Acessibilidade / Reportar erro

Constructions of Dense Lattices over Number Fields

ABSTRACT

In this work, we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2;3;4;5;6;8 and 12, which are rotated versions of the lattices Λn , for n=2,3,4,5,6,8 and K 12. These algebraic lattices are constructed through canonical homomorphism via ℤ-modules of the ring of algebraic integers of a number field.

Keywords:
algebric lattices; number fields; sphere packings

RESUMO

Neste trabalho, apresentamos construçõoes de reticulados algébricos no espaço euclidiano com densidade central ótima nas dimensões 2, 3, 4, 5, 6, 8 e 12, que são versões rotacionadas dos reticulados Λn , para n=2,3,4,5,6,8 e K 12, onde esses reticulados algébricos são construídos através do homomorfismo canônico via ℤ-módulos do anel de inteiros algébricos de um corpo de números.

Palavras-chave:
reticulados algébricos; corpos de números; empacotamento esférico

1 INTRODUCTION

Algebraic number theory has recently raised a great interest for its new role in algebraic lattice theory and in code design for many different coding applications. Algebraic lattices have been useful in information theory and the question of finding algebraic lattices over number fields maximum center density. The problem of finding algebraic lattices with maximal minimum product distance has been studied in last years and this has motived special attention of many researchs in considering ideals of certain rings. The search for dense algebraic lattices in general dimensions has been encouraged in the last decades because they can be applied to Information Theory 11. A.A. Andrade & R. Palazzo Jr. Linear codes over finite rings. TEMA - Trends in Applied and Computational Mathematics, 6(2) (2005), 207-217.) - (44. E. Bayer-Fluckiger, Lattices and number fields, In: Contemp. Math., Amer. Math. Soc., Providence (1999), 69-84..

The classical sphere packing problem consists to find out how densely a large number of identical spheres can be packed together in the Euclidean space. The packing density, ∆(Λ), of a lattice Λ is the proportion of the space ℝn covered by the non-overlapping spheres of maximum radius centered at the points of Λ. The densest possible lattice packings have only be determined in dimensions 1 to 8 and 24. It is also known that these densest lattice packings are unique (up to equivalences) 55. J. H. Conway & N. J. A. Sloane. Sphere Packings, Lattices and Groups, 3rd Edition, Springer Verlag, New York (1999)..

This paper is organized as follows. In Section 2, notions and results from algebraic number theory that are used in the work are reviewed. In Section 3, rotated lattices are constructed from number fields in dimensions 2,3,4,5,6,8 and 12, which are rotated versions of the lattices Ln, for n=2,3,4,5,6,8 and K 12.

2 BACKGROUND OF NUMBER FIELDS

Let 𝕂 be a number field, i.e., 𝕂 is a finite extension of ℚ. By Primitive Element Theorem, there is an element θ𝕂 such that K=(θ)=i=0n-1ai, where θ is a root of a polynomial p(x) [x] of minimal degree n. A cyclotomic field is a number field such that K=(θ), where θ is a primitive n-th root of unity. If θ1=θ,θ2,...,θn are the n distinct roots of p(x), then threre are exactly n distinct ℚ-embeddings σi:K such that σi(θ)=θi, for all i=1,2,,n. Furhtermore, there are r 1 real embeddings σ1,,σr1 and 2r 2 complex embeddings σr1+1,σr1+1,,σr1+r2,σr1+r2. If ℜ(x) and ℑ(x) denote, respectively, the real part and the imaginary part of x, the canonical embedding σ:Kn, with xK, is defined by

σ x = σ 1 x , , σ r 1 x , R σ r 1 + 1 x , , J σ r 1 + r 2 x .

The set OK={α:f(α)=0 for some monic polynomial f(x)[x]} is a ring called ring of algebraic integers of 𝕂. The ring 𝒪 𝕂 has a basis α1,α2,,αn over ℤ. In other words, every element αOK is uniquely written as α=i=1naiαi, where αi for all i=1,2,,n, and every nonzero fractional ideal of 𝒪 𝕂 is a free ℤ-module of rank n77. P. Samuel. Algebraic Theory of Numbers, Hermann, Paris (1970)..

If αK, the value

T r K α = i = 1 n σ i α

is called trace of α in 𝕂. If α1,α2,,αn is an integral basis of 𝕂, the discriminant of 𝕂 is defined as DK=detσjαi2 and it is an invariant over change of basis 66. J. C. Interlando, J. O. D. Lopes & T. P .N. Neto. The discriminant of abelian number fields, J. Algebra Appl., 5 (2006), 35-41..

