Acessibilidade / Reportar erro

Litterfall in the Semideciduous Seasonal Forest in Southern Brazil

Abstract

Litterfall and nutrient cycling are essential processes for the forest diversity and productivity maintenance. This study aims to characterize the litterfall and evaluate if it has correlations with climatic variables in the Semideciduous Seasonal Forest on advanced succession stage, in Southern Brazil. During the 2007-2010 period, the litterfall was collected every month, sorted into leaves, twigs, and miscellaneous fractions. The litterfall amount average was 7.75 Mg ha-1 year-1 and leaves constituted the highest litterfall percentage (75.0%), followed by twigs (14.7%), and miscellaneous (10.3%). Higher leaf amounts were recorded in August and September. The minimum air temperature was negatively correlated with the leaves and twigs production, that is, the litterfall amount increases when the air temperature decreases. The litterfall amount corresponds to values expected to advanced successional stage of the forest typology studied. In Semideciduous Seasonal Forest in Southern Brazil, the thermal stress exerts influence on the litterfall amount.

Keywords:
nutrient cycling; forest nutrition; seasonality

1. INTRODUCTION AND OBJECTIVES

Brazil has many types of native forest, and the Semideciduous Seasonal Forest occurs between the South and the Southeast of the country (Ivanauskas & Assis, 2012Ivanauskas NM, Assis MC. Formações florestais brasileiras. In: Martins SV, editor. Ecologia de florestas tropicais no Brasil. Viçosa: Editora UFV; 2012. p. 252-293.). This forest is considered an important ecosystem in the Atlantic Forest phytogeographic domain for the diversity and conservation of flora, shelter for fauna, and other functions exerted by forests (Viani et al., 2011Viani RAG, Costa JC, Rozza AF, Bufo LVB, Ferreira MAP, Oliveira ACP. Caracterização florística e estrutural de remanescentes florestais de Quedas do Iguaçu, sudoeste do Paraná. Biota Neotropica 2011; 11(1): 115-128. 10.1590/S1676-06032011000100011
https://doi.org/10.1590/S1676-0603201100...
).

For this forest productivity and diversity maintenance, the nutrient cycling process is an essential mechanism (Santos Neto et al., 2015Santos Neto AP, Barreto PAB, Gama-Rodrigues EF, Novaes AB, Paula A. Produção de serapilheira em floresta estacional semidecidual e em plantios de Pterogyne nitens Tul. e Eucalyptus urophylla S. T. Blake no sudoeste da Bahia. Ciência Florestal 2015; 25(3): 633-643. 10.5902/1980509819614
https://doi.org/10.5902/1980509819614...
). Promoted by litterfall, litter decomposition and mineralization make nutrients available in the soil for absorption by roots, and subsequent transfer to different parts of plants (Poggiani, 2012Poggiani F. Ciclagem de nutrientes em florestas do Brasil. In: Martins SV, editor. Ecologia de florestas tropicais no Brasil. Viçosa: Editora UFV; 2012. p. 175-251.). Therefore, the knowledge on litterfall rates in the physiognomies composing the Atlantic Forest phytogeographic domain is essential, given the current degree of anthropization (Pereira et al., 2008Pereira MG, Menezes LFT, Schultz N. Aporte e decomposição da serapilheira na Floresta Atlântica, Ilha da Marambaia, Mangaratiba, RJ. Ciência Florestal 2008; 18(4): 443-454. 10.5902/19805098428
https://doi.org/10.5902/19805098428...
).

In addition to being an ecological indicator for restoration evaluation of degraded areas, litterfall has an important role in the recovery of soil fertility in the initial stages of ecological succession (Alonso et al., 2015Alonso JM, Leles PSS, Ferreira LN, Oliveira NSA. Aporte de serapilheira em plantio de recomposição florestal em diferentes espaçamentos. Ciência Florestal 2015; 25(1): 1-11. 10.5902/1980509817439). Litterfall on the forest floor, such as leaves, branches, twigs, barks, and other plant materials, decomposes, and mineralizes to form organic matter, which serves as a nutrient pool (Kimmins, 1987Kimmins JP. Forest ecology. New York: Collier Macmillan Canada; 1987.). The dynamics of production of deciduous plant material and its seasonality may vary according to the forest successional stage (Menezes et al., 2015Menezes CEG, Pereira MG, Correia MEF, Anjos LHC, Paula RR, Souza ME. Aporte e decomposição da serapilheira e produção de biomassa radicular em florestas com diferentes estágios sucessionais em Pinheiral, RJ. Ciência Florestal 2015; 20(3): 439-452. 10.5902/198050982059
https://doi.org/10.5902/198050982059...
) and disturbance degree (Poggiani, 2012Poggiani F. Ciclagem de nutrientes em florestas do Brasil. In: Martins SV, editor. Ecologia de florestas tropicais no Brasil. Viçosa: Editora UFV; 2012. p. 175-251.).

