SciELO - Scientific Electronic Library Online

vol.85 issue4Use of remote control in the intraoperative telemetry of cochlear implant: multicentric studyStem-cell therapy for hearing loss: are we there yet? author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Brazilian Journal of Otorhinolaryngology

Print version ISSN 1808-8694On-line version ISSN 1808-8686

Braz. j. otorhinolaryngol. vol.85 no.4 São Paulo July/Aug. 2019  Epub Aug 29, 2019 

Review articles

Influence of speech-language therapy on P300 outcome in patients with language disorders: a meta-analysis

Deise Renata Oliveira da Silvaa

Pedro de Lemos Menezesa  b

Grazielle de Farias Almeidac

Thais Nobre Uchoa Souzac  d

Ranilde Cristiane Cavalcante Costaa  d

Ana Claudia Figueiredo Frizzoe  f

Aline Tenório Lins Carnaúbag  *

aUniversidade Estadual de Ciências da Saúde de Alagoas (UNCISAL), Maceió, AL, Brazil

bUniversidade de São Paulo (USP), Física Aplicada à Medicina, São Paulo, SP, Brazil

cUniversidade Estadual de Ciências da Saúde de Alagoas (UNCISAL), Fonoaudiologia, Maceió, AL, Brazil

dUniversidade Federal de São Paulo (UNIFESP), Distúrbios da Comunicação Humana, São Paulo, SP, Brazil

eUniversidade Estadual Paulista (UNESP), Programa de Pós-Graduação em Fonoaudiologia, São Paulo, SP, Brazil

fUniversidade de São Paulo (USP), Neurologia, São Paulo, SP, Brazil

gUniversidade Federal de Alagoas (UFAL), Rede Nordeste de Biotecnologia (RENORBIO), Biotecnologia em Saúde, Maceió, AL, Brazil



The patient's evolution in the audiology and speech-language clinic acts as a motivator of the therapeutic process, contributing to patient adherence to the treatment and allowing the therapist to review and/or maintain their clinical therapeutic conducts. Electrophysiological measures, such as the P300 evoked potential, help in the evaluation, understanding and monitoring of human communication disorders, thus facilitating the prognosis definition in each case.


To determine whether the audiology and speech-language therapy influences the variation of P300 latency and amplitude in patients with speech disorders undergoing speech therapy.


This is a systematic review with meta-analysis, in which the following databases were searched: Pubmed, ScienceDirect, SCOPUS, Web of Science, SciELO and LILACS, in addition to the gray literature bases: and DissOnline. The inclusion criteria were randomized or non-randomized clinical trials, without language or date restriction, which evaluated children with language disorders undergoing speech therapy, monitored by P300, compared to children without intervention.


The mean difference between the latencies in the group submitted to therapy and the control group was −20.12 ms with a 95% confidence interval of −43.98 to 3.74 ms (p = 0.08, I 2 = 25% and p value = 0.26). The mean difference between the amplitudes of the group submitted to therapy and the control group was 0.73 uV with a 95% confidence interval of −1.77 to 3.23 uV (p = 0.57, I 2 = 0% and p value = 0.47).


The present meta-analysis demonstrates that speech therapy does not influence the latency and amplitude results of the P300 evoked potential in children undergoing speech therapy intervention.

KEYWORDS P300 evoked potential; Speech-Language therapy; Rehabilitation of speech and language disorders



A evolução do paciente na clínica fonoaudiológica atua como fator motivador do processo terapêutico, contribui para a sua adesão ao tratamento e possibilita ao terapeuta a revisão e/ou a manutenção de suas condutas. As medidas eletrofisiológicas, como o potencial evocado P300, auxiliam na avaliação, na compreensão e no monitoramento dos distúrbios da comunicação humana, facilitam, dessa forma, a definição do prognóstico de cada caso.


Determinar se a terapia fonoaudiológica influencia na variação da latência e da amplitude do P300 em pacientes com distúrbio de linguagem submetidos à terapia fonoaudiológica.