3 CONSTRUCTIONS OF DENSE ALGEBRAIC LATTICES

A lattice ∧ is a discrete additive subgroup of ℝn , that is, 0n is a lattice iff there are linearly independent vectors v1,v2,...,vk, with kn, in ℝn such that

Λ = i = 1 k a i v i : a i , for all i = 1 , 2 , , k .

The set v1,v2,...,vk is called a basis for ∧, the matrix M whose rows are these vectors is called a generator matrix for ∧ and the matrix G=MMt is called Gram matrix.

If M is a ℤ-submodule in 𝕂 of rank n, the set Λ=σ(M) is a lattice in ℝn called an algebraic lattice. The center density of Λ is given by

δ Λ = t n / 2 2 n O K : M D K ,

where t=min{TrK(αα):α,α0} and [𝒪K:] denotes the index of the submodule M.

Example 3.1.IfK=(ζ3), where ζ3 is the primitive 3-th root of unity, then[K:]=2,{1,ζ3}is a basis of 𝕂 andDK=-3. If ℳ is a submodule of 𝒪 𝕂 given by

M = a 0 + a 1 ζ 3 : a 0 , a 1 ,

then [ 𝒪 K : ] = 1 and

T r K α α = 2 a 0 2 - a 0 a 1 + a 1 2 ,

where α . Since t = m i n { T r K ( a ā ) : α ; α 0 } = 2 with a 0 = 1 and a 1 = 0 , it follows that

δ M = 2 / 2 2 3 = 1 2 3 ,

i.e., the center density of σ() is the same of the lattice4. Similarly, ifK=3, then[K:]=2,{1,3}is a basis of 𝕂 andDK=12. If ℳ is a submodule of 𝒪 𝕂 given by=a0+a13:a0-a10(mod 2) and a0,a1, then[𝒪K:]=2andTrK(α2)=8a02+24a0a1+24a12, whereα. Sincet=min{TrK(α2):α,α0}=8witha0=1anda1=0, it follows thatδ()=8/22233=143 .

Example 3.2.IfK=(θ), whereθ=ζ9+ζ9-1and ζ9is the primitive 9-th root of unity, then[K:]=3,{1,θ,θ2}is an integral basis of 𝕂 andDK=34. If ℳ is a submodule of 𝒪 𝕂 given by

= a 0 + a 1 θ + a 2 θ 2 : a 0 0 ( m o d 2 ) and a 0 + 2 a 1 + a 2 0 ( m o d 3 ) , where a 0 , a 1 , a 2 ,

then [ 𝒪 K : ] = 6 and

T r K ( α 2 ) = 18 ( a 0 2 + a 0 a 1 + 5 a 0 a 2 + a 1 2 + 5 a 1 a 2 + 9 a 2 2 ) ,

where α . Since t = m i n { T r K ( α 2 ) : α , α 0 } = 18 with a 0 = 1 and a 1 = a 2 = 0 , it follows that

δ M = 18 / 2 3 54 = 1 4 2 ,

i.e., the center density of σ() is the same of the lattice Λ3 . Similarly, if=a0+a1θ+a2θ2:a00(mod 2) and a0+2a1+a20(mod 3), where a0,a1,a2, then[𝒪K:]=6andTrK(α2)=18(3a02+3a0a1+10a0a2+a12+5a1a2+9a22), whereα. Sincet=min{TrK(α2):α,α0}=18witha0=a2=0anda1=1, it follows thatδ()=18/232·3·32142. Similarly, if=a0+a1θ+a2θ2:a00(mod 2) and a0+2a1+a20(mod 3), where a0,a1,a2, then[𝒪K:]=6andTrK(α2)=18(3a02+3a0a1+10a0a2+a12+5a1a2+9a22), whereα. Sincet=min{TrK(α2):α,α0}=18witha0=a2=0anda1=1, it follows thatδ()=18/232·3·32=142. Finally, ifK=(θ), where θ is a root ofp(x)=x33x+1, then[K:]=3,{1,θ,θ2}is a basis of 𝕂 andDK=34. If ℳ is a submodule of 𝒪 𝕂 given by=a0+a1θ+a2θ2:a20(mod 2) and a0a1+a20(mod 3), with a0,a1,a2, then[𝒪K:]=6andTrK(α2)=18(a02+5a0a1+3a0a2+9a12+10a1a2+3a22), whereα. Sincet=min{TrK(α2):α,α0}=18witha0=1anda1=a2=0, it follows thatδ()=98/232·73=142.