The litterfall amount also varies among different types of forest and ecosystems (Kimmins, 1987Kimmins JP. Forest ecology. New York: Collier Macmillan Canada; 1987.). Especially in the Semideciduous Seasonal Forest, litterfall studies in Brazil, carried out in different successional stages, indicated the litterfall amount varied according to the forest conservation, where it is more intense in advanced successional stages, decreasing in initial succession (Pinto et al., 2009Pinto SIC, Martins SV, Barros NF, Dias HCT. Ciclagem de nutrientes em dois trechos de floresta estacional semidecidual na reserva florestal Mata do Paraíso em Viçosa, MG, Brasil. Árvore 2009; 33(4): 653-663. 10.1590/S0100-67622009000400008
https://doi.org/10.1590/S0100-6762200900...
; Werneck et al., 2001Werneck MS, Pedralli G, Gieseke LF. Produção de serapilheira em três trechos de uma floresta semidecídua com diferentes graus de perturbação na Estação Ecológica do Tripuí, Ouro Preto, MG. Revista Brasileira de Botânica 2001; 24(2): 195-198. 10.1590/S0100-84042001000200009
https://doi.org/10.1590/S0100-8404200100...
). In these varied situations, the species diversity and climatic conditions can influence the litterfall amount (Dias et al., 2002Dias HCT, Figueira MD, Silveira V, Fontes MAL, Oliveira-Filho AT, Scolforo JRS. Variação temporal de nutrientes na serapilheira de um fragmento de floresta estacional semidecidual Montana em Lavras, MG. Cerne 2002; 8(2): 1-16.; Toledo et al., 2002Toledo LO, Pereira MG, Menezes CEG. Produção de serapilheira e transferência de nutrientes em florestas secundárias localizadas na região de Pinheiral, RJ. Ciência Florestal 2002; 12(2): 9-16. 10.5902/198050981676
https://doi.org/10.5902/198050981676...
). The objective of this study was to characterize the litterfall and evaluate if it has correlations with climatic variables on the Semideciduous Seasonal Forest in advanced succession stage, in Southern Brazil.

2. MATERIALS AND METHODS

2.1. Study area

The study was carried in Quedas do Iguaçu, Southwest region of the Paraná state, Brazil (central geographical coordinates 25° 27’ 22” S; 52° 54’ 39” W). The site has 13,000 ha area, covered by two types of native forests (Semideciduous Seasonal and Mixed Ombrophilous Forests) in different conservation stages, surrounded by pulp plantations of Araucaria angustifolia (Bertol.) Kuntze, Pinus spp. and Eucalyptus spp. The study area was delimited just in a remnant of the Semideciduous Seasonal Forest in advanced succession stage.

A floristic survey in the study area (Viani et al., 2011Viani RAG, Costa JC, Rozza AF, Bufo LVB, Ferreira MAP, Oliveira ACP. Caracterização florística e estrutural de remanescentes florestais de Quedas do Iguaçu, sudoeste do Paraná. Biota Neotropica 2011; 11(1): 115-128. 10.1590/S1676-06032011000100011
https://doi.org/10.1590/S1676-0603201100...
) indicates richness of the following botanical families: Fabaceae (16 species), Lauraceae (8 species), Myrtaceae (7 species) and Solanaceae (7 species). The authors mentioned above found 1,500 tree ha-1 average density in this forest typology, where the most abundant species Actinostemon concolor (Spreng.) Müll.Arg., Nectandra megapotamica (Spreng.) Mez, Lonchocarpus campestris Mart. ex Benth., Syagrus romanzoffiana (Cham.) Glassman, Sebastiania brasiliensis Spreng., Diatenopteryx sorbifolia Radlk., and Balfourodendron riedelianum (Engl.) Engl. are typical of Semideciduous Seasonal Forests in advanced succession stages.