Revisão sistemática com metanálise, na qual foram feitas buscas nas seguintes bases de dados: Pubmed, ScienceDirect, Scopus, Web of Science, SciELO e Lilacs, além das bases de literatura cinzenta: e DissOnline. Foram considerados critérios de inclusão: ensaios clínicos aleatórios ou não, sem restrição de idiomas ou data, que submeteram crianças com distúrbio de linguagem à terapia fonoaudiológica, monitoradas pelo P300, comparadas a crianças sem intervenção.


A diferença média entre as latências do grupo submetido à terapia e do grupo controle foi de -20,12 ms com intervalo de confiança 95% entre -43,98 e 3,74 ms (p = 0,08; I2 = 25% e o valor de p = 0,26). A diferença média entre as amplitudes do grupo submetido à terapia e do grupo controle foi de 0,73 uV com intervalo de confiança de 95% entre -1,77 e 3,23 uV (p = 0,57; I2 = 0% e o valor de p = 0,47).


A terapia fonoaudiológica não influencia nos resultados de latência e amplitude do potencial evocado P300 em crianças submetidas à intervenção fonoaudiológica.

PALAVRAS-CHAVE Potencial evocado P300; Terapia da linguagem; Reabilitação dos transtornos da linguagem e da fala


Patient evolution at the audiology and speech-language clinic acts as a motivator of the therapeutic process, contributing to patient adherence to treatment and allowing the therapists to review and/or maintain their clinical therapeutic conducts.1 Electrophysiological measures, in turn, help in the evaluation, understanding and monitoring of human communication disorders, thus facilitating the prognosis definition in each case.2

The Long-latency auditory evoked potentials (LLAEP) are objective measures used in the electrophysiological hearing assessment, corresponding to the thalamus and cortex activity in response to the auditory stimulus. It has an exogenous component, related to auditory sensitivity, and an endogenous component, P300, described in the literature as a cognitive potential.3,4

P300 is elicited by performing a specific task that usually includes the discrimination between two randomly presented auditory stimuli (a frequent stimulus and a rare one). In this sense, the evaluated subject should indicate the stimulus that is considered rare, thus reflecting information about functions such as attention, discrimination, integration and memory.4 Latency is directly related to the processing of information and the amplitude to the number of information that the stimulus was able to transmit.5

The development of language, on the other hand, is intrinsically connected to cognitive development. It is in the interrelationship of a set of cognitive, linguistic and socio-pragmatic skills that language becomes effective.6 Therefore, changes in auditory processing, changes in the development of language expression and/or reception, changes in the written language development, phonological disorders and disfluencies may lead to changes in the latency and amplitude of P300. Nevertheless, the rehabilitation of these disorders promotes functional and morphological modifications in the central nervous system (CNS) as a consequence of neuroplasticity.7

Considering the high frequency of language changes, especially in the pediatric population, performing the P300 has gained space in scientific research.8-10 Thus, the systematic review of this content will provide better planning in future studies, a synthesis of the knowledge gathered so far, in addition to adding new knowledge, subsidizing clinical practice and representing the importance of speech-language audiologists and otorhinolaryngologists' work.11

Therefore, the aim of this study is to determine whether speech therapy influences the variation in the latency and amplitude of the P300 auditory evoked potential in patients with speech disorders undergoing speech therapy.


The review is reported according to the items in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA).12

Search strategies

The strategies aimed at a complete search, including descriptors (DECs and MESH) and Free Terms (TL), based on the four elements of PICO (Patient, Intervention, Comparison, Outcome) present in the title, which consist of: (child or children or preschool) and (event related potential or p300 OR evoked potential) and (language disorders or language therapy or development disorders or rehabilitation of speech or speech therapy). The complete strategy is found in the supplementary material (Appendix 1).