Example 3.3.IfK=(ζ8), where ζ8is the primitive 8-th root of unity, then[K:]=4,{1, ζ8,ζ82,ζ83}is an integral basis of 𝕂 andDK=28. If ℳ is a submodule of 𝒪 𝕂 given by

M = a 0 + a 1 ζ 8 + a 2 ζ 8 2 + a 3 8 3 : a 0 + a 1 + a 2 + a 3 0 m o d 2 , where a 0 , a 1 , a 2 , a 3 ,

then [ O K : M ] = 2 and

T r K α α = 8 2 a 0 2 - 2 a 0 a 3 + a 1 2 - a 1 a 2 + a 2 2 - 2 a 2 a 3 + 2 a 3 2 ,

whereαM. Sincet=minTrKα2:αM,α0=8witha1=1anda0=a2=a3=0, it follows that

δ M = 8 / 2 4 32 = 1 8 ,

i.e., the center density of σ() is the same of the lattice Λ4. Similarly, ifM=a0+a1ζ8+a2ζ82+a3ζ83:a2+a30mod 2, where a0,a1,a2,a3, thenOK:M=2andTrKα2=8a02+a12+a22+2a32+a0a2+2a0a3+a1a2+2a2a3, whereαM. Sincet=minTrKα2:αM,α0=8witha0=1anda1=a2=a3=0, it follows thatδM=8/2432=18. Similarly, ifK=(θ), where θ is a root ofpx=x4+3x2+1, thenK:=4, where1,θ,θ2,θ3is an integral basis of 𝕂, DK=245˙2. If ℳ is a submodule of 𝒪 𝕂 given byM=a0+a1θ+a2θ2+a3θ3:a0-2a1+2a2-a30mod 5, where a0,a1,a2,a3, thenOK:M=10, and ifαM, thenTrKαα=40a02-40a0a1+132a0a2+360a0a3+20a12-28a1a2-140a1a3+158a22+720a2a3+900a32. Sincet=minTrKα2:αM,α0=20witha0=a2=a3=0anda1=1, if follows thatδM=20/2423·52=18.

Example 3.4.IfK=(θ), whereθ=ζ4410-ζ4412and ζ44is the primitive 44-th root of unity, then[K:]=5,{1,θ,θ2,θ3,θ4}is an integral basis of 𝕂 and the discriminant of 𝕂 is 114 . Let ℳ be a submodule of 𝒪 𝕂 given by

= { a 0 + a 1 θ + a 2 θ 2 + a 3 θ 3 + a 4 θ 4 : a 0 0 ( m o d 11 ) , 5 a 2 + a 3 0 ( m o d 11 ) and a 0 + 15 a 1 + 11 a 2 + a 4 0 ( m o d 22 ) , where a 0 , a 1 , a 2 , a 3 , a 4 } . .

In this case, ℳ is a submodule of 𝒪 𝕂 of index 2 · 11 3 and the trace form of α is given by

T r K / α 2 = 37752 a 0 2 + 43802 a 0 a 1 + 79134 a 0 a 2 + 16456 a 0 a 3 + 136488 a 0 a 4 + 12826 a 1 2 + 46706 a 1 a 2 + 10406 a 1 a 3 + 79860 a 1 a 4 + 44286 a 2 2 + 26136 a 2 a 3 + 144716 a 2 a 4 + 9438 a 3 2 + 30976 a 3 a 4 + 124388 a 4 2 .

Thus,t=min{TrK(α2):α,α0}=242witha0=a2=a3=0,a1=3anda4=1. As the volume of the lattice σ (mathcalM) isDKM:OK=2·115, it follows that

δ M = 242 / 2 5 2 · 11 5 = 1 8 2 ,

i.e., the center density of σ() is the same of the lattice Λ7 .

