Acessibilidade / Reportar erro

Zygoparity in Characidae - the first case of internal fertilization in the teleost cohort Otomorpha

Abstract

Most teleosts are externally fertilizing, with internal fertilization occurring as a relatively rare event. Until now, Euteleosteomorpha is the only teleost cohort known to undergo internal fertilization. In the teleost cohort Otomorpha, it has been recorded the presence of sperm in the ovaries of some species of Characiformes and Siluriformes, but no fertilized eggs have been found so far in the female reproductive tract. It has been presumed that oocytes can be released into the water with associated spermatozoa and only there becomes fertilized, and the term insemination has been used to characterize the strategy adopted by these fish. Here, we present the discovery of the first case of internal fertilization in the teleost cohort Otomorpha, in Compsura heterura (Characiformes: Characidae). In the course of spawning, the eggs form the perivitelline space and the animal and vegetative poles within the ovaries, evidencing oocyte fertilization. The newly spawned eggs then continue to form the animal and vegetative poles and increase the perivitelline space. These eggs are in the zygotic stage. These data indicate that fertilized eggs are only retained for a short period, providing evidence that C. heterura is a zygoparous fish.

Keywords:
Characiformes; Insemination; Ostariophysi; Reproduction; Spawning

Resumo

A maioria dos teleósteos são espécies com fecundação externa, sendo a fecundação interna um evento relativamente raro. Até o momento, Euteleosteomorpha é a única coorte de teleósteos conhecida com espécies de fecundação interna. Na coorte de teleósteos Otomorpha, tem sido registrada a presença de esperma nos ovários de algumas espécies de Characiformes e Siluriformes, porém nenhum ovo fecundado foi encontrado até agora no trato reprodutor feminino. Presume-se que os oócitos possam ser liberados na água associados aos espermatozoides e que somente lá são fecundados, e o termo inseminação tem sido empregado para caracterizar a estratégia adotada por esses peixes. Apresentamos aqui a descoberta do primeiro caso de fecundação interna na coorte de teleósteos Otomorpha, em Compsura heterura (Characiformes: Characidae). Durante a desova, os ovos formam o espaço perivitelino e os polos animal e vegetal dentro dos ovários, evidenciando a fecundação interna. Os ovos recém-desovados continuam a formação dos polos animal e vegetal e aumentam o espaço perivitelino. Esses ovos estão na fase zigótica. Estes dados indicam que os ovos fertilizados são retidos por um curto período, fornecendo evidências de que C. heterura é um peixe zigóparo.

Palavras-chave:
Characiformes; Desova; Inseminação; Ostariophysi; Reprodução

INTRODUCTION

Fertilization (sensu lato) refers to several steps leading to and resulting in sperm-oocyte fusion. These steps include oocyte activation, expulsion of the second polar body, cortical reaction, formation of the perivitelline space, hardening of the envelope (chorion) and bipolar differentiation (cytoplasmic movement). Most teleost fish have centrolecithal unfertilized oocytes at oviposition and become telolecithal only after activation or even later in the process of fertilization (Kunz, 2004Kunz YW. Viviparity. In: Kunz YW, editor. Developmental Biology of Teleost Fishes. Dordrecht: Springer; 2004. p.457-504.).

Fertilization may also occur internally in female’s body at the gonoduct or ovary - lumen or ovarian follicle. Internal fertilization, however, is a relatively rare event in Teleostei, known only in 15 families of the Cohort Euteleosteomorpha (Fig. 1): in the Series Ophidiaria (viviparous species of Bythitidae and Dinematichthyidae), Series Ovalentaria (zygoparous, embryoparous or viviparous species of Adrianichthyidae, Anablepidae, Atherinopsidae, Clinidae, Embiotocidae, Goodeidae, Zenarchopteridae, Labrisomidae, Poeciliidae, and Rivulidae), and Series Eupercaria (zygoparous, embryoparous or viviparous species of Comephoridae, Sebastidae, and Zoarcidae) (Jakubowski et al., 2003Jakubowski M, Tugarina PY, Żuwała K. Pectoral fin development in the Baikalian viviparous golomyankas (Comephoridae; Cottoidei), with a remark on eggs and embryos of Comephorus baicalensis (Pallas). J Anat. 2003; 203(3):317-22. http://dx.doi.org/doi:10.1046/j.1469-7580.2003.00221.x
http://dx.doi.org/doi:10.1046/j.1469-758...
; Sequeira et al., 2003Sequeira V, Figueiredo I, Muñoz M, Gordo L. New approach to the reproductive biology of Helicolenus dactylopterus. J Fish Biol. 2003; 62(5):1206-10. http://dx.doi.org/doi:10.1046/j.1095-8649.2003.00063.x
http://dx.doi.org/doi:10.1046/j.1095-864...
; Kunz, 2004Kunz YW. Viviparity. In: Kunz YW, editor. Developmental Biology of Teleost Fishes. Dordrecht: Springer; 2004. p.457-504.; Burns, Weitzman, 2005Burns JR, Weitzman SH. Insemination in ostariophysan fishes. In: Grier HJ, Uribe MC, editors. Viviparous Fishes. Homestead: New Life Publications; 2005. p.107-34.; Meisner, 2005Meisner AD. Male modifications associated with insemination in teleosts. In: Grier HJ, Uribe MC, editors. Viviparous Fishes . Homestead, Florida: New Life Publications; 2005. p.165-90.; Evans, Meisner, 2009Evans J, Meisner A. Copulatory structures: taxonomic overview and the potential for sexual selection. In: Jamieson BGM, editor. Reproductive biology and phylogeny of fishes. Enfield: Science Publishers; 2009. p.138-80.; Møller et al., 2016Møller PR, Knudsen SW, Schwarzhans W, Nielsen JG. A new classification of viviparous brotulas (Bythitidae)-with family status for Dinematichthyidae-based on molecular, morphological and fossil data. Mol Phylogenet Evol. 2016; 100:391-408. http://dx.doi.org/doi:10.1016/j.ympev.2016.04.008
http://dx.doi.org/doi:10.1016/j.ympev.20...
).

