.14) showed a longitudinal gradient of species composition for NT (Fig. 4a). Jurumirim (first reservoir in the cascade) and Rosana (last in the cascade) were placed in opposing ends along axis 1 (Fig. 4a); some reservoirs located in middle and lower reaches overlapped, indicating similar composition. Many species seemed to be widely distributed in the cascade system, while some were restricted to specific impoundments (Tab. 4). Considering LDM, the NMDS (stress = 0.13) also revealed a longitudinal gradient, but formed two groups: upstream and downstream Salto Grande reservoir (Fig. 4b). The first group was composed of species with wide distribution in the cascade system, while the second group included large-sized species (Tab. 5). Regarding NNS, most reservoirs overlapped in the ordination; because the stress value was higher (= 0.22), the plot was not interpreted. Based on Tab. 6, some NNS were widely distributed in the cascade, but no species was present in all reservoirs. Other NNS were restricted to some reservoir or segment, creating a turnover pattern.

Fig. 4 Non-Metric Multidimensional Scaling (NMDS) showing variation in assemblage composition in the cascade of reservoirs along the Paranapanema River, considering native non-migratory species (a) and native long-distance migratory species (b). The line connecting reservoirs indicates the sequence in the cascade system. Reservoir names (codes) are shown in Fig. 3

Tab. 4 Distribution of non-migratory native species in the cascade of reservoirs along the Paranapanema River (gray = presence), based on all studies (47 samples). Numbers are the relative abundance range (percentage, min-max), based on studies that provided abundance data (32 samples); the most abundant species in the cascade are highlighted in bold. Reservoir names (codes) are shown in Fig. 3

Species JU CH OU SG CA-II CA-I CP TA RO
Leporinus amblyrhynchus 0 - 0.1 0 - 0.5 4.3 0 - 0.1 0 0 - 0.4 0 - 4.3 0 - 0.1 0 - 0.3
Leporinus friderici 0 - 1.3 0 - 0.8 0 0.2 0.3 - 2.5 0.2 - 5.1 0.2 - 1.8 0.2 - 1.7 0 - 1.2
Leporinus octofasciatus 0 - 0.2 0 - 0.3 0.2 0 - 0.1 0 - 1.3 0 - 2.3 0 - 1.1 0 - 0.6 0 - 0.1
Schizodon nasutus 0.1 - 7.7 1.9 - 7.6 2.4 4.2 - 9.8 1.5 - 3.9 0.3 - 6.1 1.2 - 2.8 3.2 - 7.6 0 - 2.0
Astyanax lacustris 0 - 11.5 7.4 - 34.8 4.9 9.4 - 24.9 4.2 - 8.0 2.3 - 7.0 1.4 - 32.2 1.0 - 3.2 0 - 3.1
Galeocharax gulo 0 - 1.8 1.4 - 7.6 2.0 1.3 - 1.7 0 - 3.1 0 - 1.9 0 - 0.7 0 - 0.3 0 - 0.1
Serrasalmus maculatus 2.0 - 10.6 1.1 - 3.6 3.7 4.5 - 5.2 0.9 - 3.7 0.6 - 1.2 0 - 3.6 0.2 - 1.5 0 - 11.1
Cyphocharax modestus 7.4 - 76.9 0 - 0.2 1.6 0 - 1.7 0 - 0.9 0 - 0.1 0 - 0.5 0 - 1.2 0 - 2.1
Steindachnerina insculpta 1.9 - 9.4 0 - 13.6 17.1 0 - 19.2 0 - 0.4 0 - 0.2 0 - 8.1 0 - 8.3 0 - 7.7
Hoplias malabaricus 0.5 - 2.8 0 - 1.1 1.2 0.3 - 1.6 0 - 0.9 0 - 0.8 0.1 - 1.4 0.2 - 1.3 0 - 8.4
Apareiodon affinis 0 - 5.0 0 - 52.5 19.8 2.2 - 3.8 0 - 37.0 0 - 11.1 0 - 30.2 1.3 - 8.0 0 - 8.1
Geophagus brasiliensis 0 - 0.6 0.4 - 1.7 1.8 0.5 - 4.1 0 - 0.2 0 - 0.6 0 - 1.2 0 - 0.2 0 - 3.8
Hypostomus ancistroides 0 - 2.6 0 - 0.1 1.2 0 - 0.5 0 - 0.4 0 - 0.6 0 - 1.8 0.7 - 0.8 0 - 0.6
Iheringichthys labrosus 0 - 0.6 1.1 - 2.8 1.9 6.6 - 35.7 0 - 14.5 0 - 24.4 1.6 - 5.9 5.9 - 9.2 0 - 4.1
Astyanax fasciatus 0.5 - 5.1 0 - 8.1 2.6 0.3 - 4.3 0 - 1.8 0 - 0.4 0 - 7.9 0 - 0.1
Serrapinnus notomelas 0 - 52.6 0 - 0.3 0 0 0 - 21.3 0 - 12.7 0 - 0.9 0 - 9.2
Hypostomus strigaticeps 0 - 0.1 0 - 0.1 5.5 0 - 0.7 0 - 0.2 0 - 0.1
Gymnotus cf. carapo 0 - 0.2 0 - 0.7 0 0 - 0.4 0 - 0.4 0 - 0.4 0 - 0.2 0 - 0.6
Eigenmannia cf. trilineata 0 - 0.1 0 - 0.4 0 0 - 1.7 0 - 0.1 0 - 2.7
Rhamdia cf. quelen 0 - 0.5 0 - 0.1 0.2 0.3 - 0.5 0 - 5.8 0 - 0.3
Piabina argentea 0 - 0.1 0 - 0.3 0 0 0 - 0.3
Hoplosternum littorale 0 - 9.1 0 - 0.7 0.2 0 - 0.8 0 - 0.7
Hypostomus regani 0 - 1.4 0 - 0.5 7.4 0-0.1 0 - 6.6 0 - 1.7 0 - 5.8 0 - 1.1
Characidium zebra 0 0 - 0.1 0 0 - 0.6 0 - 0.2
Synbranchus cf. marmoratus 0 -0.1 0 - 0.1 0 0 - 0.4 0 - 0.1
‘Cheirodon’ stenodon 0 - 48.5 0 - 1.4 0 0 - 0.1
Leporinus striatus 0 - 0.2 0 0 0 0 0 - 0.5 0 - 0.2 0 - 0.1
Piabarchus stramineus 0 - 0;6 0 0 - 0.5 0 - 1.3 0 - 4.0 0 - 0.7 0 - 47.9 0 - 50.0
Eigenmannia virescens 0 - 0.1 1.0 0 0 0 - 0.1 0 - 0.7 0 - 0.9 0 - 0.1
Astyanax bockmanni 0 - 0.2 0.1 0 - 0.2 0 - 0.2 0 - 5.5
Oligosarcus paranensis 0 - 1.4 0.3 0 0 - 1.0
Hypostomus paulinus 0 - 0.2 0.1 0
Hemigrammus marginatus 0 - 0.1 0 0 - 43.9 0 - 72.9 0 - 2.7 0 - 0.1 0 - 54.8
Rhinodoras dorbignyi 0 - 1.4 0 0 0 - 0.4 0 - 0.9 0 - 0.3 0 - 5.6
Gymnotus sylvius 0 - 0.3 0 0 - 0.1
Apareiodon piracicabae 0 - 1.1 0 - 4.1 0 - 0.9 0 - 3.9 0.2 - 0.3 0 - 0.3
Bryconamericus iheringhii 0 - 0.4 0 0 - 0.2
Leporellus vitatus 0 - 0.1 0 - 0.4 0 0 - 0.9 0 - 0.3
Schizodon intermedius 0 - 5.2 0 - 0.1 0 - 0.1 0 - 12.8 0 - 2.1
Acestrorhynchus lacustris 1.6 - 6.5 6.9 6.6 - 17.6 0 - 9.3 0 - 1.7 0 - 9.4 1.7-4.2 0.1 - 4.7
Myloplus tiete 0 - 0.1 0 0 - 0.1 0 0 - 0.1 0 - 0.3 0 - 0.4 0 - 0.1
Crenicichla britskii 0 - 0.7 0.1 0 - 0.6 0 - 0.2 0 - 0.6 0 - 0.7 0 - 0.4 0 - 1.8
Crenicichla cf. niederleinii 0 - 2.8 0.1 0.1 - 0.2 0 - 1.1 0 - 2.1 0 - 1.3 0 - 0.3 0 - 0.1
Megalancistrus parananus 0 - 0.1 0.7 0 0 - 0.4 0 - 0.2 0 - 0.1 0.1 - 0.1 0 - 0.1
Hypostomus maragaritifer 0 - 0.1 2.0 0 - 0.1 0 - 8.2 0 - 1.6 0 - 0.4 0 - 1.4
Proloricaria prolixa 0 - 0.1 0.3 0.8 - 2.0 0 - 1.8 0 - 7.9 0 - 0.5 0 - 0.4
Sternopygus macrurus 0 - 0.3 0 0.2 - 0.6 0 - 0.3 0 - 0.2 0 - 0.4
Cichlasoma paranaense 0 - 0.1 0.2 0 - 0.1 0 - 0.2 0 - 0.9
Crenicichla haroldoi 0 - 2.9 0.2 - 0.2 0 - 0.2 0 - 1.3 0 - 1.2 0 - 1.2 0 - 0.2
Tatia neivai 0 - 0.5 0 - 0.3 0 - 1.3 0 - 0.6 0 - 0.4 0 - 0.1 0 - 0.1
Hypostomus iheringii 0 0 - 0.3 0 - 3.2
Crenicichla jaguarensis 0 - 0.3 0 - 0.1
Astyanax paranae 0 - 0.1 0 - 20.8
Leporinus paranensis 0.1 0 - 0.1 0 0 0 0 - 0.1
Hypostomus hermanni 0 0 0 0
Hypostomus nigromaculatus 0 0 0 - 0.2 0 - 0.1
Pimelodella gracilis 0 0 0 - 0.1
Hypostomus albopunctatus 0.2 0 0 - 1.9
Parodon nasus 0 0 - 1.5
Moenkhausia intermedia 0 - 0.2 0 - 1.8 0 - 1.6 0 - 32.2 0.2 - 2.1 0 - 1.0
Cyphocharax nagelli 0 0 - 0.1 0 - 0.1 0 - 0.2
Pyrrhulina australis 0 0 - 0.3 0
Schizodon altoparanae 0 0 0 - 0.1 0 - 0.1 0 - 0.1
Leporinus lacustris 0 0 - 0.5 0 - 0.1 0 - 7.7
Apteronotus ellisi 0 0 - 0.5 0 - 0.1
Ageneiosus militaris 0 - 0.1 0 - 0.2 0 - 0.6
Hypostomus tietensis 0 0 - 0.3
Callichthys callichthys 0 - 0.5 0
Pimelodella meeki 0 - 0.1 0
Leporellus pictus 0
Hyphessobrycon anisitsi 0 - 6.9
Characidium fasciatum 0 - 0.4
Serrapinnus heterodon 0 - 0.1
Hypostomus multidens 0 - 0.1
Oligosarcus pintoi 0 0 - 5.6
Hyphessobrycon bifasciatus 0
Metynnis mola 0
Phalloceros harpagos 0
Phenacorhamdia tenebrosa 0
Planaltina bristkii 0
Corydoras aeneus 0
Hypostomus topavae 0 - 0.1
Apareiodon ibitiensis 0 0
Apteronotus brasiliensis 0 - 0.2 0 - 0.1
Pimelodus paranensis 0 0 - 0.1
Megalonema platanum 0 - 0.5 0 - 0.1
Pimelodus absconditus 0 - 0.1 0 - 0.9
Aphyocharax anisitsi 0 - 2.0 0 - 5.0
Brycon nattereri 0 - 0.7
Corydoras ehrhardti 0 - 0.3
Cetopsis gobioides 0 - 0.1
Imparfinis schubarti 0 - 0.1
Loricaria simillima 0
Pimelodus microstoma 0 - 1.8
Pseudopimelodus mangurus 0 - 0.2
Trichomycterus diabolus 0 - 0.5
Myloplus levis 0 - 0.1