The searches were performed between April and May 2017 and were reviewed in September 2018. The following databases were searched: Pubmed, ScienceDirect, SCOPUS, Web of Science, SciELO and LILACS, as well as the gray literature databases:, DissOnline, without language or date restrictions. There was no manual search of the included articles to avoid the risk of citation bias.13

Criteria of eligibility

Inclusion criteria were: randomized or non-randomized clinical trials that involved children with language disorders in speech therapy, monitored by P300, compared to children without intervention, as well as the mean values of P300 latency and amplitude in the first and second evaluations, associated with a dispersion measure. Exclusion criteria were studies evaluating children with peripheral, cognitive, psychiatric or neurological auditory disorders. Repeated articles in different databases were also excluded.

Data extraction

Titles and abstracts of articles obtained through the search were independently assessed by two investigators who were not blinded to the authors or to the titles of the journals. Divergences were resolved by consensus. In cases with no consensus, a third author was asked to make the final decision. The full texts of potentially eligible articles were acquired and analyzed in full. The outcomes sought in the studies were the mean values of latency and amplitude of the P300 components pre- and post-speech therapy associated with a measure of dispersion. The data of the published articles were analyzed, and the authors were contacted for additional information. In addition to the outcome data, the authors' names, article title, year of publication, country, age groups, pathology, intervention, number of sessions and studied groups were also extracted. A standard form for data storage was created based on the model adopted by Cochrane.14

Evaluation of study quality

Study quality was evaluated according to the recommendations found in the Cochrane Collaboration manual.15 Two investigators independently assessed the quality of the studies in the following categories: generation of the appropriate sequence; allocation concealment; blinding of the evaluators; and handling of missing data for subsequent final judgment.

Data analysis

The latency and amplitude variation of the P300 Evoked Potential for both groups (Study Group submitted to therapy and Control Group not submitted to therapy) was compared through a meta-analysis. For this purpose, a random effects model was used as a measure of the effect of the mean difference between the groups and as a statistical analysis method. An α value of 0.05 was considered statistically significant. When it was not possible to obtain adequate data for the analysis, the Cochrane recommendations were followed.

The statistical heterogeneity between studies was tested using the Cochrane Q Test and inconsistency was tested using the I 2 test. A p-value < 0.10 was considered statistically significant. When necessary, study characteristics considered potential sources of heterogeneity were included in a subgroup analysis. Additionally, in case of heterogeneity, the studies were removed one by one to investigate whether that particular study was the source of heterogeneity.

All analyses were performed using RevMan software (Computer program, Version 5.3. Copenhagen: The Nordic Cochrane Center, The Cochrane Collaboration, 2014).


Included studies

Of the 1008 titles considered relevant based on the searches in the aforementioned databases, 21 texts were selected for full reading. Of these, 18 were excluded16-33 because they did not meet the eligibility criteria (Appendix 2). Therefore, three full texts were included in the qualitative and quantitative analysis (Table 1). The flow diagram illustrating the search and selection process is shown in Fig. 1 and the mean latencies and amplitudes of the P300 of the articles included in the meta-analysis are shown in Table 2.

Table 1 Characteristics of the included studies. 

Study Place Age range (years) Language pathology Intervention N. of sessions (time in min) Groups Re-evaluation
Alvarenga, 201330 Brazil 08-14 Dyslexia Phonological remediation 24 sessions (45 min each) GE and GC SG and CG (3 months)
Leite, 201031 Brazil 8-11 Phonological disorder Therapy (cycle model) 12 sessions (45 min each) GT, GE and GC TG (there was no re-evaluation), SG and CG (3 months)
Leite, 201432 Brazil 8-11 Phonological disorder Therapy (cycle model) 12 sessions (45 min each) GT, GE and GC TG (there was no re-evaluation), SG and CG (3 months)

N, number; TG, typical development group; SG, Study Group submitted to therapy; CG, Control Group.

Figure 1 Flowchart of article search and selection. 

Table 2 Means latencies and amplitudes of the P300 at the first and second evaluations. 