Although no cases of internal fertilization have been shown thus far in the teleost cohort Otomorpha (Fig. 1), the presence of sperm has been verified in the female ovaries in some species of Characiformes (Kutaygil, 1959Kutaygil DL. Insemination, sexual differentiation and secondary sex characters in Stevardia albipinnis Gill. Hydrobiol Univ Istanbul Fen Fak Mecm. 1959; 24:93-128.; Nelson, 1964Nelson K. Behavior and morphology in the glandulocaudine fishes (Ostariophysi, Characidae). Univ Calif publ zool. 1964; 75(2):59-152.; Burns et al., 1995Burns JR, Weitzman SH, Grier HJ, Menezes NA. Internal fertilization, testis and sperm morphology in Glandulocaudine fishes (Teleostei, Characidae, Glandulocaudinae). J Morphol. 1995; 224(2):131-45. https://doi.org/10.1002/jmor.1052240203
https://doi.org/10.1002/jmor.1052240203...
; Burns et al., 1997Burns JR, Weitzman SH, Malabarba LR. Insemination in eight species of Cheirodontine fishes (Teleostei: Characidae: Cheirodontinae). Copeia . 1997; 1997(2):433-38. http://dx.doi.org/doi:10.2307/1447767
http://dx.doi.org/doi:10.2307/1447767...
; Malabarba, 1998Malabarba LR. Monophyly of the Cheirodontinae, characters and major clades (Ostariophysi: Characidae). In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CA, editors. Phylogeny and classification of Neotropical fishes. Porto Alegre, Brasil: EDIPUCRS; 1998. p.193-233.; Burns et al., 2000Burns JR, Weitzman SH, Malabarba LR, Downing-Meisner A. Sperm modifications in inseminating Ostariophysian fishes, with new documentation of inseminating species. In: Norberg B, Kjesbu OS, Taranger GL, Andersson E, Stefansson SO, editors. Proceedings of the 6th International Symposium on the Reproductive Fisiology of Fish. Bergen, Norway: Institute of Marine Research and University of Bergen; 2000. p.255.; Castro et al., 2003Castro RMC, Ribeiro AC, Benine RC, Melo ALA. Lophiobrycon weitzmani, a new genus and species of glandulocaudine fish (Characiformes: Characidae) from the rio Grande drainage, upper rio Paraná system, southeastern Brazil. Neotrop Ichthyol. 2003; 1(1):11-19. http://dx.doi.org/doi:10.1590/S1679-62252003000100002
http://dx.doi.org/doi:10.1590/S1679-6225...
; Weitzman et al., 2005Weitzman SH, Menezes NA, Evers H-G, Burns JR. Putative relationships among inseminating and externally fertilizing characids, with a description of a new genus and species of Brazilian inseminating fish bearing an anal-fin gland in males (Characiformes: Characidae). Neotrop Ichthyol. 2005; 3(3):329-60. http://dx.doi.org/doi:10.1590/S1679-62252005000300002
http://dx.doi.org/doi:10.1590/S1679-6225...
; Javonillo et al., 2009Javonillo R, Burns JR, Weitzman SH. Sperm modifications related to insemination, with examples from the Ostariophysi. In: Jamieson BGM, editor. Reproductive Biology and Phylogeny of Fishes. Enfield: Science Publishers; 2009. p.723-63.; Quagio-Grassiotto et al., 2012Quagio-Grassiotto I, Malabarba LR, Azevedo MA, Burns JR, Baicere-Silva CM, Quevedo R. Unique derived features in spermiogenesis and sperm morphology supporting a close relationship between the species of Hollandichthys and Rachoviscus (Characiformes: Characidae). Copeia. 2012; 2012(4):609-25. http://dx.doi.org/doi:10.1643/CG-11-171
http://dx.doi.org/doi:10.1643/CG-11-171...
), and Siluriformes (von Ihering, 1937von Ihering R. Oviductal fertilization in the South American catfish, Trachycorystes. Copeia . 1937; 1937(4):201-05. http://dx.doi.org/doi: 10.2307/1436254
http://dx.doi.org/doi: 10.2307/1436254...
; Loir et al., 1989Loir M, Cauty C, Planquette P, LeBail PY. Comparative study of the male reproductive tract in seven familes of South-American catfishes. Aquat Living Resour. 1989; 2(1):45-56. http://dx.doi.org/doi:10.1051/alr:1989005
http://dx.doi.org/doi:10.1051/alr:198900...
; Burns et al., 2000Burns JR, Weitzman SH, Malabarba LR, Downing-Meisner A. Sperm modifications in inseminating Ostariophysian fishes, with new documentation of inseminating species. In: Norberg B, Kjesbu OS, Taranger GL, Andersson E, Stefansson SO, editors. Proceedings of the 6th International Symposium on the Reproductive Fisiology of Fish. Bergen, Norway: Institute of Marine Research and University of Bergen; 2000. p.255.; Meisner et al., 2000Meisner AD, Burns JR, Weitzman SH, Malabarba LR. Morphology and histology of the male reproductive system in two species of internally inseminating South American catfishes, Trachelyopterus lucenai and T. galeatus (Teleostei: Auchenipteridae). J Morphol. 2000; 246(2):131-41. http://dx.doi.org/doi:10.1002/1097-4687(200011)246:2<131::AID-JMOR7>3.0.CO;2-K
http://dx.doi.org/doi:10.1002/1097-4687(...
; Javonillo et al., 2009Javonillo R, Burns JR, Weitzman SH. Sperm modifications related to insemination, with examples from the Ostariophysi. In: Jamieson BGM, editor. Reproductive Biology and Phylogeny of Fishes. Enfield: Science Publishers; 2009. p.723-63.; Spadella et al., 2012Spadella MA, Oliveira C, Ortega H, Quagio-Grassiotto I, Burns JR. Male and female reproductive morphology in the inseminating genus Astroblepus (Ostariophysi: Siluriformes: Astroblepidae). Zool Anz. 2012; 251(1):38-48. http://dx.doi.org/doi:10.1016/j.jcz.2011.05.005
http://dx.doi.org/doi:10.1016/j.jcz.2011...
). However, in all these cases, the exact moment of fertilization is unknown because fertilized eggs are not found within the ovaries (Burns et al., 1995Burns JR, Weitzman SH, Grier HJ, Menezes NA. Internal fertilization, testis and sperm morphology in Glandulocaudine fishes (Teleostei, Characidae, Glandulocaudinae). J Morphol. 1995; 224(2):131-45. https://doi.org/10.1002/jmor.1052240203
https://doi.org/10.1002/jmor.1052240203...
; Burns et al., 1997Burns JR, Weitzman SH, Malabarba LR. Insemination in eight species of Cheirodontine fishes (Teleostei: Characidae: Cheirodontinae). Copeia . 1997; 1997(2):433-38. http://dx.doi.org/doi:10.2307/1447767
http://dx.doi.org/doi:10.2307/1447767...
; Azevedo et al., 2000Azevedo MA, Malabarba LR, Fialho CB. Reproductive biology of the inseminating glandulocaudine Diapoma speculiferum Cope (Teleostei: Characidae). Copeia. 2000; 2000(4):983-89. http://dx.doi.org/doi:10.1643/0045-8511(2000)000[0983:RBOTIG]2.0.CO;2
http://dx.doi.org/doi:10.1643/0045-8511(...
; Burns, Weitzman, 2005; Oliveira et al., 2010Oliveira CLC, Fialho CB, Malabarba LR. Reproductive period, fecundity and histology of gonads of two cheirodontines (Ostariophysi: Characidae) with different reproductive strategies - insemination and external fertilization. Neotrop Ichthyol. 2010; 8(2):351-60. http://dx.doi.org/10.1590/S1679-62252010000200014
http://dx.doi.org/10.1590/S1679-62252010...
). Furthermore, the presence of sperm in the ovaries does not prove internal fertilization because an oocyte can be released into the water with associated spermatozoa and only there becomes fertilized, which is known as internal gametic association (Munehara et al., 1989Munehara H, Takano K, Koya Y. Internal gametic association and external fertilization in the elkhorn sculpin, Alcichthys alcicornis. Copeia. 1989; 1989:673-78. http://dx.doi.org/doi:10.2307/1445494
http://dx.doi.org/doi:10.2307/1445494...
). Given this occurrence, the term insemination has been used to characterize the strategy adopted by these fish (Burns et al., 1997Burns JR, Weitzman SH, Malabarba LR. Insemination in eight species of Cheirodontine fishes (Teleostei: Characidae: Cheirodontinae). Copeia . 1997; 1997(2):433-38. http://dx.doi.org/doi:10.2307/1447767
http://dx.doi.org/doi:10.2307/1447767...
; Javonillo et al., 2009Javonillo R, Burns JR, Weitzman SH. Sperm modifications related to insemination, with examples from the Ostariophysi. In: Jamieson BGM, editor. Reproductive Biology and Phylogeny of Fishes. Enfield: Science Publishers; 2009. p.723-63.), and the exact place that fertilization takes place remains unknown in Characiformes and Siluriformes of the teleost Cohort Otomorpha.