Tab. 5 Distribution of long-distance migratory species in the cascade of reservoirs along the Paranapanema River (gray = presence), based on all studies (47 samples). Numbers are the relative abundance range (percentage, min-max), based on studies that provided abundance data (32 samples); the most abundant species in the cascade are highlighted in bold. Reservoir names (codes) are shown in Fig. 3

Species JU CH OU SG CA-II CA-I CP TA RO
Megaleporinus obtusidens 0 - 1.3 0 - 0.3 0.1 0 - 0.2 0 - 1.8 0 - 1.2 0.2 - 3.9 0.1 - 0.5 0 - 0.6
Pimelodus maculatus 0 - 7.9 3 - 4.3 2.5 1.5 - 7.5 0 - 13.2 0 - 31.8 0.4 - 5.8 2.4 - 5.0 0 - 2.3
Prochilodus lineatus 0 - 0.8 0 - 0.9 0.1 0 0 - 5.3 0 - 1.6 0 - 6.4 0.3 - 0.9
Salminus hilarii 0 - 0.5 0.1 0 0 0 0 - 0.8 0 - 0.1
Megaleporinus elongatus 0 - 1.1 0 0 - 6.1 0 - 2.5 0 - 2.8 0 - 0.3 0 - 1.0
Piaractus mesopotamicus 0 - 0.1 0 0 0 0 - 0.1
Steindachneridion scriptum 0.1 0 - 0.1 0 0 - 0.3
Rhinelepis aspera 0.4 0 0 - 0.6 0 - 0.1 0 - 0.7 0 - 0.1
Salminus brasiliensis 0 - 0.2 0 - 0.8 0 - 0.2 0 - 0.1 0 - 0.1
Pinirampus pirinampu 0 - 0.9 0 - 1.0 0 - 0.9 0.3 - 0.8 0 - 0.4
Pseudoplatystoma corruscans 0 0 0 - 0.1
Rhaphiodon vulpinus 0 - 1.3 0 - 0.1 0 - 5.1
Zungaro jahu 0 - 0.2
Brycon orbignyanus 0 - 0.08