Study Latency (ms) Amplitude (µv)
Mean (SD) Mean (SD)
Alvarenga, 2013 431.22 (29.69) 387.71 (31.18) 398.33 (48.22) 385.21 (46.37) 7.85 (2.77) 8.48 (2.08) 7.25 (4.94) 7.74 (3.32)
Leite, 2010 360.4 (48.5) 349.3 (48.55) 344.1 (51.1) 334.0 (42.4) 13.83 (5.87) 17.97 (12.59) 13.38 (5.26) 15.35 (6.11)
Leite, 2014 394.73 (54.24) 361.82 (37.66) 349.55 (60.68) 358.00 (59.94) - - - -

SD, standard deviation; n, number; SG, Study Group submitted to therapy; CG, Control Group; I, first evaluation; II, second evaluation.

There were no significant differences between the right and left ears for all groups in all included studies. Moreover, the Oddball paradigm and the International 10-20 system for electrode placement were used, in addition to a significance level of 5%. The other parameters for P300 acquisition can be found in Table 3.

Table 3 Parameters of stimulation and acquisition of P300 evoked potential. 

Parameters Alvarenga, 2013 Leite, 2010 Leite, 2014
Stimulator 3A insert phone, binaural stimulation Monoaural stimulation Supra-aural (TDH-39)
Rate 1 s/s 1.1 s/s 1.1 s/s
Type Speech - /da/ rare; /ba/ frequent Tone burst Tone burst
Paradigm Oddball frequent - 80%, rare - 20% Oddball 1 kHz frequent; 1.5 kHz rare - 20% Oddball 1 kHz frequent (80%); 1.5 kHz rare - 20%
Duration - - Rise/fall: 10.00 plateau: 30.00
Intensity Fixed 80 dBNA Fixed 75 dBNA 75 dBnHL
Polarity - - Alternating
Time of analysis - 512 ms 300 ms
Channels - 2 channels -
Electrodes Fz, Cz (active); M1 and M2 (reference) ≤5 kΩ (individual); ≤2 kΩ (between electrodes) Cz (reference), Fpz (ground), M2 and M1 (active) 5 electrodes - impedance ≤5 kΩ
Filters 1-30 Hz 30.00-1.00 Hz 1-30 Hz
Signal amplification - - -
Sampling - 300 1000
Patient status Alert/attentive Attentive Attentive

In the study by Alvarenga,34 which included 20 students with a diagnosis of Developmental Dyslexia, 10 of them were submitted to therapy (GI) and 10 characterized the Control Group (GII). Two P300 evaluations were performed in the same interval for both groups. After the intervention, GI showed a statistically significant result for P300 latency (p = 0.005). The authors concluded that P300 is an efficient tool to monitor the therapeutic evolution of children with Developmental Dyslexia.

The study by Leite35 evaluated 66 children, 25 of them without phonological disorder (group with typical development) and 41 with phonological disorder (study group), which they divided into two subgroups: 22 comprised the study subgroup A, submitted to 12 speech therapy sessions and re-evaluated by the LLAEP after the intervention, and 19 comprised the study subgroup B, reassessed 3 months after the first evaluation. Statistically significant differences were identified between the groups with typical development and study for P300 latencies and amplitudes. When comparing the first and the second evaluations, significance was observed for the P300 amplitudes in the study subgroup A (p = 0.039). The latency results were not significant for the two subgroups. The authors also used a criterion of improvement and non-improvement based on the mean latency and amplitude differences of the LLAEP components of Subgroup B. In this evaluation, they reported that after the therapy, improvement was observed in all components of the examination. Therefore, they concluded that children with phonological disorders have alterations in P300 and that the audiological/speech-language intervention results in the improvement of results of all the LLAEP components.

Another study by Leite36 investigated 47 children, using a similar methodology. The children were divided into groups with typical development and study groups. The group with typical development consisted of 24 children and the study group of 23 children with phonological disorders, with the latter being divided into two subgroups: SG1, consisting of 12 children submitted to 12 speech therapy sessions and who were re-evaluated through LLAEP after the intervention, and SG2, consisting of 11 children who were not submitted to speech therapy and were re-evaluated three months after the initial evaluation. They obtained a significant result for P300 latency in the group submitted to speech therapy intervention (p = 0.024). The authors did not report the values for amplitude.

Study quality evaluation

The quality analysis of the included studies is shown in Table 4.