The objective of this study is to investigate and describe in an inseminating characid when fertilization occurs. For this purpose, the Cheirodontinae characid Compsura heterura Eigenmann, 1915 was used as a model. This species is inseminating, showing spermatozoa with slightly elongated nuclei in female ovaries (Burns et al., 1997Burns JR, Weitzman SH, Malabarba LR. Insemination in eight species of Cheirodontine fishes (Teleostei: Characidae: Cheirodontinae). Copeia . 1997; 1997(2):433-38. http://dx.doi.org/doi:10.2307/1447767
http://dx.doi.org/doi:10.2307/1447767...
: Fig. 1e; Oliveira et al., 2010Oliveira CLC, Fialho CB, Malabarba LR. Reproductive period, fecundity and histology of gonads of two cheirodontines (Ostariophysi: Characidae) with different reproductive strategies - insemination and external fertilization. Neotrop Ichthyol. 2010; 8(2):351-60. http://dx.doi.org/10.1590/S1679-62252010000200014
http://dx.doi.org/10.1590/S1679-62252010...
: Fig. 1-2). The description of how fertilization takes place in such a member of the Cohort Otomorpha may serve as a starting point for comparison and discovery of the reproductive strategy of other inseminating Characiformes and Siluriformes.

FIGURE 1
| Phylogeny of Teleostei (modified from Betancur-R et al., 2017 Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M et al. Phylogenetic classification of bony fishes. BMC Evol Biol. 2017; 17(1):162.https://doi.org/10.1186/s12862-017-0958-3
https://doi.org/10.1186/s12862-017-0958-...
), showing clades previously known to include species with internal fertilization (dark blue) and the present record in the teleost cohort Otomorpha (light blue). Remaining clades (black) do not contain internally fertilized species.