Tab. 6 Distribution of non-native species in the cascade of reservoirs along the Paranapanema River (gray = presence), based on all studies (47 samples). Numbers are the relative abundance range (percentage, min-max), based on studies that provided abundance data (32 samples); the most abundant species in the cascade are highlighted in bold. Reservoir names (codes) are shown in Fig. 3

Species JU CH OU SG CA-II CA-I CP TA RO
Hyphessobrycon eques 0 - 0.1 0 0 0 - 14.3 0 - 3.6 0 - 3.2 0 - 26.3
Coptodon rendalli 0 - 1.0 0 0 - 0.3 0 - 0.7
Metynnis lippincottianus 0 - 0.3 1.0 - 1.4 0.1 - 0.2 0.1 - 4.3 0 - 3.7 0.1 - 1.1 0 - 8.8
Cichla kelberi 0 - 0.7 0 - 0.8 0.1 0 - 0.4 0 - 5.5 0 - 4.3
Plagioscion squamosissimus 2.9 - 7.6 1.9 1.6 - 1.7 0 - 11.8 0 - 10.0 0 - 9.4 3.3 - 8.7 0 - 37.9
Oreochromis niloticus 0 - 11.4 0 - 0.1 0 - 1.1 0 - 0.1 0 0 - 0.1
Hypostomus auroguttatus 0 - 0.4 0 - 0.3 0 - 0.2 0 - 0.3
Serrasalmus marginatus 0 - 0.1 0 - 0.2 0 - 0.2 0 0.4 - 5.1 0 - 15.5
Triportheus angulatus 0 - 6.5 0 0 0 - 1.7 0 - 0.1
Steindachnerina brevipinna 0 - 1.6 0 - 1.2 0 - 2.1 0 - 0.2 0 - 2.0
Pimelodella avanhandavae 0 - 0.2 0 - 0.1 0 - 0.1
Astronotus crassipinnis 0 0.2 - 0.2 0
Schizodon borelli 0 0 - 0.2 0 - 0.4 0 - 1.8 0.3 - 0.6 0 - 12.0
Odontostilbe weitzmani 0 - 1.3
Hoplias intermedius 0
Hoplias lacerdae 0
Gymnotus inaequilabiatus 0 - 0.4
Triportheus nematurus 0 - 0.1 0 - 0.6
Cyprinus carpio 0 0
Hypostomus ternetzi 0 - 0.2 0.1
Cichla piquiti 0 - 0.2 0 - 0.1
Poecilia reticulata 0
Hypostomus roseopunctatus 0
Brachyhypopomus gauderio 0
Megaleporinus macrocephalus 0 - 0.1 0 0
Aphyocharax dentatus 0 - 0.9 0 - 0.1
Pseudoplatystoma fasciatum 0
Apteronotus cf. caudimaculosus 0 0 - 0.1
Sorubim lima 0 0 - 0.1 0 - 0.1
Tatia intermedia 0 - 0.1
Corydoras paleatus 0 - 0.1
Hypostomus myersi 0 - 0.1
Hypostomus variostictus 0 - 0.1
Pterygoplichthys ambrosetti
Loricariichthys platymetopon 0 - 11.6 0.6 - 13.7 0 - 13.8
Clarias gariepinnus 0 - 0.1
Roeboides descalvadensis 0.1 - 1.1 0 - 26.6
Rhamphichthys hahni 0 - 0.1 0 - 0.4
Auchenipterus osteomystax 6.2 - 8.8 0 - 9.3
Trachelyopterus galeatus 0.7 - 4.4 0 - 2.2
Pterodoras granulosus 0 - 0.3 0 - 0.3
Trachydoras paraguayensis 0 - 3.7 0 - 0.1
Pimelodus ornatus 0 - 0.1 0 - 0.5
Ossancora eigenmanni 0 - 0.4
Paraloricaria vetula 0 - 12.7
Loricariichthys labialis 0 - 0.1
Hypophthalmus edentatus 0 - 64.7
Catathyridium jenynsii 0 - 1.8
Potamotrygon cf. motoro 0 - 0.1
Satanoperca aff. pappaterra 0 - 7.2

The most abundant species in the cascade system included small native characids (Tab. 4), such as Astyanax lacustris, Schizodon nasutus, Serrasalmus maculatus, Steindachnerina insculpta and Apareiodon affinis, and the catfish Iheringichthys labrosus. Migratory fishes, on the other hand, showed very low abundance in assemblages (Tab. 5), where Pimelodus maculatus was the most abundant and frequent. In almost all samples (88%), LDM summed less than 10% of total abundance (range: 0 to 35.8%), with higher values in Canoas I, Canoas II and Capivara reservoirs (Fig. 5a). Differently, NNS were more abundant and summed more than 10% of total abundance in most samples (range: 0 to 90%) (Fig. 5b). Higher values were recorded in reservoirs located downstream (Capivara, Taquaruçu and Rosana). The most abundant species in the cascade system were Plagioscion squamosissimus and Hyphessobrycon eques, in addition to others abundant in specific reservoirs or stretches, such as Roeboides descalvadensis, Serrasalmus marginatus, Loricariichthys platymetopon and Hypophthalmus edentatus (Tab. 6).

Fig. 5 Relative abundance (%) of long-distance migratory fishes (a) and non-native species (b) in the cascade of reservoirs along the Paranapanema River. Each dot is a sample (n = 32). Reservoir names (codes) are shown in Fig. 3

Discussion

Our study is the first to compile data on fish diversity in the cascade of reservoirs along the Paranapanema River. This compilation, based on studies conducted in the last decades (1990 to 2012), revealed the presence of 161 species, being 111 native and 50 non-native. The accumulation curve indicated that most native species in the reservoirs were recorded, and we estimated total richness to range between 125 and 132 species. Previous estimates indicated 155 fish species in the Paranapanema river basin (Duke Energy, 2008), and 270 to 310 in the upper Paraná river basin (Agostinho et al., 2007b; Langeani et al., 2007). Impoundments in the Paranapanema River, therefore, hold a high number of fish species and contribute significantly to the basin species pool; a number that may increase if other environments are sampled (i.e., downstream segments, streams, free-flowing stretches). We are aware that misidentifications, re-descriptions and taxonomic revisions may add uncertainty to estimates in impoundments, and we followed recent literature to avoid or minimize nomenclatural inconsistencies. Future studies may refine species lists and distribution ranges, including whole-basin monitoring programs, with standardized protocols and multi-gear sampling strategies.