The humid subtropical climate characterized by hot summers, with an average annual temperature of 20 °C, 1,780 mm average annual rainfall and 60 mm in the driest month (Matzenauer et al., 2011Matzenauer R, Radin B, Almeida IR, editors. Atlas climático do Rio Grande do Sul. Porto Alegre: FEPAGRO; 2011.). The region is characterized by two seasons: rainy summer and winter characterized by physiological drought and temperatures below 15 °C (Table 1).

Table 1
Monthly variation on air temperature and pluviometric precipitation during the study period, in the Semideciduous Seasonal Forest in Southern Brazil.

The study area relief is undulating and the altitude is 450 m in relation to the average sea level (FUPEF, 2001Fundação de Pesquisas Florestais do Paraná - FUPEF. Conservação do bioma floresta com araucária: relatório final: diagnóstico dos remanescentes florestais. Curitiba: FUPEF; 2001.). The predominant soil class is the typical Dystroferric Red Oxisol, characterized by low fertility and Fe2O3 levels varying between 18% and 36% up to 100 cm depth in the B-horizon (EMBRAPA, 2013Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA. Sistema brasileiro de classificação de solos. 3rd ed. Brasília, DF: EMBRAPA; 2013.).

2.2. Litterfall sampling

Three plots with 20 m × 20 m dimensions were installed to collect litterfall in the Semideciduous Seasonal Forest. Installed 20 meters away from the forest border, the plots were maintained 30 meters of minimum distance between each other, randomly distributed. In each plot was installed four litterfall collectors with 1 m² area, made of shading-net (1 mm mesh) and 0.70 m suspended above the soil level. From January 2007 to December 2010, all the litterfall deposited in these plots was collected every month and sent to the laboratory. The litterfall samples were sorted into leaves, twigs (diameter ≤ 0.5 cm), and miscellaneous fractions (i.e., flowers, seeds, fruits, and other residues). The samples fractions were dried in a circulation oven at 70 °C for 72 hours, followed by weighing in a balance (0.01 g accuracy).

Based on the data of monthly litterfall collections, the average year amount produced was estimated with the equation PS = (Σ PMS × 10,000) / AC, where: PS = annual litterfall (Mg ha-1 year-1), PMS = monthly litterfall (Mg ha-1 month-1), and AC = collector area (m²) (Lopes et al., 2002Lopes MIS, Domingos M, Struffaldide YV. Ciclagem de nutrientes minerais. In: Sylvestre LS, Rosa MMT. Manual metodológico para estudos botânicos na Mata Atlântica. Seropédica: EDUR; 2002. p. 72-102.).

2.3. Data analysis

The litterfall data were submitted to analysis of variance (ANOVA) in a completely randomized experimental design. The Scott-Knott test (α = 5%) was applied to evaluate differences in the monthly average litterfall (leaves, twigs and miscellaneous) between treatments (i.e. months). For ANOVA, four values (samples) were considered for each month (treatments) during the 2007-2010 period. The correlations between litterfall and climatic variables were evaluated by Pearson’s bilateral test. All analyzes were performed with Assistat version 7.7 (Silva & Azevedo, 2002Silva FAS, Azevedo CAV. Versão do programa computacional Assistat para o sistema operacional Windows. Revista Brasileira de Produção Agroindustrial 2002; 4(1): 71-78.).

3. RESULTS AND DISCUSSION

The total litterfall amount in the Semideciduous Seasonal Forest in the four years of evaluation was 31.01 Mg ha-1, with an annual average value of 7.75 Mg ha-1 year-1. The leaves were the predominated fraction of the litterfall (75.0%), followed by twigs (14.7%), and miscellaneous (10.3%) (Table 2).

Table 2
Litterfall in the Semideciduous Seasonal Forest in Southern Brazil.

The species diversity of this floristic composition (Viani et al., 2011Viani RAG, Costa JC, Rozza AF, Bufo LVB, Ferreira MAP, Oliveira ACP. Caracterização florística e estrutural de remanescentes florestais de Quedas do Iguaçu, sudoeste do Paraná. Biota Neotropica 2011; 11(1): 115-128. 10.1590/S1676-06032011000100011
https://doi.org/10.1590/S1676-0603201100...
) and partial deciduality provided continuous patterns of litterfall during the evaluated periods. The large litterfall amounts produced by varied species is a factor directly related to accelerated nutrient cycling, more organic matter formation, soil fertility increase, and soil protection (Kimmins, 1987Kimmins JP. Forest ecology. New York: Collier Macmillan Canada; 1987.).