MATERIAL AND METHODS

Fish Sampling.Compsura heterura specimens were collected with a 1 mm-plastic mesh hand net in 2001 from the Maxaranguape stream (05°30’45.00”S, 35°19’13.97”W), Maxaranguape city, Rio Grande do Norte state (RN), Brazil. Individuals were maintained at Ichthyology Laboratory, UFRGS, into twelve 60-litre aquariums, at a maximum of seven fish per aquarium. The aquariums contained dechlorinated tap water, were equipped with an undergravel biological filter, were lined with approximately 5 cm of gravel (5 mm grain size), and were planted with Hygrophila difformis and Microsorum pteropus. The lighting consisted of 20 W white fluorescent lamps with a timer set to a photoperiod of 12 h: 12 h light-dark. Aeration was constant by submerged pumps (280 l/h). The temperature was maintained at approximately 25°C with thermostat and heater, in an air-conditioned room. Fish were fed with commercial food flakes once a day ad libitum. The offspring of this wild population was analysed in this study.

Eight spawning females were euthanized using an overdose of Eugenol and dissected for ovaries removal. Twenty-two newly spawned oocytes were collected adhered to plant leaves (< 1 min after spawn).

Light Microscopy. Ovaries and oocytes were fixed by immersion in 2% glutaraldehyde and 4% paraformaldehyde in Sorensen’s phosphate buffer (0.1 M, pH 7.2). The ovaries and oocytes were dehydrated in ethanol and embedded in historesin (Leica HistoResin). Serial sections (3 µm) were stained with periodic-acid-Schiff (PAS)/hematoxylin/metanil yellow (Quintero-Hunter et al., 1991Quintero-Hunter I, Grier H, Muscato M. Enhancement of histological detail using metanil yellow as counterstain in periodic acid Schiff’s hematoxylin staining of glycol methacrylate tissue sections. Biotech Histochem. 1991; 66(4):169-72. http://dx.doi.org/doi:10.3109/10520299109109964
http://dx.doi.org/doi:10.3109/1052029910...
). Voucher specimens were deposited in the fish collection of the Departamento de Zoologia at the Universidade Federal do Rio Grande do Sul (UFRGS 22200, UFRGS 22201, UFRGS 22202).

Ethical note. This study conforms to the principles outlined in the Guide for the care and use of laboratory animals (Garber et al., 2011Garber JC, Barbee RW, Bielitzki JT, Clayton L, Donovan J, Hendriksen C et al. Guide for the care and use of laboratory animals. 8st ed. Washington DC: National Academies Press; 2011. ) and was approved by the Ethics Committee on Animal Use of the Federal University of Rio Grande do Sul (Universidade Federal do Rio Grande do Sul) (Project n. 32291).

RESULTS

All spawning females had unfertilized oocytes in the follicle (follicular cavity) and fertilized eggs in the ovarian lumen (ovulated). All newly spawned eggs were fertilized. The observed oocytes (unfertilized) had a single micropyle and several cortical alveoli of different sizes at the peripheral region of the oocytes (cortical cytoplasm) (Fig. 2A). In the ovarian lumen, eggs were observed at the first cytoplasmic movements that define the animal and vegetative poles, containing few cortical alveoli and forming the perivitelline space (Fig. 2B). In the gonoduct, the eggs decreased the number of cortical alveoli (cortical reaction), and there was a clear distinction between the animal and vegetative poles (bipolar differentiation, Fig. 2C). The newly spawned eggs formed the animal and vegetative poles, and there was an increase in the perivitelline space. In the animal pole, there were no blastomeres (embryonic cells). These eggs were still in the zygotic stage (Fig. 2D).

FIGURE 2
| Oocyte and fertilized eggs of Compsura heterura. A. Unfertilized oocyte in ovary (follicle); B. fertilized egg in ovary (ovarian lumen) and C. gonoduct (Od); D. fertilized spawned egg. Yg, yolk granules; Ca, cortical alveoli; asterisk, chorion; Fe, follicular epithelium; N, nucleus; n, nucleoli; Y, yolk; Cc, cortical cytoplasm; Ps, perivitelline space; arrow, micropyle; Vp, vegetative poles; Ap, animal poles; In, intestine; M, muscle tissue.

DISCUSSION

Oviparity is defined as the laying of fertilized or unfertilized eggs with intact eggshells or jelly coats in the environment (Blackburn, 2015Blackburn DG. Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J Morphol. 2015; 276(8):961-90. https://doi.org/10.1002/jmor.20272
https://doi.org/10.1002/jmor.20272...
). At the time of laying, the egg may be unfertilized (i.e. oocyte; Ovuliparity), in the first stages of development (e.g., zygote; Zygoparity) or even in advanced embryonic stages (Embryoparity). Viviparity has been defined as a process in which females retain developing eggs inside their reproductive tracts and give birth to their young (e.g., larvae; Blackburn, 2015Blackburn DG. Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J Morphol. 2015; 276(8):961-90. https://doi.org/10.1002/jmor.20272
https://doi.org/10.1002/jmor.20272...
). Most teleosts (nearly 97.5%) are externally fertilizing, whose gametes are released and fertilization takes place in the water (Ovuliparity).