The number of native species varied among reservoirs in the cascade system (range: 45 to 92), but most impoundments had similar values (ca. 50 species). Non-migratory fishes dominated assemblages, confirming our prediction and previous studies (e.g., Agostinho et al., 2007a). These species prevailed in richness, abundance and occurrence, especially small and medium-sized characids, a common pattern in Neotropical reservoirs (Barrella, Petrere Jr., 2003; Luiz et al., 2005; Agostinho et al., 2016). These values are higher than those reported by Agostinho et al. (2007a), which found between 20 and 40 species in Brazilian reservoirs. However, Agostinho et al. (2007a) estimates were based on gillnets, while studies gathered here used different sampling gears. In addition, some reservoirs were sampled multiple times over a considerable period (e.g., Jurumirim, Salto Grande, Capivara, Rosana). We highlight also that impoundments in the Paranapanema River provide relevant habitats for small-sized species, such as submerged trees, aquatic macrophytes and lateral lagoons (e.g., Casatti et al., 2003; Pelicice et al., 2005; Ferrareze, Nogueira, 2011). In particular, three reservoirs (i.e., Ourinhos, Salto Grande and Capivara) were more species rich, but different mechanisms may be involved. Ourinhos (60 species), for example, was evaluated soon after its filling; in this stage, fishes are disoriented and populations are randomly distributed, with weak environmental selection. Previous studies have reported increases in species richness in the first years after river regulation, with declines in subsequent years (Agostinho et al., 2007a). Salto Grande (67 species), on the other hand, is a small and old impoundment sampled with a variety of gears, what may result in surveys that are more complete. In addition, environmental heterogeneity may have played a role, considering that Salto Grande has relevant habitat diversity (Brandão et al., 2009). This mechanism seems to be even more important in Capirava (80 species), which preserves remnant lotic areas and large tributaries (Hoffmann et al., 2005; Pelicice, Agostinho, 2008; Bennemann et al., 2013). The remaining reservoirs showed similar values of species richness (ca. 50 species), although we expected increasing values along the cascade system (e.g., Oberdorff et al., 1993; Araújo et al., 2009; Foubert et al., 2018). The convergence of species richness among impoundments (see also Agostinho et al., 2007a) is probably linked to the loss of fluvial heterogeneity along the main channel, together with the creation of similar and homogeneous habitats (i.e., impoundments). Neotropical fishes are primarily rheophilic, demanding specific habitats and flow conditions to survive and reproduce; few species evolved traits to cope with lentic habitats (Gomes, Miranda, 2001). Declines in species richness is a common pattern in rivers impacted by dams (e.g.,Barrella, Petrere Jr., 2003; Agostinho et al., 2007a; Hoeinghaus et al., 2009; Petesse, Petrere Jr., 2012; Araújo et al., 2013). Long-term studies, in particular, have shown that fish assemblages in impounded areas are substantially different from the structure found in pristine conditions (Mol et al., 2007; Orsi, Britton, 2014; Lima et al., 2016). Future studies, therefore, must improve our understanding about factors that determine species richness in Neotropical reservoirs, as a means of improving predictions about diversity losses in new impoundments.

While most reservoirs were similar in respect to species richness, the composition of native non-migratory fishes changed considerably along the cascade. Some species were widely distributed, but each reservoir tended to have specific composition. Variation in fish composition along longitudinal gradients is a common pattern in large river systems (e.g., Araújo et al., 2009; Foubert et al., 2018), usually in response to spatial and environmental components. Species are deleted/added to local assemblages, creating turnover and/or nestedness patterns along the river corridor. Impoundments, however, add discontinuity to the river continuum (Ward, Stanford, 1983) and provide common habitats irrespective to their position in the basin, usually associated with lentic conditions, shallow shores, vast water column and deep sites. These new environmental conditions select common traits and homogenize fish diversity in functional terms (Santos et al., 2017). In this sense, reservoirs promote similar pressures upon the fish fauna and favor opportunistic or lentic-adapted species from the local species pool, forming simplified versions of the original riverine community. However, species are assembled from different species pools along the cascade system, resulting in divergent species composition among reservoirs. Therefore, even though species richness and functional traits are convergent among impoundments, taxonomical composition is divergent (i.e., beta diversity), explaining the high species richness observed in the cascade system. However, the sequence of impoundments must have changed beta diversity patterns that characterize riverine networks (e.g., Vitorino Jr. et al., 2016), probably increasing the similarity among reservoirs (e.g., Petesse, Petrere Jr., 2012). Data collected prior to river regulation is crucial to understand community assembling processes (e.g., Araújo et al., 2013; Lima et al., 2016), but this type of data is rare in the Paranapanema basin.

As expected, migratory fishes showed low species richness and abundance in the cascade system. Although we recorded the presence of 14 species, especially in lower reaches, the abundance of migratory fishes was very low in all impoundments. The decline/collapse of migratory species is recurrent in regulated rivers (Petrere Jr., 1996; Okada et al., 2005; Godinho, Kynard, 2008; Pelicice, Agostinho, 2008), since these fishes demand different fluvial habitats for feeding and reproducing, migrating over variable distances to complete their life cycle (Pompeu et al., 2012). The cascade of dams along the Paranapanema River prevents long-distance migration and creates environments adverse to migratory fishes (i.e., lentic areas, flow regulation). Pimelodus maculatus was the most important, but it also summed low abundance in most samples. This catfish is usually common in reservoirs of the upper Paraná basin, probably because it is small-sized, migrates over shorter distances and displays opportunistic feeding behavior (Lima-Junior, Gointein, 2004; Paschoalini et al., 2013). Large-sized species, in particular, were recorded only downstream Salto Grande dam. This pattern may be related to biogeographic factors, since waterfalls were present in the area before dam construction, constraining fish movements. However, the position of reservoirs in the cascade must also be considered to explain the distribution of migratory fishes. The upper/middle reaches (between Jurumirim and Canoas I) are the most affected by river regulation, because 8 dams are distributed over 200 km. This sequence of impoundments creates sections where lotic segments are short or absent, with no critical habitat for migratory and rheophilic fishes (e.g., lateral lagoons, backwaters, free-flowing stretches, tributaries). The area with greatest potential to support migratory fish populations is the upper section of the Capivara reservoir, which preserves large tributaries (Hoffmann et al., 2005; Vianna, Nogueira, 2008; Bennemann et al., 2013), especially the Tibagi river (Bennemann et al., 2000; Shibatta et al., 2007). This impoundment showed the highest species richness, including virtually all migratory species of the basin. Early life forms of large-size species have been recorded in the area, indicating the presence of spawning areas and nursery grounds (Orsi et al., 2016). However, the construction of fish ladders at Canoas I and II dams affected the distribution of migratory fishes. Populations that recruited in the area of Capivara passed upstream and remained confined in short sections between Canoas I and Salto Grande dam (Lopes et al., 2007; Pelicice, Agostinho, 2008; Britto, Carvalho, 2013). The greater abundance of migratory species in Canoas I and II indeed suggest that fishes migrated upstream and evaded Capivara reservoir soon after the installation of ladders, as indicated previously (Pelicice, Agostinho, 2008; Britto, Carvalho, 2013). Another region with potential to maintain migratory fishes is the upper section of Rosana reservoir, which has a short lotic stretch with fluvial lagoons. However, Rosana dam is located ca. 25 km from the confluence with the Paraná river; this dam blocked upward fish movements and isolated the Paranapanema basin (Antonio et al., 2007). In addition, Ferrareze, Nogueira (2011) captured no young migratory fish in lateral lagoons, possibly due to the lack of spawning grounds upstream. Similarly, Kipper et al. (2011) reported very low abundance of larvae across the reservoir, indicating that recruitment is negligible. Finally, large scale monitoring did not record eggs and larvae of important large-size species (e.g., Piaractus mesopotamicus, Prochilodus lineatus) in this reservoir (Orsi et al., 2016). Therefore, migratory fish populations in reservoirs along the Paranapanema River are significantly disturbed, probably with low or no recruitment in many sections and impoundments, particularly in middle and upper reaches. The maintenance of migratory fish populations, much appreciated in riverine and floodplain fisheries, will depend on the preservation of lotic remnants and fluvial habitats (e.g., Vianna, Nogueira, 2008; Suzuki et al., 2013; Barzotto et al., 2015), together with the revision of current management practices (i.e., Pompeu et al., 2012). In this sense, the area affected by Capivara reservoir should receive conservation efforts, particularly to maintain ecosystem functionality in tributaries (e.g., Tibagi, Cinzas).