Example 3.5.IfK=(ζ9), where ζ9is the primitive 9-th root of unity, then[K:]=6,{1,ζ9,ζ92,ζ93,ζ94,ζ95}is an integral basis of 𝕂 andDK=39. If ℳ is a submodule of 𝒪 𝕂 given by

M = { a 0 + a 1 ζ 9 + a 2 ζ 9 2 + a 3 ζ 9 3 + a 4 ζ 9 4 + a 5 ζ 9 5 : a 1 a 2 + a 4 a 5 0 ( m o d 3 ) , where a 0 , a 1 , . . . , a 5 } , ,

then [ 𝒪 K : ] = 9 and

T r K ( α α ) = 18 ( a 0 2 + a 0 a 1 + a 0 a 2 + a 0 a 3 + 2 a 0 a 4 + 2 a 0 a 5 + a 1 2 + a 1 a 3 + 3 a 1 a 4 + a 2 2 + a 2 a 3 + 3 a 2 a 5 + a 3 2 + 2 a 3 a 4 + 2 a 3 a 5 + 3 a 4 2 + 3 a 5 2 ,

where α . Since t = m i n { T r K ( α α ) : α , α 0 } = 18 with a 0 = 1 and a 1 = a 2 = a 3 = a 4 = a 5 = 0 , it follows that

δ M = 18 / 2 6 3 6 3 = 1 8 3 ,

i.e., the center density of σ() is the same of the lattice Λ6 .

Example 3.6.IfK=(ζ20), where ζ20is the primitive 20-th root of unity then[K:] =8,1,ζ20,ζ202,ζ203,ζ204,ζ205,ζ206,ζ207is an integral basis fo 𝕂 andDK=28·56. If ℳ is a submodule of 𝒪 𝕂 given by

M = { a 0 + a 1 ζ 20 + a 2 ζ 20 2 + a 3 ζ 20 3 + a 4 ζ 20 4 + a 5 ζ 20 5 + a 6 ζ 20 6 + a 7 ζ 20 7 : a 0 + a 4 0 ( m o d 4 ) , a 1 + a 5 0 ( m o d 2 ) , a 2 + a 3 + a 6 0 ( m o d 4 ) and a 7 0 ( m o d 5 ) , where a 0 , a 1 , . . . , a 7 } ,

then [ 𝒪 K : ] = 5 and

T r K ( α α ) = 20 ( 2 a 0 2 + 2 a 0 a 1 + 5 a 0 a 2 + 3 a 0 a 3 + 3 a 0 a 4 + 2 a 0 a 5 + 5 a 0 a 6 + 8 a 0 a 7 + a 1 2 + 3 a 1 a 2 + 2 a 1 a 3 + 2 a 1 a 4 + a 1 a 5 + 3 a 1 a 6 + 5 a 1 a 7 + 4 a 2 2 + 4 a 2 a 3 + 5 a 2 a 4 + 3 a 2 a 5 + 7 a 2 a 6 + 12 a 2 a 7 + 2 a 3 2 + 3 a 3 a 4 + 2 a 3 a 5 + 5 a 3 a 6 + 7 a 3 a 7 + 2 a 4 2 + 2 a 4 a 5 + 5 a 4 a 6 + 8 a 4 a 7 + a 5 2 + 3 a 5 a 6 + 5 a 5 a 7 + 4 a 6 2 + 12 a 6 a 7 + 10 a 7 2 ) ,

where α . Since t = m i n { T r K ( α α ) : α , α 0 } = 20 with a 1 = 1 and a 0 = a 2 = a 3 = a 4 = a 5 = a 6 = a 7 = 0 , it follows that

δ M = 20 / 2 8 2 4 · 5 4 = 1 16 ,

i.e., the center density of σ() is the same of the lattice Λ8 .

Example 3.7.IfK=(ζ21), where ζ21is the primitive 21-th root of unity, then[K:]=12,1,ζ21,,ζ2111is an integral basis of 𝕂 andDK=36.710. If ℳ is a submodule of 𝒪 𝕂 given by

M = ζ 21 6 - ζ 21 2 + 1 a 0 + ζ 21 7 - ζ 21 3 + ζ 21 a 1 + ζ 21 8 - ζ 21 4 + ζ 21 2 a 2 + ζ 21 9 - ζ 21 5 + ζ 21 3 a 3 + ζ 21 10 - ζ 21 6 + ζ 21 4 a 4 + ζ 21 1 1 - ζ 21 7 + ζ 21 5 a 5 + ζ 21 11 - ζ 21 9 + ζ 21 4 - ζ 21 3 + ζ 21 - 1 a 6 + ζ 21 11 - ζ 21 10 - ζ 21 9 + ζ 21 8 - ζ 21 6 + ζ 21 5 - ζ 21 3 + ζ 21 2 - 1 a 7 + - ζ 21 10 + ζ 21 8 - ζ 21 7 - 1 a 8 + - ζ 21 11 + ζ 21 9 - ζ 21 8 - ζ 21 a 9 + - ζ 21 11 + ζ 21 10 - ζ 21 8 + ζ 21 6 - ζ 21 4 + ζ 21 3 - ζ 21 2 - ζ 21 + 1 a 10 + - ζ 21 8 + ζ 21 7 + ζ 21 6 - ζ 21 5 - ζ 21 2 + 1 a 11 , w h e r e a 0 , a 1 , , a 11 } ,