Teleost fish have been often referred to as “internally fertilizing” based on behavioral records, possible copulatory organs (e.g., male fin modifications), presence of sperm in the ovary or egg/embryo observations under stereomicroscopy, but showing no details on the stage of egg development (Meisner, 2005Meisner AD. Male modifications associated with insemination in teleosts. In: Grier HJ, Uribe MC, editors. Viviparous Fishes . Homestead, Florida: New Life Publications; 2005. p.165-90.). Such is the case of the Glandulocaudinae characids (now part of the Stevardiinae), initially treated as bearing internal fertilization based on the observation of spermatozoa within the ovarian cavity (Burns et al., 1995Burns JR, Weitzman SH, Grier HJ, Menezes NA. Internal fertilization, testis and sperm morphology in Glandulocaudine fishes (Teleostei, Characidae, Glandulocaudinae). J Morphol. 1995; 224(2):131-45. https://doi.org/10.1002/jmor.1052240203
https://doi.org/10.1002/jmor.1052240203...
), but latter referred to inseminating based on the lack of fertilized eggs observed within the ovaries (Burns et al., 1995Burns JR, Weitzman SH, Grier HJ, Menezes NA. Internal fertilization, testis and sperm morphology in Glandulocaudine fishes (Teleostei, Characidae, Glandulocaudinae). J Morphol. 1995; 224(2):131-45. https://doi.org/10.1002/jmor.1052240203
https://doi.org/10.1002/jmor.1052240203...
; Burns et al., 1997Burns JR, Weitzman SH, Malabarba LR. Insemination in eight species of Cheirodontine fishes (Teleostei: Characidae: Cheirodontinae). Copeia . 1997; 1997(2):433-38. http://dx.doi.org/doi:10.2307/1447767
http://dx.doi.org/doi:10.2307/1447767...
; Azevedo et al., 2000Azevedo MA, Malabarba LR, Fialho CB. Reproductive biology of the inseminating glandulocaudine Diapoma speculiferum Cope (Teleostei: Characidae). Copeia. 2000; 2000(4):983-89. http://dx.doi.org/doi:10.1643/0045-8511(2000)000[0983:RBOTIG]2.0.CO;2
http://dx.doi.org/doi:10.1643/0045-8511(...
; Burns, Weitzman, 2005Burns JR, Weitzman SH. Insemination in ostariophysan fishes. In: Grier HJ, Uribe MC, editors. Viviparous Fishes. Homestead: New Life Publications; 2005. p.107-34.; Oliveira et al., 2010Oliveira CLC, Fialho CB, Malabarba LR. Reproductive period, fecundity and histology of gonads of two cheirodontines (Ostariophysi: Characidae) with different reproductive strategies - insemination and external fertilization. Neotrop Ichthyol. 2010; 8(2):351-60. http://dx.doi.org/10.1590/S1679-62252010000200014
http://dx.doi.org/10.1590/S1679-62252010...
).

Here, in the ovaries of spawning females of C. heterura, the cytoplasmic movements, few cortical alveoli, absence of blastomeres, formation of perivitelline space and animal and vegetative poles in the eggs allowed us to infer that the spermatozoa fertilize the oocyte in the ovary and that this egg was in the zygotic stage (formation of the zygote or egg cell, before the first cleavage). This is the first case of internal fertilization in the teleost cohort Otomorpha. The zygotic stage of newly spawned eggs in C. heterura indicates that there is a short period of retention of the fertilized eggs. Fertilization likely occurs after ovulation, in the ovarian lumen, and shortly after the fertilized eggs are released into the external environment, indicating that C. heterura (Characidae - Characiformes) is a zygoparous fish.

Zygoparity has been recorded in species of the Cohort Euteleostomorpha, in which the egg retention varies from zygote to embryo (embryoparity), as for example in Kryptolebias marmoratus (Poey, 1880), Rivulidae; Tomeurus gracilis Eigenmann, 1909, Poeciliidae; Helicolenus dactylopterus (Delaroche, 1809) and three species of the genus Sebastolobus Gill, 1881, Sebastidae (Harrington, 1961Harrington RW. Oviparous hermaphroditic fish with internal self-fertilization. Science. 1961; 134(3492):1749-50. http://dx.doi.org/doi: 10.1126/science.134.3492.1749
http://dx.doi.org/doi: 10.1126/science.1...
; Rosen, Bailey, 1963Rosen DE, Bailey RM. The poeciliid fishes (Cyprinodontiformes): their structure, zoogeography, and systematics. Bull Am Mus Nat Hist. 1963; 126:1-76.; Sequeira et al., 2003Sequeira V, Figueiredo I, Muñoz M, Gordo L. New approach to the reproductive biology of Helicolenus dactylopterus. J Fish Biol. 2003; 62(5):1206-10. http://dx.doi.org/doi:10.1046/j.1095-8649.2003.00063.x
http://dx.doi.org/doi:10.1046/j.1095-864...
; Pavlov, Emel’yanova, 2013Pavlov D, Emel’yanova N. Transition to viviparity in the order Scorpaeniformes: brief review. J Ichthyol. 2013; 53(1):52-69. https://doi.org/10.1134/S0032945213010116
https://doi.org/10.1134/S003294521301011...
). In addition, Oryzias setnai (Kulkarni, 1940Kulkarni C. On the systematic position, structural modifications, bionomics and development of a remarkable new family of cyprinodont fishes from the province of Bombay. Rec Indian Mus. 1940; 42(2):379-423. Available from: http://faunaofindia.nic.in/PDFVolumes/records/042/02/0379-0423.pdf
http://faunaofindia.nic.in/PDFVolumes/re...
) - Adrianichthyidae - and Zoarces americanus (Bloch, Schneider, 1801), Zoarcidae, may be zygoparous because copulation and spawning egg in early stages of embryonic development have been observed in both species (Kulkarni, 1940Kulkarni C. On the systematic position, structural modifications, bionomics and development of a remarkable new family of cyprinodont fishes from the province of Bombay. Rec Indian Mus. 1940; 42(2):379-423. Available from: http://faunaofindia.nic.in/PDFVolumes/records/042/02/0379-0423.pdf
http://faunaofindia.nic.in/PDFVolumes/re...
; Pavlov, Emel’yanova, 2013Pavlov D, Emel’yanova N. Transition to viviparity in the order Scorpaeniformes: brief review. J Ichthyol. 2013; 53(1):52-69. https://doi.org/10.1134/S0032945213010116
https://doi.org/10.1134/S003294521301011...
).