Another important result is the high number of non-native species in the impoundments (50 species), which accounted for 30.5 % of total richness. This is an impressive high number, confirmed by another recent study that reported 47 non-native species in the basin (Garcia et al., 2018). This scenario is not an exception, considering that the upper Paraná river basin is highly invaded by multiple non-native species (e.g., Britton, Orsi, 2012; Vitule et al., 2012; Orsi, Britton, 2014; Ortega et al., 2015). Our data showed that some species have wide distribution (e.g., P. squamosissimus, H. eques, O. niloticus, S. marginatus, Schizodon borelli, Metynnis lippincottianus, C. kelberi), explaining why most reservoirs were similar in composition. However, many species were restricted to one or a few reservoirs, probably because of sporadic introductions that occurred in specific impoundments. This trend created a compositional turnover along the cascade, increasing the richness of non-native species at the basin level. In general, introductions occur due to different reasons (Ortega et al., 2015; Azevedo-Santos et al., 2015), but aquaculture, fish stocking, sport fishing, aquarium dumping, and the removal of natural barriers probably caused massive fish introductions in the Paranapanema River (Júlio Jr. et al., 2009; Agostinho et al., 2010; Britton, Orsi, 2012; Garcia et al., 2018). These actions caused the release of species with high invasive risk, which are currently widespread (e.g., O. niloticus, Coptodon rendalli, C. kelberi, S. marginatus, P. squamosissimus). It is not possible to confirm that all 50 species are established in these impoundments (i.e., recruiting), but the presence of early life forms collected in different localities (Almeida et al., 2018) indicate that some are reproducing. Furthermore, non-native species were abundant in most samples, summing relevant fraction or dominating local assemblages. Reservoirs located downstream were more invaded (i.e., species richness and abundance), supporting previous studies that reported high invasion rates (Garcia et al., 2018) or strong impacts (Orsi, Britton, 2014; Pelicice, Agostinho, 2009). Jurumirim reservoir was the less invaded and, consequently, has been considered a model for sustainable artisanal fisheries (Novaes, Carvalho, 2013), because fishing activities are based on native species, with higher prices, and may be sustained in the long term. The current scenario in the cascade of impoundments, therefore, demands immediate management actions to control populations (e.g., selective fishing) and to prevent new introductions (e.g., education, inspection), mainly because impoundments are vulnerable to new introductions (e.g., Espinola et al., 2010; Franco et al., 2018). Non-native species impact native biodiversity in multiple ways, causing population declines, extirpation or homogenization, as recorded by studies conducted in the Paraná river basin (e.g., Pelicice, Agostinho, 2009; Vitule et al., 2012; Orsi, Britton, 2014; Daga et al., 2015) and elsewhere (Cucherousset, Olden, 2011; Azevedo-Santos et al., 2017). Equally important is the implementation of long-term monitoring in the cascade system, to perform robust studies about impacts, invasion dynamics (e.g., establishment, invasion) and broad surveys. The difference in total richness between our study and Garcia et al. (2018), for example, suggests that the real number of non-native species is uncertain. Updated surveys are, therefore, crucial to understand biological invasions and minimize negative impacts.

In general, our results confirm trends reported in other regulated rivers (Petrere Jr. 1996; Barrella, Petrere Jr. 2003; Agostinho et al., 2007b; Daga, Gubiani, 2012; Petesse, Petrere Jr., 2012; Agostinho et al., 2016), where the diversity of migratory fishes is low and non-native species are common. The present study cannot infer about demographic trends and long-term dynamics, since our data come from multiple studies that applied different sampling methodologies. However, fish assemblage structure is probably stable in the studied reservoirs, especially because most are old, constructed decades ago. Specific environmental filters created by the impoundment constrain fish assemblages to persist in another state (Agostinho et al., 2016; Santos et al., 2017). In this sense, the current flow regime in the Paranapanema river, ruled by the cascade of dams, is the main force behind ecosystem state and dynamics, determining patterns of diversity and productivity. Conservation plans must consider this scenario to set appropriate management actions, especially because a number of studies have questioned the efficacy of current practices, i.e., fish passages and stocking (Pelicice, Agostinho, 2008; Agostinho et al., 2010; Pelicice et al., 2015a; Lira et al., 2017). Fish passages in Canoas dams, in particular, caused significant impacts on fish populations (Pelicice, Agostinho, 2008; Casimiro et al., 2017), declining the conservation status of migratory fishes. In addition, stocking practices, conducted for decades (Agostinho et al., 2010), contributed to introduce several non-native species (Britton, Orsi, 2012; Ortega et al., 2015; Garcia et al., 2018), but was unable to restore populations of migratory fishes in impoundments. This situation should concern authorities about the conservation of Neotropical fishes in light of severe human disturbances (Pelicice et al., 2017), because rivers are extensively regulated, while the watershed is subjected to extensive agriculture and urban development, with activities that promote land cover changes and use non-native species (e.g., aquaculture). Conservation will depend on measures that preserve fluvial remnants (e.g., tributaries, such as the Tibagi and Cinza rivers), regulate human activities in surrounding areas, curb the introduction of non-native species, and control/eradicate populations already introduced (see Bennemann et al., 2000; Britton, Orsi, 2012; Orsi et al., 2016; Pelicice et al., 2017). We emphasize that native fishes in these impoundments must receive conservation efforts, since they represent a relevant fraction of regional diversity, in addition to sustaining ecosystem services that are valued by artisanal and recreational fisheries.

Acknowledgments

The authors thank their respective institutions. AAA received a CNPq productivity grant, and VMAS received a CAPES scholarship. We are grateful to the Editor and reviewers who provided valuable comments and corrections. We also thank Geovana S. Andrade (UFT) for helping with data organization.