The litterfall amounts, ranging from 7.09 to 8.57 Mg ha-1 year-1, correspond to values expected to advanced successional stage of the forest studied. The litterfall amount in this type of Semideciduous Seasonal Forest can vary from 5.09 to over 12.00 Mg ha-1 year-1 depending on succession stages (Table 3). In this forest typology, litterfall amounts in advanced stage tends to be higher than those of areas in initial succession.

The floristic composition variability, species abundance between succession stages (Viani et al., 2011Viani RAG, Costa JC, Rozza AF, Bufo LVB, Ferreira MAP, Oliveira ACP. Caracterização florística e estrutural de remanescentes florestais de Quedas do Iguaçu, sudoeste do Paraná. Biota Neotropica 2011; 11(1): 115-128. 10.1590/S1676-06032011000100011
https://doi.org/10.1590/S1676-0603201100...
) and soil fertility influenced the litterfall amount of the Semideciduous Seasonal Forest (Pinto et al., 2009Pinto SIC, Martins SV, Barros NF, Dias HCT. Ciclagem de nutrientes em dois trechos de floresta estacional semidecidual na reserva florestal Mata do Paraíso em Viçosa, MG, Brasil. Árvore 2009; 33(4): 653-663. 10.1590/S0100-67622009000400008
https://doi.org/10.1590/S0100-6762200900...
). The litterfall amount variation was also related to forests conservation status and seasonality climatic variables effect (Werneck et al., 2001Werneck MS, Pedralli G, Gieseke LF. Produção de serapilheira em três trechos de uma floresta semidecídua com diferentes graus de perturbação na Estação Ecológica do Tripuí, Ouro Preto, MG. Revista Brasileira de Botânica 2001; 24(2): 195-198. 10.1590/S0100-84042001000200009
https://doi.org/10.1590/S0100-8404200100...
).

About the litterfall composition and seasonality, twigs and miscellaneous varied according to the month and year, but regarding the amount of leaves, same tendencies are observed over time (Figure 1). The monthly variability of miscellaneous in litterfall composition is related to the amount of flowers, fruits and seeds produced by different species, with varied phenological phases; temporal heterogeneity on twigs amounts is a senescence physiological reflection (Taiz & Zeiger, 2013Taiz L, Zeiger E. Fisiologia vegetal. 5th ed. Porto Alegre: Artmed; 2013.) and an influence of other events (i.e., trees falls, rainfall, lightning and strong winds) (Pinto et al., 2009Pinto SIC, Martins SV, Barros NF, Dias HCT. Ciclagem de nutrientes em dois trechos de floresta estacional semidecidual na reserva florestal Mata do Paraíso em Viçosa, MG, Brasil. Árvore 2009; 33(4): 653-663. 10.1590/S0100-67622009000400008
https://doi.org/10.1590/S0100-6762200900...
).

Table 3
Litterfall in different succession stages of the Semideciduous Seasonal Forest typology, Brazil.

Figure 1
Seasonality of litterfall in the Semideciduous Seasonal Forest in Southern Brazil.

Leaves in the litterfall composition are results found in all studies, regardless of forest typology or succession stage (Poggiani, 2012Poggiani F. Ciclagem de nutrientes em florestas do Brasil. In: Martins SV, editor. Ecologia de florestas tropicais no Brasil. Viçosa: Editora UFV; 2012. p. 175-251.). Leaves are rich in nutrients, and the cycling fastest route can be used as a total litterfall indicator, as it follows the same tendencies of production (Pinto et al., 2009Pinto SIC, Martins SV, Barros NF, Dias HCT. Ciclagem de nutrientes em dois trechos de floresta estacional semidecidual na reserva florestal Mata do Paraíso em Viçosa, MG, Brasil. Árvore 2009; 33(4): 653-663. 10.1590/S0100-67622009000400008
https://doi.org/10.1590/S0100-6762200900...
). Out of all the litterfall, leaves decomposition is more accelerated, and large amounts of this component in the litterfall contribute to the continuous organic matter formation and productive capacity of this forest (Ferreira et al., 2014Ferreira ML, Silva JL, Pereira EE, Lamano-Ferreira APN. Litter fall production and decomposition in a fragment of secondary Atlantic Forest of São Paulo, SP, southeastern Brazil. Revista Árvore 2014; 38(4): 591-600. 10.1590/S0100-67622014000400002
https://doi.org/10.1590/S0100-6762201400...
).