Among Characiformes, insemination is found only in Characidae sensu stricto (Malabarba, Weitzman, 2003Malabarba LR, Weitzman SH. Description of a new genus with six species from Southern Brazil, Uruguay and Argentina with discussion of a putative characid clade (Teleostei: Characiformes: Characidae). Comun Mus Cientistas Tecnol PUCRS. 2003; 16:67-51. http://dx.doi.org/doi:10.1590/S1679-62252005000300002
http://dx.doi.org/doi:10.1590/S1679-6225...
; Oliveira et al., 2011 Oliveira C, Avelino GS, Abe KT, Mariguela TC, Benine RC, Orti G et al. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol Biol . 2011; 11(1):1-25. http://dx.doi.org/doi:10.1186/1471-2148-11-275
http://dx.doi.org/doi:10.1186/1471-2148-...
; Mirande, 2018Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2018; 35(3):282-300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
), but is observed in part of the species of all the three main lineages of this family (Javonillo et al., 2010Javonillo R, Malabarba LR, Weitzman SH, Burns JR. Relationships among major lineages of characid fishes (Teleostei: Ostariophysi: Characiformes), based on molecular sequence data. Mol Phylogenet Evol. 2010; 54(2):498-511. http://dx.doi.org/doi:10.1016/j.ympev.2009.08.026
http://dx.doi.org/doi:10.1016/j.ympev.20...
; Oliveira et al., 2011 Oliveira C, Avelino GS, Abe KT, Mariguela TC, Benine RC, Orti G et al. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol Biol . 2011; 11(1):1-25. http://dx.doi.org/doi:10.1186/1471-2148-11-275
http://dx.doi.org/doi:10.1186/1471-2148-...
): the Clade A, now Stevardiinae (44 inseminating species listed by Thomaz et al., 2015Thomaz AT, Arcila D, Orti G, Malabarba LR. Molecular phylogeny of the subfamily Stevardiinae Gill, 1858 (Characiformes: Characidae): classification and the evolution of reproductive traits. BMC Evol Biol . 2015; 15(1):146-71. http://dx.doi.org/doi:10.1186/s12862-015-0403-4
http://dx.doi.org/doi:10.1186/s12862-015...
: Table II); the Clade B, in Cheirodontinae (all species of the tribe Compsurini listed by Malabarba (1998)Malabarba LR. Monophyly of the Cheirodontinae, characters and major clades (Ostariophysi: Characidae). In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CA, editors. Phylogeny and classification of Neotropical fishes. Porto Alegre, Brasil: EDIPUCRS; 1998. p.193-233.); and the Clade C, in Stethaprioninae (species of the genera Hollandichthys and Rachoviscus listed by Quagio-Grassiotto et al., 2012Quagio-Grassiotto I, Malabarba LR, Azevedo MA, Burns JR, Baicere-Silva CM, Quevedo R. Unique derived features in spermiogenesis and sperm morphology supporting a close relationship between the species of Hollandichthys and Rachoviscus (Characiformes: Characidae). Copeia. 2012; 2012(4):609-25. http://dx.doi.org/doi:10.1643/CG-11-171
http://dx.doi.org/doi:10.1643/CG-11-171...
). The presence in different lineages has evidenced the multiple origin of insemination in Characidae. The zigoparity of C. heterura (shown here) may be shared among all species of its tribe, but it must be tested. On the other hand, the timing and place of fertilization in the inseminating species of the subfamilies Stevardiinae and Stethaprioninae remain unknown. Since the origin of insemination in these groups is not homologous and arose separately from that of Compsurini, their strategies as inseminating ovuliparous, zygoparous or even embryoparous remains to be investigated.

ACKNOWLEDGMENTS

We thank the Laboratório de Biologia da Reprodução de Peixes Neotropicais (UNESP) for allowing the use of their facilities. CKF [155349/2016-3] and LRM [307890/2016-3 e 401204/2016-2] research are supported by CNPq.