References

Abilhôa V, Bastos LP. Composição e estrutura da ictiofauna da Estação Ecológica do Caiuá, área de influência da UHE de Rosana (rio Paranapanema), sudeste do Brasil. Arq Ciênc Vet Zool UNIPAR. 2005; 8(1):33-9. [ Links ]

Agostinho AA, Gomes LC, Suzuki HI, Júlio HF Jr. Migratory fish from the upper Parana river basin, Brazil. In: Carolsfeld J, Harvey B, Ross C, Baer A, editors. Migratory fishes of South America: biology, fisheries and conservation status. Victoria: World Fisheries Trust, the World Bank and the International Development Research Centre; 2003. p.19-99. [ Links ]

Agostinho AA, Gomes LC, Pelicice FM. Ecologia e Manejo de Recursos Pesqueiros em Reservatórios do Brasil. Maringá: Eduem; 2007a. [ Links ]

Agostinho AA, Pelicice FM, Petry AC, Gomes LC, Júlio HF Júnior. Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquat Ecosyst Health Manag. 2007b; 10(2):174-86. [ Links ]

Agostinho AA, Pelicice FM, Gomes LC, Júlio HF Júnior. Reservoir fish stocking: when one plus one may be less than two. Nat Conservação. 2010; 8(2):103-11. [ Links ]

Agostinho AA, Gomes LC, Santos NCL, Ortega JCG, Pelicice FM. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fish Res. 2016; 173(1):26-36. [ Links ]

Almeida FS, Frantine-Silva W, Lima SC, Garcia DAZ, Orsi ML. DNA barcoding as a useful tool for identifying non-native species of freshwater ichthyoplankton in the neotropics. Hydrobiologia. 2018; 817(1):111-19. [ Links ]

Antonio RR, Agostinho AA, Pelicice FM, Bailly D, Okada EK, Dias JHP. Blockage of migration routes by dam construction: can migratory fish find alternative routes? Neotrop Ichthyol. 2007; 5(2):177-84. Available from: http://dx.doi.org/10.1590/S1679-62252007000200012Links ]

Araújo ES, Marques EE, Freitas IS, Neuberger AL, Fernandes R, Pelicice FM. Changes in distance decay relationships after river regulation: similarity among fish assemblages in a large Amazonian river. Ecol Fresh Fish. 2013; 22(4):543-52. [ Links ]

Araújo FG, Pinto BCT, Teixeira TP. Longitudinal patterns of fish assemblages in a large tropical river in southeastern Brazil: Evaluating environmental influences and some concepts in river ecology. Hydrobiologia . 2009; 618:89-107. [ Links ]

Arcifa MS, Esguícero ALH. The fish fauna in the fish passage at the Ourinhos Dam, Paranapanema River. Neotrop Ichthyol . 2012; 10(4):715-22. Available from: http://dx.doi.org/10.1590/S1679-62252012000400004Links ]

Azevedo-Santos VM, Pelicice FM, Lima-Junior DP, Magalhães ALB, Orsi ML, Vitule JRS, Agostinho AA. How to avoid fish introductions in Brazil: education and information as alternatives. Nat Conservação . 2015; 13(2):123-32. [ Links ]

Azevedo-Santos VM, Vitule JRS, Pelicice FM, García-Berthou E, Simberloff D. Nonnative fish to control Aedes mosquitoes: a controversial, harmful tool. BioScience. 2017; 67(1):84-90. [ Links ]

Barrella W, Petrere M Jr. Fish community alterations due to pollution and damming in Tietê and Paranapanema rivers (Brazil). River Res Appl. 2003; 19(1):59-76. [ Links ]

Barzotto E, Sanches PV, Bialetzki A, Orvati L, Gomes LC. Larvae of migratory fish (Teleostei: Ostariophysi) in the lotic remnant of the Paraná River in Brazil. Zoologia. 2015; 32(4):270-80. [ Links ]

Bennemann ST, Galves W, Capra LG. Recursos alimentares utilizados pelos peixes e estrutura trófica de quatro trechos no reservatório Capivara (Rio Paranapanema). Biota Neotrop. 2013; 11(1):63-71. [ Links ]

Bennemann ST, Shibatta OA, Garavello JC. Peixes do rio Tibagi: uma abordagem ecológica. Londrina: Editora UEL; 2000. [ Links ]

Brandão H, Vidotto-Magnoni AP, Ramos IP, Carvalho ED. Assessment of the ichthyofauna in stretches under the influence of Salto Grande Reservoir (Middle Paranapanema River, SP/PR, Brazil). Acta Limnol Bras. 2009; 21(4):451-63. [ Links ]

Britto SGC. A estratégia reprodutiva dos peixes migradores frente às escadas do complexo Canoas (Rio Paranapanema, Bacia do Alto Paraná). [PhD Thesis]. Botucatu, SP: UNESP; 2009. [ Links ]

Britto SGC, Carvalho ED. Ecological attributes of fish fauna in the Taquaruçu Reservoir, Paranapanema River (Upper Paraná, Brazil): composition and spatial distribution. Acta Limnol Bras . 2006; 18(4):377-88. [ Links ]

Britto SGC, Carvalho ED. Reproductive migration of fish and movement in a series of reservoirs in the Upper Parana River basin, Brazil. Fisheries Manag Ecol. 2013; 20(5):426-33. [ Links ]

Britto SGC, Sirol RN. Transposição de peixes como forma de manejo: as escadas do Complexo Canoas, Médio Rio Paranapanema, Bacia do Alto Paraná. In: Nogueira MG, Henry R, Jorcin A, editors. Manejo de reservatórios: impactos potenciais, ações de manejo e sistemas em cascata. 2ª ed., São Carlos: RiMa Editora; 2007. p.285-304. [ Links ]

Britton JR, Orsi ML. Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin. Rev Fish Biol Fish. 2012; 22(3):555-65. [ Links ]

Caetano DLF, Gatzke EG, Silva LCP, Vieira FEG. Ictiofauna presente no reservatório de Chavantes, município de Ribeirão Claro - PR. In: Anais do XI Congresso de Educação do Norte Pioneiro. 2011. p.361-369. [ Links ]

Carvalho ED, Marcus LR, Foresti F, Silva VFB. Fish assemblage attributes in a small oxbow lake (Upper Paraná River Basin, São Paulo State, Brazil): species composition, diversity and ontogenetic stage. Acta Limnol Bras . 2005; 17(1):45-56. [ Links ]

Carvalho ED, Silva VFB, Fujihara CY, Henry R, Foresti F. Diversity of fish species in the River Paranapanema - Jurumirim Reservoir transition region (São Paulo, Brazil). Ital J Zool. 1998; 65(S1):325-30. [ Links ]

Carvalho ED, Silva VFB. Aspectos ecológicos da ictiofauna e da produção pesqueira do reservatório de Jurumirim (Alto do Paranapanema, SP). In: Henry R, editor. Ecologia de reservatórios: estrutura, funções e aspectos sociais. Botucatu: FUNDIBIO, FAPESP; 1999. p.769-800. [ Links ]

Casatti L, Mendes HF, Ferreira KM. Aquatic macrophytes as feeding site for small fishes in the Rosana Reservoir, Paranapanema River, southeastern Brazil. Braz J Biol. 2003; 63(2):213-22. [ Links ]

Casimiro ACR, Garcia DAZ, Costa ADA, Britton JR, Orsi ML. Impoundments facilitate a biological invasion: Dispersal and establishment of non-native armoured catfish Loricariichthys platymetopon (Isbrückler & Nijssen, 1979) in a Neotropical river. Limnologica. 2017; 62:34-37. [ Links ]

CBA (Companhia Brasileira de Alumínio). Relatório de Consolidação das Campanhas de Monitoramento da Ictiofauna, na Fase Pós-Enchimento, do Reservatório da UHE Ourinhos da Companhia Brasileira de Alumínio; 2009. [ Links ]

Colwell RK. EstimateS: statistical estimation of species richness and shared species from samples (software and user’s guide) [Internet]. Version 8; 2006 [cited 2016 May 25]. Available from: Available from: http://purl.oclc.org/estimatesLinks ]

Cucherousset J, Olden JD. Ecological impacts of non-native freshwater fishes. Fisheries. 2011; 36(5):215-30. [ Links ]