Table 4 Evaluation of included articles. 

Authors Masking of evaluators Management of absent data Final judgment
Alvarenga, 2013 Uncertain Low High
Leite, 2010 Low Low Low
Leite, 2014 low Uncertain High

All included studies were characterized as non-randomized clinical trials. Therefore, it is not possible to judge them regarding the categories of random sequence generation and allocation concealment. Two of them (Leite,35 2010 and Leite,36 2014) reported the blinding of the evaluators to analyze the latencies and amplitudes of the P300 Evoked Potential, from the inclusion of evaluators blinded to the subjects' identities and their categories of participation. Regarding the handling of missing data, Leite36 2014 reported the abandonment of one member of the therapy group and absence of two members that belonged to the group without intervention in the second evaluation. However, he did not report how he treated these data in the statistical analysis. It should be noted that regardless of the final judgment found in the table, the three studies show, according to their nature, a high risk of bias due to non-randomization during the selection of their research subjects.

Data analysis

As the studies are nonrandomized, the groups showed great divergence as early as in the first evaluation. Thus, to avoid the phenomenon of regression to the mean, the variations between the final and initial latency and amplitude values would be necessary, as well as the standard deviation associated to these variations.


Three studies (84 individuals) were evaluated (Fig. 2). The mean difference between the latencies of the group submitted to therapy and the Control Group was −20.12 ms with 95% CI of −43.98 to 3.74 ms. The general effect test showed a p = 0.10, revealing that such a difference was not significant. For the heterogeneity, I 2 = 27% and the value of p = 0.25. To avoid the occurrence of reverse causality, as the exposure changes as a result of the disease, a subgroup analysis of the same language disorder (phonological disorder) was performed. Thus, the mean difference between the latencies of the group submitted to therapy and the Control Group was −16.59 ms, with 95% CI of −55.11 to 21.9 ms. The test for the overall effect showed a p = 0.40, also revealing that there was no significant difference. For the heterogeneity, I 2 = 50% and the value of p = 0.16.

Figure 2 Meta-analysis: comparison of latencies. 


Two studies (61 subjects) were evaluated (Figs. 3 and 4). The article by Leite36 did not include the search for amplitude values. The mean difference between the amplitudes of the group submitted to therapy and the Control Group was 0.73 uV with 95% CI of −1.77 to 3.23 uV. The overall effect test showed a p = 0.57, showing that this difference was not significant. For the heterogeneity, I 2 = 0% and the value of p = 0.47.

Figure 3 Meta-analysis: comparison of latencies between subgroups with the same language alteration. 

Figure 4 Meta-analysis: comparison of amplitudes. 


Three articles met the inclusion criteria of the present meta-analysis, two related to the Phonological Disorder35,36 and one related to Dyslexia.34 Despite the different language alterations, since the phonological disorder affects orality and dyslexia affects the reading system, both include phonological processing deficits as a basal alteration. Moreover, the studies share similarities regarding the subjects' age and the fact that they include some type of intervention.

The present review does not aim to find similar or different aspects between the language alterations, nor does it intend to evaluate the therapeutic procedures used. Rather it simply aims to determine whether speech therapy influences the variation of P300 latency and amplitude in patients with speech disorders submitted to speech therapy.

The individual results of the studies that constitute this review state that the stimulation performed by the speech-language intervention is able to reorganize the auditory and cognitive processing abilities, thus observing a reorganization capacity of the brain in the processing of auditory information, based on the brain neuroplasticity capacity.

They suggest that this effectiveness of the speech-language intervention occurs regardless of variables relevant to the pathology and the intervention, as the results were favorable in different language alterations and in different methodologies applied in therapy. Therefore, the effectiveness of the speech-language intervention, found through the P300 analysis, occurs independently of the affected language modality and the strategies or therapeutic resources used by the speech-language therapist.

The intervention effectiveness is seen through changes in the P300 latency and amplitude in a broad manner, without quantifying the percentage of improvement according to the therapy. Therefore, the parameters used in the test acquisition, as well as the methodological characteristics of the studies, are given greater relevance.