REFERENCES

  • Azevedo MA, Malabarba LR, Fialho CB. Reproductive biology of the inseminating glandulocaudine Diapoma speculiferum Cope (Teleostei: Characidae). Copeia. 2000; 2000(4):983-89. http://dx.doi.org/doi:10.1643/0045-8511(2000)000[0983:RBOTIG]2.0.CO;2
    » http://dx.doi.org/doi:10.1643/0045-8511(2000)000[0983:RBOTIG]2.0.CO;2
  • Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M et al Phylogenetic classification of bony fishes. BMC Evol Biol. 2017; 17(1):162.https://doi.org/10.1186/s12862-017-0958-3
    » https://doi.org/10.1186/s12862-017-0958-3
  • Blackburn DG. Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J Morphol. 2015; 276(8):961-90. https://doi.org/10.1002/jmor.20272
    » https://doi.org/10.1002/jmor.20272
  • Burns JR, Weitzman SH. Insemination in ostariophysan fishes. In: Grier HJ, Uribe MC, editors. Viviparous Fishes. Homestead: New Life Publications; 2005. p.107-34.
  • Burns JR, Weitzman SH, Grier HJ, Menezes NA. Internal fertilization, testis and sperm morphology in Glandulocaudine fishes (Teleostei, Characidae, Glandulocaudinae). J Morphol. 1995; 224(2):131-45. https://doi.org/10.1002/jmor.1052240203
    » https://doi.org/10.1002/jmor.1052240203
  • Burns JR, Weitzman SH, Malabarba LR. Insemination in eight species of Cheirodontine fishes (Teleostei: Characidae: Cheirodontinae). Copeia . 1997; 1997(2):433-38. http://dx.doi.org/doi:10.2307/1447767
    » http://dx.doi.org/doi:10.2307/1447767
  • Burns JR, Weitzman SH, Malabarba LR, Downing-Meisner A. Sperm modifications in inseminating Ostariophysian fishes, with new documentation of inseminating species. In: Norberg B, Kjesbu OS, Taranger GL, Andersson E, Stefansson SO, editors. Proceedings of the 6th International Symposium on the Reproductive Fisiology of Fish. Bergen, Norway: Institute of Marine Research and University of Bergen; 2000. p.255.
  • Castro RMC, Ribeiro AC, Benine RC, Melo ALA. Lophiobrycon weitzmani, a new genus and species of glandulocaudine fish (Characiformes: Characidae) from the rio Grande drainage, upper rio Paraná system, southeastern Brazil. Neotrop Ichthyol. 2003; 1(1):11-19. http://dx.doi.org/doi:10.1590/S1679-62252003000100002
    » http://dx.doi.org/doi:10.1590/S1679-62252003000100002
  • Evans J, Meisner A. Copulatory structures: taxonomic overview and the potential for sexual selection. In: Jamieson BGM, editor. Reproductive biology and phylogeny of fishes. Enfield: Science Publishers; 2009. p.138-80.
  • Garber JC, Barbee RW, Bielitzki JT, Clayton L, Donovan J, Hendriksen C et al Guide for the care and use of laboratory animals. 8st ed. Washington DC: National Academies Press; 2011.
  • Harrington RW. Oviparous hermaphroditic fish with internal self-fertilization. Science. 1961; 134(3492):1749-50. http://dx.doi.org/doi: 10.1126/science.134.3492.1749
    » http://dx.doi.org/doi: 10.1126/science.134.3492.1749
  • Jakubowski M, Tugarina PY, Żuwała K. Pectoral fin development in the Baikalian viviparous golomyankas (Comephoridae; Cottoidei), with a remark on eggs and embryos of Comephorus baicalensis (Pallas). J Anat. 2003; 203(3):317-22. http://dx.doi.org/doi:10.1046/j.1469-7580.2003.00221.x
    » http://dx.doi.org/doi:10.1046/j.1469-7580.2003.00221.x
  • Javonillo R, Burns JR, Weitzman SH. Sperm modifications related to insemination, with examples from the Ostariophysi. In: Jamieson BGM, editor. Reproductive Biology and Phylogeny of Fishes. Enfield: Science Publishers; 2009. p.723-63.
  • Javonillo R, Malabarba LR, Weitzman SH, Burns JR. Relationships among major lineages of characid fishes (Teleostei: Ostariophysi: Characiformes), based on molecular sequence data. Mol Phylogenet Evol. 2010; 54(2):498-511. http://dx.doi.org/doi:10.1016/j.ympev.2009.08.026
    » http://dx.doi.org/doi:10.1016/j.ympev.2009.08.026
  • Kulkarni C. On the systematic position, structural modifications, bionomics and development of a remarkable new family of cyprinodont fishes from the province of Bombay. Rec Indian Mus. 1940; 42(2):379-423. Available from: http://faunaofindia.nic.in/PDFVolumes/records/042/02/0379-0423.pdf
    » http://faunaofindia.nic.in/PDFVolumes/records/042/02/0379-0423.pdf
  • Kunz YW. Viviparity. In: Kunz YW, editor. Developmental Biology of Teleost Fishes. Dordrecht: Springer; 2004. p.457-504.
  • Kutaygil DL. Insemination, sexual differentiation and secondary sex characters in Stevardia albipinnis Gill. Hydrobiol Univ Istanbul Fen Fak Mecm. 1959; 24:93-128.
  • Loir M, Cauty C, Planquette P, LeBail PY. Comparative study of the male reproductive tract in seven familes of South-American catfishes. Aquat Living Resour. 1989; 2(1):45-56. http://dx.doi.org/doi:10.1051/alr:1989005
    » http://dx.doi.org/doi:10.1051/alr:1989005
  • Malabarba LR. Monophyly of the Cheirodontinae, characters and major clades (Ostariophysi: Characidae). In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CA, editors. Phylogeny and classification of Neotropical fishes. Porto Alegre, Brasil: EDIPUCRS; 1998. p.193-233.
  • Malabarba LR, Weitzman SH. Description of a new genus with six species from Southern Brazil, Uruguay and Argentina with discussion of a putative characid clade (Teleostei: Characiformes: Characidae). Comun Mus Cientistas Tecnol PUCRS. 2003; 16:67-51. http://dx.doi.org/doi:10.1590/S1679-62252005000300002
    » http://dx.doi.org/doi:10.1590/S1679-62252005000300002