Considering the litterfall monthly averages, the twigs amount and miscellaneous did not vary, but leaf production was higher in August and September, corresponding to 30% of the total litterfall of leaves (Table 4).

In August and September, the highest amount of leaves in the litterfall reflects the plant physiological responses to thermal stress (Taiz & Zeiger, 2013Taiz L, Zeiger E. Fisiologia vegetal. 5th ed. Porto Alegre: Artmed; 2013.), caused by the lower temperatures recorded in July; in the study area, the minimum temperature in this period was lower than 15 °C (Table 1). These results are corroborated by the correlation analyses that indicate the minimum air temperature negatively correlated with the leaves and twigs production (Table 5), that is, the litterfall amount (75% leaves in composition) increases when the air temperature decreases.

The seasonal leaves fall occurs due to endogenous hormonal regulation, by thermal stress, triggering a cascade of physiological events in the plant, finishing with leaves abscission (Dias et al., 2002Dias HCT, Figueira MD, Silveira V, Fontes MAL, Oliveira-Filho AT, Scolforo JRS. Variação temporal de nutrientes na serapilheira de um fragmento de floresta estacional semidecidual Montana em Lavras, MG. Cerne 2002; 8(2): 1-16.). However, climatic extreme absence (intense and dry cold prolonged periods), coupled with floristic diversity in this Semideciduous Seasonal Forest, allows the forest to litterfall throughout the year (Viani et al., 2011Viani RAG, Costa JC, Rozza AF, Bufo LVB, Ferreira MAP, Oliveira ACP. Caracterização florística e estrutural de remanescentes florestais de Quedas do Iguaçu, sudoeste do Paraná. Biota Neotropica 2011; 11(1): 115-128. 10.1590/S1676-06032011000100011
https://doi.org/10.1590/S1676-0603201100...
).

In others litterfall studies of the seasonal forest in Southern Brazil, the peak of leaves production were also reported in September when the temperature begins to rise, indicated as a tendency of this forest in the South region (König et al., 2002König FG, Schumacher MV, Brun EJ, Seling I. Avaliação da sazonalidade da produção de serapilheira numa floresta estacional decidual no município de Santa Maria-RS. Árvore 2002; 26(4): 429-435. 10.1590/S0100-67622002000400005
https://doi.org/10.1590/S0100-6762200200...
; Pimenta et al., 2011Pimenta JA, Rossi LB, Torezan JMD, Cavalheiro AL, Bianchini E. Produção de serapilheira e ciclagem de nutrientes de um reflorestamento e de uma floresta estacional semidecidual no sul do Brasil. Acta Botanica Brasilica 2011; 25(1): 53-57. 10.1590/S0102-33062011000100008
https://doi.org/10.1590/S0102-3306201100...
). The growth stagnation caused by winter leads to senescent foliage elimination, optimal utilization aiming to new growth period, which begins in Spring, with the new foliage appearance (Toledo et al., 2002Toledo LO, Pereira MG, Menezes CEG. Produção de serapilheira e transferência de nutrientes em florestas secundárias localizadas na região de Pinheiral, RJ. Ciência Florestal 2002; 12(2): 9-16. 10.5902/198050981676
https://doi.org/10.5902/198050981676...
).

In this forest in Southern Brazil, the thermal stress influence on the litterfall amount is corroborated. However, in the same type of forest in the Southeast country region. where air temperature extremes are not pronounced, the pluviometric precipitation is a more effective factor that influences litterfall amount, with peaks after water deficit (Dias et al., 2002Dias HCT, Figueira MD, Silveira V, Fontes MAL, Oliveira-Filho AT, Scolforo JRS. Variação temporal de nutrientes na serapilheira de um fragmento de floresta estacional semidecidual Montana em Lavras, MG. Cerne 2002; 8(2): 1-16.; Pinto et al., 2009Pinto SIC, Martins SV, Barros NF, Dias HCT. Ciclagem de nutrientes em dois trechos de floresta estacional semidecidual na reserva florestal Mata do Paraíso em Viçosa, MG, Brasil. Árvore 2009; 33(4): 653-663. 10.1590/S0100-67622009000400008
https://doi.org/10.1590/S0100-6762200900...
; Toledo et al., 2002Toledo LO, Pereira MG, Menezes CEG. Produção de serapilheira e transferência de nutrientes em florestas secundárias localizadas na região de Pinheiral, RJ. Ciência Florestal 2002; 12(2): 9-16. 10.5902/198050981676
https://doi.org/10.5902/198050981676...
).