then [ 𝒪 K : ] = 7 and

T r K α α = 28 a 0 2 - 14 a 0 a 2 - 14 a 0 a 3 - 14 a 0 a 4 + 28 a 0 a 5 - 28 a 0 a 7 - 14 a 0 a 9 + 28 a 0 a 10 + 28 a 0 a 11 + 28 a 1 2 - 14 a 1 a 3 - 14 a 1 a 4 - 14 a 1 a 5 + 28 a 1 a 6 - 28 a 1 a 8 - 14 a 1 a 10 + 28 a 1 a 11 + 28 a 2 2 - 14 a 2 a 4 - 14 a 2 a 5 - 14 a 2 a 6 + 28 a 2 a 7 - 28 a 2 a 9 - 14 a 2 a 11 + 28 a 3 2 - 14 a 3 a 5 - 14 a 3 a 6 - 14 a 3 a 7 + 28 a 3 a 8 - 28 a 3 a 10 + 28 a 4 2 - 14 a 4 a 6 - 14 a 4 a 7 - 14 a 4 a 8 + 28 a 4 a 9 - 28 a 4 a 11 + 28 a 5 2 - 14 a 5 a 7 - 14 a 5 a 8 - 14 a 5 a 9 + 28 a 5 a 10 + 28 a 6 2 - 14 a 6 a 8 - 14 a 6 a 9 - 14 a 6 a 10 + 28 a 6 a 11 + 28 a 7 2 - 14 a 7 a 9 - 14 a 7 a 10 - 14 a 7 a 11 + 28 a 8 2 - 14 a 8 a 10 - 14 a 8 a 11 + 28 a 9 2 - 14 a 9 a 11 + 28 a 10 2 + 28 a 11 2 ,

where α . Since t = m i n { T r K = ( α α ) : α ; α 0 } = 28 with a 0 = 1 and a 1 = a 2 = = a 11 = 0 , it follows that

δ M = 28 / 2 12 3 3 · 5 6 = 1 3 3 ,

i.e., the center density of σ() is the same of the lattice K12.

ACKNOWLEDGMENT

The authors thank the reviewer for carefully reading the manuscript and for all the suggestions that improved the presentation of this work. The authors also thank FAPESP 2013/25977-7 and CNPq 429346/2018-2 for its financial support.

REFERENCES

  • 1
    A.A. Andrade & R. Palazzo Jr. Linear codes over finite rings. TEMA - Trends in Applied and Computational Mathematics, 6(2) (2005), 207-217.
  • 2
    A.S. Ansari, R. Shah, Zia Ur-Rahman & A.A. Andrade. Sequences of primitive and non-primitive BCH codes. TEMA - Trends in Applied and Computational Mathematics, 19(2) (2018), 369-389.
  • 3
    A. A. Andrade, A. J. Ferrari & C. W. O. Benedito, Constructions of algebraic lattices, Comput. Appl. Math., 29 (2010) 1-13.
  • 4
    E. Bayer-Fluckiger, Lattices and number fields, In: Contemp. Math., Amer. Math. Soc., Providence (1999), 69-84.
  • 5
    J. H. Conway & N. J. A. Sloane. Sphere Packings, Lattices and Groups, 3rd Edition, Springer Verlag, New York (1999).
  • 6
    J. C. Interlando, J. O. D. Lopes & T. P .N. Neto. The discriminant of abelian number fields, J. Algebra Appl., 5 (2006), 35-41.
  • 7
    P. Samuel. Algebraic Theory of Numbers, Hermann, Paris (1970).

Publication Dates

  • Publication in this collection
    30 Apr 2020
  • Date of issue
    Jan-Apr 2020

History

  • Received
    26 Sept 2019
  • Accepted
    01 Jan 2020
Sociedade Brasileira de Matemática Aplicada e Computacional Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 , 13561-120 São Carlos - SP, Tel. / Fax: (55 16) 3412-9752 - São Carlos - SP - Brazil
E-mail: sbmac@sbmac.org.br