Daga VS, Gubiani EA. Variations in the endemic fish assemblage of a global freshwater ecoregion: associations with introduced species in cascading reservoirs. Acta Oecol. 2012; 41:95-105. [ Links ]

Daga VS, Skóra F, Padial AA, Abilhoa V, Gubiani ÉA, Vitule JRS. Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors. Hydrobiologia . 2015; 746(1):327-47. [ Links ]

Dias JHP. Distribuição espacial e temporal da ictiofauna do trecho médio do rio Paranapanema e suas relações com as características morfométricas e limnológicas dos compartimentos da bacia. [PhD Thesis]. São Carlos, SP: UFSCar; 2003. [ Links ]

Dias JHP, Garavello JC. Ecological studies on the fish community of Salto Grande Reservoir, Paranapanema River Basin, São Paulo State, Brazil. Verh Internat Verein Limnol. 1998; 26(5):2228-31. [ Links ]

Duke Energy. Peixes do rio Paranapanema. 2nd ed. São Paulo: Horizonte Geográfico; 2008. [ Links ]

Eschmeyer WN, Fong JD. Species by family/subfamily. [Internet]. San Francisco (CA): California Academy of Sciences; 2017. [cited 2018 Mar 01]. Available from: Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.aspLinks ]

Eschmeyer WN, Fricke R, van der Laan R, editors. Catalog of fishes: genera, species, references. [Internet]. San Francisco (CA): California Academy of Sciences ; 2017. [cited 2017 Jul 01]. Available from: Available from: http:// researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.aspLinks ]

Espínola LA, Minte-Vera CV, Júlio HF Jr. Invasibility of reservoirs in the Paraná Basin, Brazil, to Cichla kelberi Kullander and Ferreira, 2006. Biol Invasions. 2010; 12(6):1873-88. [ Links ]

Ferrareze M, Nogueira MG. Importance of lateral lagoons for the ichthyofauna in a large tropical reservoir. Braz J Biol . 2011; 71(4):807-20. [ Links ]

Foubert A, Lecomte F, Legendre P, Cusson M. Spatial organisation of fish communities in the St. Lawrence River: a test for longitudinal gradients and spatial heterogeneities in a large river system. Hydrobiologia . 2018; 809(1):155-73. [ Links ]

Franco ACS, Santos LN, Petry AC, García-Berthou E. Abundance of invasive peacock bass increases with water residence time of reservoirs in southeastern Brazil. Hydrobiologia . 2018; 817(1):155-66. [ Links ]

Froese R, Pauly D, editors. FishBase [Internet]. Rome: FAO; 2016. [cited 2017 Jul 01]. Available from: Available from: http://fishbase.orgLinks ]

Garavello JC, Britski HA, Zawadzki CH. The cascudos of the genus Hypostomus Lacépède (Ostariophysi: Loricariidae) from the rio Iguaçu basin. Neotrop Ichthyol . 2012; 10(2):263-83. Available from: http://dx.doi.org/10.1590/S1679-62252012000200005Links ]

Garcia DAZ, Britton JR, Vidotto-Magnoni AP, Orsi ML. Introductions of non-native fishes into a heavily modified river: rates, patterns and management issues in the Paranapanema River (Upper Paraná ecoregion, Brazil). Biol Invasions . 2018; 20(5):1229-41. [ Links ]

Godinho AL, Kynard B. Migratory fishes of Brazil: life history and fish passage needs. River Res Appl . 2008; 25(6):702-12. [ Links ]

Gomes LC, Miranda LE. Riverine characteristics dictate composition of fish assemblages and limit fisheries in reservoirs of the Upper Paraná River Basin. Regul Rivers. 2001; 17(1):67-76. [ Links ]

Governo do Estado de São Paulo. Sistema Integrado de Gerenciamento de Recursos Hídricos do Estado de São Paulo [Internet]. São Paulo: Governo do Estado de São Paulo; 2018 [cited 2018 May 23]. Available from: Available from: http://www.sigrh.sp.gov.brLinks ]

Graça WJ, Pavanelli CS. Peixes da planície de inundacão do alto rio Paraná e áreas adjacentes. Maringa: Eduem; 2007. [ Links ]

Hammer Ø, Harper DAT, Ryan PD. Past: Paleontologia Statistics software package for education and data analysis. Palaeontol Electronica. 2011; 4. [ Links ]

Hoeinghaus DJ, Agostinho AA, Gomes LC, Pelicice FM, Okada EK, Latini JD, Kashiwaqui EAL, Winemiller KO. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conserv Biol. 2009; 23(5):1222-31. [ Links ]

Hoffmann AC, Orsi ML, Shibatta AO. Diversidade de peixes do reservatório da UHE Escola Engenharia Mackenzie (Capivara), Rio Paranapanema, bacia do alto rio Paraná, Brasil, e a importância dos grandes tributários na sua manutenção. Iheringia Sér Zool. 2005; 95(3):319-25. [ Links ]

Júlio Júnior HF, Dei Tós C, Agostinho AA, Pavanelli CS. A massive invasion of fish species after eliminating a natural barrier in the upper rio Paraná basin. Neotrop Ichthyol . 2009; 7(4):709-18. Available from: http://dx.doi.org/10.1590/S1679-62252009000400021Links ]

Kipper D, Bialetzki A, Santin M. Composição taxonômica da assembleia de larvas de peixes no reservatório de Rosana, Rio Paranapanema, Brasil. Biota Neotrop . 2011; 11(1):421-26. [ Links ]

Kurchevski G, Carvalho ED. Os peixes da represa de Jurumirim: revisão temporal de estudos independentes. In: Henry R, editor. Represa de Jurumirim: ecologia, modelagem e aspectos sociais. Ribeirão Preto: Editora Holos; 2014. p.325-337. [ Links ]

Langeani F, Castro RMC, Oyakawa OT, Shibatta OA, Pavanelli CS, Casatti L. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotrop . 2007; 7(3):181-97. [ Links ]

Lima AC, Agostinho CS, Sayanda D, Pelicice FM, Soares AMVM, Monaghan KA. The rise and fall of fish diversity in a Neotropical river after impoundment. Hydrobiologia . 2016; 763(1):207-21. [ Links ]

Lima-Junior SE, Gointein R. Diet and feeding activity of Pimelodus maculatus (Osteichthyes, Pimelodidae) in the Piracicaba River (State of São Paulo, Brazil) - the effect of seasonality. B Inst Pesca. 2004; 30(2):135-40. [ Links ]

Lira NA, Pompeu PS, Agostinho CS, Agostinho AA, Arcifa MS, Pelicice FM. Fish passages in South America: an overview of studied facilities and research effort. Neotrop Ichthyol . 2017; 15(2):e160139. Available from: http://dx.doi.org/10.1590/1982-0224-20160139Links ]

Lopes CM, Almeida FS, Orsi ML, Britto SGC, Sirol RN, Sodré LMK. Fish passage ladders from Canoas Complex - Paranapanema River: evaluation of genetic structure maintenance of Salminus brasiliensis (Teleostei: Characiformes). Neotrop Ichthyol . 2007; 5(2):131-38. Available from: http://dx.doi.org/10.1590/S1679-62252007000200006Links ]