Table 4
Monthly values (average ± standard deviation) of litterfall in the Semideciduous Seasonal Forest in Southern Brazil.
Table 5
Pearson’s correlation between litterfall and climate variables in the Semideciduous Seasonal Forest in Southern Brazil.

4. CONCLUSIONS

The litterfall amounts in the forest studied, which range from 7.09 to 8.57 Mg ha-1 year-1, correspond to values expected in the advanced successional stage. Leaves predominated in the litterfall composition (75%), and thermal stress influences the litterfall amount, when minimum air temperature was negatively correlated with leaves and twigs production.

The litterfall is a relevant mean of forest nutrition in natural ecosystems; however, to better understand the nutrient cycling in Semideciduous Seasonal Forest, further studies are necessary to evaluate the nutritional and organic composition (cellulose, hemicellulose and lignin) of the litter and its decomposition dynamics (release of nutrients rate, decomposing fauna action, etc.).

ACKNOWLEDGEMENTS

We thank the company Araupel S.A. for providing the study area and for financial assistance. Thanks to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for granting scholarship to the first author of the study.

REFERENCES

  • Alonso JM, Leles PSS, Ferreira LN, Oliveira NSA. Aporte de serapilheira em plantio de recomposição florestal em diferentes espaçamentos. Ciência Florestal 2015; 25(1): 1-11. 10.5902/1980509817439
  • Dias HCT, Figueira MD, Silveira V, Fontes MAL, Oliveira-Filho AT, Scolforo JRS. Variação temporal de nutrientes na serapilheira de um fragmento de floresta estacional semidecidual Montana em Lavras, MG. Cerne 2002; 8(2): 1-16.
  • Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA. Sistema brasileiro de classificação de solos. 3rd ed. Brasília, DF: EMBRAPA; 2013.
  • Ferreira ML, Silva JL, Pereira EE, Lamano-Ferreira APN. Litter fall production and decomposition in a fragment of secondary Atlantic Forest of São Paulo, SP, southeastern Brazil. Revista Árvore 2014; 38(4): 591-600. 10.1590/S0100-67622014000400002
    » https://doi.org/10.1590/S0100-67622014000400002
  • Fundação de Pesquisas Florestais do Paraná - FUPEF. Conservação do bioma floresta com araucária: relatório final: diagnóstico dos remanescentes florestais. Curitiba: FUPEF; 2001.
  • Ivanauskas NM, Assis MC. Formações florestais brasileiras. In: Martins SV, editor. Ecologia de florestas tropicais no Brasil. Viçosa: Editora UFV; 2012. p. 252-293.
  • Kimmins JP. Forest ecology. New York: Collier Macmillan Canada; 1987.
  • König FG, Schumacher MV, Brun EJ, Seling I. Avaliação da sazonalidade da produção de serapilheira numa floresta estacional decidual no município de Santa Maria-RS. Árvore 2002; 26(4): 429-435. 10.1590/S0100-67622002000400005
    » https://doi.org/10.1590/S0100-67622002000400005
  • Lopes MIS, Domingos M, Struffaldide YV. Ciclagem de nutrientes minerais. In: Sylvestre LS, Rosa MMT. Manual metodológico para estudos botânicos na Mata Atlântica. Seropédica: EDUR; 2002. p. 72-102.
  • Martins SV, Rodrigues RR. Produção de serapilheira em clareiras de uma floresta estacional semidecidual no município de Campinas, SP. Revista Brasileira de Botânica 1999; 22(3): 405-412. 10.1590/S0100-84041999000300009
    » https://doi.org/10.1590/S0100-84041999000300009
  • Matzenauer R, Radin B, Almeida IR, editors. Atlas climático do Rio Grande do Sul. Porto Alegre: FEPAGRO; 2011.