Regarding the test protocols, all the articles followed the recommendations of the International 10/20 System for electrode placement (derivation) and used the Oddball paradigm. One of the studies34 did not use the tone burst stimulation for the potential acquisition, using the speech stimulus to obtain specific information regarding auditory discrimination and language processing.

Although the articles that comprise this review individually indicate that the P300 undergoes changes regarding its amplitude and latency parameters as an effect of the speech-language intervention, the results of the meta-analysis do not show the same thing.

Regarding the methodological quality, all the studies showed a high risk of bias. This statement is based mainly on the impossibility of judging by the random sequence generation and allocation concealment criteria, showing an important selection bias. Furthermore, in the study by Leite36 the statistical treatment used in the study was not reported due to the loss of research subjects, which constitutes an attrition bias. On the other hand, the concern with the blinding of the evaluators appeared. It should be remembered that the article by Leite35 has low risk of bias when considering only its category (non-randomized clinical trial).

Moreover, one of the studies was excluded for the amplitude comparison due to lack of data. This result calls attention to the need for better planning in future research, thus increasing the worth of these investigators' performance.

Therefore, the first evaluation already shows a discrepancy in the latency and amplitude mean values due to the several confounding variables in the selection of the groups. When discussing this discrepancy, it refers, for instance, to the latencies found in the study by Leite.36 In it, the group selected for speech therapy intervention had in the first evaluation a mean value of 394.73 ms, whereas the Control Group had 349.55 ms.

Considering these values, one can observe the distinction between the groups and, therefore, it cannot be affirmed that the values found in the second evaluation strongly consist of the therapy effect or only the phenomenon of regression to the mean. Nonetheless, none of the studies attempted to minimize these discrepancies.

Conversely, to perform the meta-analysis, the Cochrane guidelines were followed14 and the variations of mean latency and amplitude values were calculated, as well as the standard deviation associated with this variation.

In contrast, the literature points to the success of speech-language intervention in the most diverse disorders. Silva and Capellini,37 demonstrated the efficacy of a phonological intervention program in schoolchildren at risk for dyslexia after the application of a specific protocol for assessing cognitive-linguistic abilities pre- and post-therapy. Its intervention methodology resembles that proposed by Alvarenga,34 which worked with metaphonological skills and auditory processing, among others. Nevertheless, Rosal,38 verified in their study the importance of these same skills for the learning of writing.

Despite the phonological disorders, different approaches and authors report the good results in the evolution of this patient profile. Wiethan and Mota39 gave different contributions of different approaches aimed at treating these alterations. Gubiani and Keske-Soares40 also verified the phonological system evolution in patients treated with different therapeutic approaches.

The divergence found between the individual results of the studies that constitute this review, which affirm that speech therapy influences P300 alterations, and the results of this meta-analysis, which found that speech therapy does not influence the latency and amplitude results of P300, should be interpreted with caution, as they derive from a small number of non-randomized clinical trials. The lack of the intervention effect may be much more related to the lack of scientific rigor of the included articles than to the non-evolution of these patients post-therapy.


The present meta-analysis demonstrates that speech-language therapy does not influence the latency and amplitude results of the P300 Evoked Potential in children with language disorders submitted to audiology and speech-language intervention.

Please cite this article as: Silva DR, Menezes PL, Almeida GF, Souza TN, Costa RC, Frizzo AC, et al. Influence of speech-language therapy on P300 outcome in patients with language disorders: a meta-analysis. Braz J Otorhinolaryngol. 2019;85:510-9.

Appendix A

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bjorl.2019.01.012.