Luiz EA, Petry AC, Pavanelli CS, Júlio HF Jr, Latini JD, Domingues VM. As assembléias de peixes de reservatórios hidrelétricos do Estado do Paraná e bacias limítrofes. In Rodrigues L, Thomas SM, Agostinho AA, Gomes LC, editors. Biocenoses em reservatórios: padrões espaciais e temporais. São Carlos: RiMa; 2005. p.169-184. [ Links ]

Magnoni APV. Ecologia trófica das assembléias de peixes do reservatório de Chavantes (Médio rio Paranapanema, SP/PR). [PhD Thesis]. Botucatu, SP: UNESP; 2009. [ Links ]

Mol JH, de Mérona B, Ouboter PE, Sahdew S. The fish fauna of Brokopondo Reservoir, Suriname, during 40 years of impoundment. Neotrop Ichthyol . 2007; 5(3):351-68. Available from: http://dx.doi.org/10.1590/S1679-62252007000300015Links ]

Novaes JLC, Carvalho ED. Recursos pesqueiros oriundos da pesca artesanal no reservatório de Jurumirim, rio Paranapanema, alto Paraná, Brasil. B Inst Pesca . 2009; 35(4):553-65. [ Links ]

Novaes JLC, Carvalho ED. Analysis of artisanal fisheries in two reservoirs of the upper Paraná River basin (Southeastern Brazil). Neotrop Ichthyol . 2013; 11(2):403-12. Available from: http://dx.doi.org/10.1590/S1679-62252013005000002Links ]

Oberdorff T, Guilbert E, Lucchetta JC. Patterns of fish species richness in the Seine River basin, France. Hydrobiologia . 1993; 259(3):157-67. [ Links ]

Okada EK, Agostinho AA, Gomes LC. Spatial and temporal gradients in artisanal fisheries of a large Neotropical reservoir, the Itaipu Reservoir, Brazil. Can J Fish Aquat Sci. 2005; 62(3):714-24. [ Links ]

Orsi ML, Almeida FS, Swarça AC, Claro-García A, Vianna NC, Garcia DAZ, Bialetzki A. Ovos, larvas e juvenis dos peixes da Bacia do Rio Paranapanema uma avaliação para a conservação. Assis, SP: Triunfal Gráfica e Editora, Duke Energy; 2016. [ Links ]

Orsi ML, Britton JR. Long-term changes in the fish assemblage of a Neotropical hydroelectric reservoir. J Fish Biol. 2014; 84(6):1964-70. [ Links ]

Ortega JCG, Júlio Júnior HF, Gomes LC, Agostinho AA. Fish farming as the main driver of fish introductions in Neotropical reservoirs. Hydrobiologia . 2015; 746(1):147-58. [ Links ]

Paschoalini AL, Perini VR, Ribeiro DM, Formagio PS, Rizzo E, Bazzoli N. Reproduction of Pimelodus maculatus (Siluriformes: Pimelodidae) in three section of Grande River basin, downstream Porto Colombia dam, south-eastern Brazil. Neotrop Ichthyol . 2013; 11(3):615-23. Available from: http://dx.doi.org/10.1590/S1679-62252013000300015Links ]

Pelicice FM, Agostinho AA, Thomaz SM. Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and diel period. Acta Oecol . 2005; 27(1):9-16. [ Links ]

Pelicice FM, Agostinho AA. Fish-passage facilities as ecological traps in large Neotropical rivers. Conserv Biol . 2008; 1(22):180-88. [ Links ]

Pelicice FM, Agostinho AA. Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a Neotropical reservoir. Biol Invasions . 2009; 11(8):1789-801. [ Links ]

Pelicice FM, Latini JD, Agostinho AA. Fish fauna disassembly after the introduction of a voracious predator: main drivers and the role of the invader’s demography. Hydrobiologia . 2015b; 746(1): 271-83. [ Links ]

Pelicice FM, Pompeu PS, Agostinho AA. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fish. 2015a; 16(4):697-715. [ Links ]

Pelicice FM, Azevedo-Santos VM, Vitule JRS, Orsi ML, Lima Junior DP, Magalhães ALB, Pompeu PS, Petrere M Jr, Agostinho AA. Neotropical freshwater fishes imperilled by unsustainable policies. Fish and Fish . 2017; 18(6):1119-33. [ Links ]

Petesse ML, Petrere M Jr. Tendency towards homogenization in fish assemblages in the cascade reservoir system of the Tietê river basin, Brazil. Ecol Eng. 2012; 48:109-16. [ Links ]

Petrere M Jr. Fisheries in large tropical reservoirs in South America. Lakes Reservoirs. 1996; 2(1-2):111-33. [ Links ]

Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC. The natural flow regime. BioScience . 1997; 47(11):769-84. [ Links ]

Pompeu PS, Agostinho AA, Pelicice FM. Existing and future challenges: the concept of successful fish passage in South America. River Res Appl . 2012; 28(4):504-12. [ Links ]

Pringle CM, Freeman MC, Freeman B. Regional effects of hydrologic alterations on riverine macrobiota in the New World: Tropical-Temperate comparisons. Bioscience. 2000; 50(9):807-23. [ Links ]

Reis RE, Kullander SO, Ferraris CJ Jr. Check list of the freshwater fishes of South and Central America. Porto Alegre: Edipucrs; 2003. [ Links ]

Santos NCL, Santana HS, Ortega JCGA, Dias RM, Stegmann LF, Araújo IMS, Severi W, Bini LM, Gomes LC, Agostinho AA. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia . 2017; 802(1):245-53. [ Links ]

Shibatta OA, Gealh AM, Bennemann ST. Ictiofauna dos trechos alto e médio da bacia do rio Tibagi, Paraná, Brasil. Biota Neotrop . 2007; 7(2):125-34. [ Links ]

Suzuki FM, Zambaldi LP, Pompeu FS. Mapping the critical habitats for migratory species of the upper Grande River region, Minas Gerais State, Brazil. Appl Ecol Env Res. 2013; 11(4):645-59. [ Links ]

Vianna NC. Deplecionamento induzido do reservatório de Salto Grande (Rio Paranapanema, SP/PR: influência sobre a ictiofauna de lagoas marginais. [PhD Thesis]. Botucatu, SP: UNESP; 2008. [ Links ]

Vianna NC, Nogueira MG. Ichthyoplankton and limnological factors in the Cinzas River - an alternative spawning site for fishes in the middle Paranapanema River basin, Brazil. Acta Limnol Bras . 2008; 20(2):139-51. [ Links ]

Vitorino OB Jr, Fernandes R, Agostinho CS, Pelicice FM. Riverine networks constrain B-diversity patterns among fish assemblages in a large Neotropical river. Fresh Biol. 2016; 61(10):1733-45. [ Links ]

Vitule JRS, Skóra F, Abilhoa V. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers Distrib. 2012; 18(2):111-20. [ Links ]

Ward JV, Stanford JA. The serial discontinuity concept of lotic ecosystems. In: Fontaine TD, Bartell SM, editors. Dynamics of lotic ecosystems. Michigan: Ann Arbor Science Publishers; 1983. p.29-42. [ Links ]

Received: November 23, 2017; Accepted: June 13, 2018

Edited by Fernando Carvalho

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License