  • Menezes CEG, Pereira MG, Correia MEF, Anjos LHC, Paula RR, Souza ME. Aporte e decomposição da serapilheira e produção de biomassa radicular em florestas com diferentes estágios sucessionais em Pinheiral, RJ. Ciência Florestal 2015; 20(3): 439-452. 10.5902/198050982059
    » https://doi.org/10.5902/198050982059
  • Pereira MG, Menezes LFT, Schultz N. Aporte e decomposição da serapilheira na Floresta Atlântica, Ilha da Marambaia, Mangaratiba, RJ. Ciência Florestal 2008; 18(4): 443-454. 10.5902/19805098428
    » https://doi.org/10.5902/19805098428
  • Pezzato AW, Wisniewski C. Produção de serapilheira em diferentes seres sucessionais da floresta estacional semidecidual no oeste do Paraná. Floresta 2006; 36(1): 111-120. 10.5380/rf.v36i1.5596
    » https://doi.org/10.5380/rf.v36i1.5596
  • Pimenta JA, Rossi LB, Torezan JMD, Cavalheiro AL, Bianchini E. Produção de serapilheira e ciclagem de nutrientes de um reflorestamento e de uma floresta estacional semidecidual no sul do Brasil. Acta Botanica Brasilica 2011; 25(1): 53-57. 10.1590/S0102-33062011000100008
    » https://doi.org/10.1590/S0102-33062011000100008
  • Pinto SIC, Martins SV, Barros NF, Dias HCT. Ciclagem de nutrientes em dois trechos de floresta estacional semidecidual na reserva florestal Mata do Paraíso em Viçosa, MG, Brasil. Árvore 2009; 33(4): 653-663. 10.1590/S0100-67622009000400008
    » https://doi.org/10.1590/S0100-67622009000400008
  • Poggiani F. Ciclagem de nutrientes em florestas do Brasil. In: Martins SV, editor. Ecologia de florestas tropicais no Brasil. Viçosa: Editora UFV; 2012. p. 175-251.
  • Santos Neto AP, Barreto PAB, Gama-Rodrigues EF, Novaes AB, Paula A. Produção de serapilheira em floresta estacional semidecidual e em plantios de Pterogyne nitens Tul. e Eucalyptus urophylla S. T. Blake no sudoeste da Bahia. Ciência Florestal 2015; 25(3): 633-643. 10.5902/1980509819614
    » https://doi.org/10.5902/1980509819614
  • Silva FAS, Azevedo CAV. Versão do programa computacional Assistat para o sistema operacional Windows. Revista Brasileira de Produção Agroindustrial 2002; 4(1): 71-78.
  • Taiz L, Zeiger E. Fisiologia vegetal. 5th ed. Porto Alegre: Artmed; 2013.
  • Toledo LO, Pereira MG, Menezes CEG. Produção de serapilheira e transferência de nutrientes em florestas secundárias localizadas na região de Pinheiral, RJ. Ciência Florestal 2002; 12(2): 9-16. 10.5902/198050981676
    » https://doi.org/10.5902/198050981676
  • Viani RAG, Costa JC, Rozza AF, Bufo LVB, Ferreira MAP, Oliveira ACP. Caracterização florística e estrutural de remanescentes florestais de Quedas do Iguaçu, sudoeste do Paraná. Biota Neotropica 2011; 11(1): 115-128. 10.1590/S1676-06032011000100011
    » https://doi.org/10.1590/S1676-06032011000100011
  • Vital ART, Guerrini IA, Franken WK, Fonseca RCB. Produção de serapilheira e ciclagem de nutrientes de uma floresta estacional semidecidual em zona ripária. Árvore 2004; 28(6): 793-800. 10.1590/S0100-67622004000600004
    » https://doi.org/10.1590/S0100-67622004000600004
  • Werneck MS, Pedralli G, Gieseke LF. Produção de serapilheira em três trechos de uma floresta semidecídua com diferentes graus de perturbação na Estação Ecológica do Tripuí, Ouro Preto, MG. Revista Brasileira de Botânica 2001; 24(2): 195-198. 10.1590/S0100-84042001000200009
    » https://doi.org/10.1590/S0100-84042001000200009

Publication Dates

  • Publication in this collection
    08 May 2020
  • Date of issue
    2020

History

  • Received
    20 June 2018
  • Accepted
    13 Dec 2018
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro Rodovia BR 465 Km 7, CEP 23897-000, Tel.: (21) 2682 0558 | (21) 3787-4033 - Seropédica - RJ - Brazil
E-mail: floram@ufrrj.br