1 Ferraz E. Efeitos de um programa de remediação fonológica em escolares com dislexia do desenvolvimento: monitoramento da evolução terapêutica com o uso do P300. Universidade de São Paulo: Bauru (SP); 2013. [ Links ]

2 Fiuza S, Gução ACB, Frizzo ACF. Eletrofisiologia: perspectivas atuais de sua aplicação clínica em fonoaudiologia. Verba Volant. 2013;4:1-20. [ Links ]

3 Reis ACMB, Frizzo ACF. Potencial Evocado de Longa Latência. In: Bevilacqua MC, Martinez MAN, Balen AS, Pupo AC, Reis ACM, Frota S, editors. Tratado de Audiologia. Publisher; 2011. p.231-54. [ Links ]

4 Hall JW. P300 responses. In: Hall JW, editor. New handbook of auditory evoked responses. Pearson; 2006, 13:518-48. [ Links ]

5 Borja A, Ponde M. P300: avaliação do potencial evocado cognitivo em crianças com e sem TDAH. Rev Ciênc Méd Biol. 2009;8:198-205. [ Links ]

6 Del Ré A. Um caminho em direção à constituição da identidade na criança: enunciação, linguagem e cognição. Letras de Hoje. 2009;44:44-52. [ Links ]

7 Benasich AA, Choudhury NA, Realpe Bonilla T, Roesler CP. Plasticity in developing brain: active auditory exposure impacts prelinguistic acoustic mapping. J Neurosci. 2014;34:49-63. [ Links ]

8 Andrade CRFD, Sassi FC, Matas CG, Neves IF, Martins VO. P300 event-related potentials in stutterers pre and post treatment: a pilot study. Pró Fono. 2007;19:401-5. [ Links ]

9 Jucla M, Nenert R, Chaix Y, Demonet JF. Remediation effects on N170 and P300 in children with developmental dyslexia. Behav Neurol. 2010;22:121-9. [ Links ]

10 Shaheen EA, Shohdy SS, Abd Al Raouf M, Mohamed El Abd S, Abd Elhamid A. Relation between language, audio-vocal psycholinguistic abilities and P300 in children having specific language impairment. Int J Pediatr Otorhinolaryngol. 2011;75:117-22. [ Links ]

11 Silva GA, Otta E. Revisão sistemática e meta-análise de estudos observacionais em Psicologia. Rev Costarric Psicol. 2014;33:137-53. [ Links ]

12 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. [ Links ]

13 Sterne JAC, Egger M, Moher D. Addressing reporting biases, in: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0. Available at: [accessed 10.02.16]. [ Links ]

14 Higgins JPT, Deeks JJ. Selecting studies and collecting data, in: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0. Available at: [accessed 07.02.16]. [ Links ]

15 Higgins JPT, Altman DG, Sterne JAC. Assessing risk of bias in included studies, in: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0. Available at: [accessed 2016]. [ Links ]

16 Allefelds C. Phase synchronization analysis of event-related brain potentials in language processing. [dissertation]. Potsdam: Potsdam University; 2004. [ Links ]

17 Alonso R, Schochat E. The efficacy of formal auditory training in children with (central) auditory processing disorder: behavioral and electrophysiological evaluation. Braz J Otorhinolaryngol. 2009;75:726-32. [ Links ]

18 Bruce J, McDermott JM, Fisher PA, Fox NA. Using behavioral and electrophysiological measures to assess the effects of a preventive intervention: a preliminary study with preschool-aged foster children. Prev Sci. 2009;10:129-40. [ Links ]

19 Froud K, Khamis-Dakwar R. Mismatch negativity responses in children with a diagnosis of childhood apraxia of speech (CAS). Am J Speech Lang Pathol. 2012;21:302-12. [ Links ]

20 Goswami U, Mead N, Fosker T, Huss M, Barnes L, Leong V. Impaired perception of syllable stress in children with dyslexia: a longitudinal study. J Mem Lang. 2013;69:1-17. [ Links ]

21 Grantham-Mcgregor S, Cornelius A. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr. 2001;323:S649-68. [ Links ]

22 Huber M, Telser S, Falk M, Böhm A, Hackenberg B, Schwitzer J, et al. Information transmission defect identified and localize in language learning impaired children by means of electrophysiology. Cortex. 2005;41:464-70. [ Links ]

23 Inoue Y, Inagaki M, Gunji A, Furushima W, Okada H, Sasaki H, et al. Altered effect of preceding response execution on inhibitory processing in children with AD/HD: an ERP study. Int J Psychophysiol. 2010;77:118-25. [ Links ]