  • Meisner AD. Male modifications associated with insemination in teleosts. In: Grier HJ, Uribe MC, editors. Viviparous Fishes . Homestead, Florida: New Life Publications; 2005. p.165-90.
  • Meisner AD, Burns JR, Weitzman SH, Malabarba LR. Morphology and histology of the male reproductive system in two species of internally inseminating South American catfishes, Trachelyopterus lucenai and T. galeatus (Teleostei: Auchenipteridae). J Morphol. 2000; 246(2):131-41. http://dx.doi.org/doi:10.1002/1097-4687(200011)246:2<131::AID-JMOR7>3.0.CO;2-K
    » http://dx.doi.org/doi:10.1002/1097-4687(200011)246:2<131::AID-JMOR7>3.0.CO;2-K
  • Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2018; 35(3):282-300. https://doi.org/10.1111/cla.12345
    » https://doi.org/10.1111/cla.12345
  • Møller PR, Knudsen SW, Schwarzhans W, Nielsen JG. A new classification of viviparous brotulas (Bythitidae)-with family status for Dinematichthyidae-based on molecular, morphological and fossil data. Mol Phylogenet Evol. 2016; 100:391-408. http://dx.doi.org/doi:10.1016/j.ympev.2016.04.008
    » http://dx.doi.org/doi:10.1016/j.ympev.2016.04.008
  • Munehara H, Takano K, Koya Y. Internal gametic association and external fertilization in the elkhorn sculpin, Alcichthys alcicornis Copeia. 1989; 1989:673-78. http://dx.doi.org/doi:10.2307/1445494
    » http://dx.doi.org/doi:10.2307/1445494
  • Nelson K. Behavior and morphology in the glandulocaudine fishes (Ostariophysi, Characidae). Univ Calif publ zool. 1964; 75(2):59-152.
  • Oliveira C, Avelino GS, Abe KT, Mariguela TC, Benine RC, Orti G et al Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol Biol . 2011; 11(1):1-25. http://dx.doi.org/doi:10.1186/1471-2148-11-275
    » http://dx.doi.org/doi:10.1186/1471-2148-11-275
  • Oliveira CLC, Fialho CB, Malabarba LR. Reproductive period, fecundity and histology of gonads of two cheirodontines (Ostariophysi: Characidae) with different reproductive strategies - insemination and external fertilization. Neotrop Ichthyol. 2010; 8(2):351-60. http://dx.doi.org/10.1590/S1679-62252010000200014
    » http://dx.doi.org/10.1590/S1679-62252010000200014
  • Pavlov D, Emel’yanova N. Transition to viviparity in the order Scorpaeniformes: brief review. J Ichthyol. 2013; 53(1):52-69. https://doi.org/10.1134/S0032945213010116
    » https://doi.org/10.1134/S0032945213010116
  • Quagio-Grassiotto I, Malabarba LR, Azevedo MA, Burns JR, Baicere-Silva CM, Quevedo R. Unique derived features in spermiogenesis and sperm morphology supporting a close relationship between the species of Hollandichthys and Rachoviscus (Characiformes: Characidae). Copeia. 2012; 2012(4):609-25. http://dx.doi.org/doi:10.1643/CG-11-171
    » http://dx.doi.org/doi:10.1643/CG-11-171
  • Quintero-Hunter I, Grier H, Muscato M. Enhancement of histological detail using metanil yellow as counterstain in periodic acid Schiff’s hematoxylin staining of glycol methacrylate tissue sections. Biotech Histochem. 1991; 66(4):169-72. http://dx.doi.org/doi:10.3109/10520299109109964
    » http://dx.doi.org/doi:10.3109/10520299109109964
  • Rosen DE, Bailey RM. The poeciliid fishes (Cyprinodontiformes): their structure, zoogeography, and systematics. Bull Am Mus Nat Hist. 1963; 126:1-76.
  • Sequeira V, Figueiredo I, Muñoz M, Gordo L. New approach to the reproductive biology of Helicolenus dactylopterus J Fish Biol. 2003; 62(5):1206-10. http://dx.doi.org/doi:10.1046/j.1095-8649.2003.00063.x
    » http://dx.doi.org/doi:10.1046/j.1095-8649.2003.00063.x
  • Spadella MA, Oliveira C, Ortega H, Quagio-Grassiotto I, Burns JR. Male and female reproductive morphology in the inseminating genus Astroblepus (Ostariophysi: Siluriformes: Astroblepidae). Zool Anz. 2012; 251(1):38-48. http://dx.doi.org/doi:10.1016/j.jcz.2011.05.005
    » http://dx.doi.org/doi:10.1016/j.jcz.2011.05.005
  • Thomaz AT, Arcila D, Orti G, Malabarba LR. Molecular phylogeny of the subfamily Stevardiinae Gill, 1858 (Characiformes: Characidae): classification and the evolution of reproductive traits. BMC Evol Biol . 2015; 15(1):146-71. http://dx.doi.org/doi:10.1186/s12862-015-0403-4
    » http://dx.doi.org/doi:10.1186/s12862-015-0403-4
  • von Ihering R. Oviductal fertilization in the South American catfish, Trachycorystes Copeia . 1937; 1937(4):201-05. http://dx.doi.org/doi: 10.2307/1436254
    » http://dx.doi.org/doi: 10.2307/1436254
  • Weitzman SH, Menezes NA, Evers H-G, Burns JR. Putative relationships among inseminating and externally fertilizing characids, with a description of a new genus and species of Brazilian inseminating fish bearing an anal-fin gland in males (Characiformes: Characidae). Neotrop Ichthyol. 2005; 3(3):329-60. http://dx.doi.org/doi:10.1590/S1679-62252005000300002
    » http://dx.doi.org/doi:10.1590/S1679-62252005000300002

ADDITIONAL NOTES

  • HOW TO CITE THIS ARTICLE

    Fukakusa CK, Mazzoni TS, Malabarba LR. Zygoparity in Characidae – the first case of internal fertilization in the teleost cohort Otomorpha. Neotrop Ichthyol. 2020; 18(1):e190042. https://doi.org/10.1590/1982-0224-2019-0042

Edited by

Elizete Rizzo

Publication Dates

  • Publication in this collection
    17 Apr 2020
  • Date of issue
    2020

History

  • Received
    16 Apr 2019
  • Accepted
    23 Dec 2019
Sociedade Brasileira de Ictiologia Neotropical Ichthyology, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Universidade Estadual de Maringá., Av. Colombo, 5790, 87020-900, Phone number: +55 44-3011-4632 - Maringá - PR - Brazil
E-mail: neoichth@nupelia.uem.br