24 Leite RA. Estudo dos potenciais evocados auditivos de longa latência em crianças com transtorno fonológico pré e pós terapia fonoaudiológica [thesis]. São Paulo (SP): Universidade de São Paulo; 2009. [ Links ]

25 Malinsa J, Desroches AS, Robertson EK, Newman RL, Archibald LM, Joanisse MF. ERPs reveal the temporal dynamics of auditory word recognition in specific language impairment. Dev Cog Neurosci. 2013;5:134-48. [ Links ]

26 Perre L. Written language spoken language (electrophysiological studies of intermodal integration). Marseille: Provence Univ; 2008. [ Links ]

27 Schulte-Korne G, Bartling J, Deimel W, Remschmidt H. Visual evoked potentials elicited by coherently moving dots in dyslexic children. Neurosci Lett. 2004;357:207-10. [ Links ]

28 Spironelli C, Penolazzi B, Vio C, Angrilli A. Cortical reorganization in dyslexic children after phonological training: evidence from early evoked potentials. Brain. 2010;133:3385-95. [ Links ]

29 Yoder PJ, Molfese D, Murray MM, Key APF. Normative topographic ERP analyses of speed of speech processing and grammar before and after grammatical treatment. Dev Neuropsychol. 2013;38:514-33. [ Links ]

30 Włodarczyk E, Szkiełkowska A, Pilka A, Skarżyński H. Assessment of cortical auditory evoked potentials in children with specific language impairment. Otolaryngol Pol. 2018;72:16-22. [ Links ]

31 Kwok EYL, Joanisse MF, Archibald LMD, Cardy JO. Immature auditory evoked potentials in children with moderate-severe developmental language disorder. J Speech Lang Hear Res. 2018;61:1718-30. [ Links ]

32 Singh S, Walk AM, Conway CM. Atypical predictive processing during visual statistical learning in children with developmental dyslexia: an event-related potential study. Ann Dyslexia. 2018;68:165-79. [ Links ]

33 Bidet-Caulet A, Latinus M, Roux S, Malvy J, Bonnet-Brilhault F, Bruneau N. Atypical sound discrimination in children with ASD as indicated by cortical ERPs. J Neurodev Disord. 2017;9:13. [ Links ]

34 Alvarenga KF, Araújo ES, Ferraz E, Crenitte PAP. P300 auditory cognitive evoked potential as an indicator of therapeutical evolution in students with developmental dyslexia. CoDAS. 2013;25:500-5. [ Links ]

35 Leite RA, Wertzner HF, Matas CG. Long latency auditory evoked potentials in children with phonological disorder. Pró Fono. 2010;22:561-6. [ Links ]

36 Leite RA, Wertzner HF, Gonçalves IC, Magliaro FCL, Matas CG. Auditory evoked potentials: predicting speech therapy outcomes in children with phonological disorders. Clinics. 2014;69:212-8. [ Links ]

37 Silva C, Capellini AS. Eficácia de um programa de intervenção fonológica em escolares de risco para a dislexia. Rev CEFAC. 2015;6:827-37. [ Links ]

38 Rosal AGC, Cordeiro AAA, Silva ACF, Lima R, Queiroga BAM. Contribuições da consciência fonológica e nomeação seriada rápida para a aprendizagem inicial da escrita. Rev CEFAC. 2016;1:74-85. [ Links ]

39 Wiethan M, Mota FB. Propostas terapêuticas para os desvios fonológicos: diferentes soluções para o mesmo problema. Rev CEFAC. 2011;13:541-51. [ Links ]

40 Brancalioni AR, Keske-Soares M. Palavras-estímulo favorecedoras para o tratamento do desvio fonológico em onset simples. Rev CEFAC. 2016;6:1475-84. [ Links ]

Received: March 30, 2018; Accepted: January 2, 2019; Published: March 8, 2019

* Corresponding author. (A.T. Carnaúba).

Conflicts of interest

The authors declare no conflicts of interest.

Creative Commons License This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.